JPS60242434A - Optical deflector - Google Patents

Optical deflector

Info

Publication number
JPS60242434A
JPS60242434A JP9963484A JP9963484A JPS60242434A JP S60242434 A JPS60242434 A JP S60242434A JP 9963484 A JP9963484 A JP 9963484A JP 9963484 A JP9963484 A JP 9963484A JP S60242434 A JPS60242434 A JP S60242434A
Authority
JP
Japan
Prior art keywords
light beam
crystal
refractive index
optical
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9963484A
Other languages
Japanese (ja)
Inventor
Shiro Ogata
司郎 緒方
Junichi Takagi
高木 潤一
Naohisa Inoue
直久 井上
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP9963484A priority Critical patent/JPS60242434A/en
Publication of JPS60242434A publication Critical patent/JPS60242434A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a relatively large angle of deflection with simple constitution by forming a light beam reflecting film on the surface of an optical material, which varies in refractive index with an external physical quantity, opposite its incidence surface for a light beam. CONSTITUTION:An upper Peltier element 2 heats the top surface of crystal 1 of lithium niobate and a lower Peltier element 2 cools the reverse surface of the crystal 1, and then such a refractive index gradient that the refractive index is large at the upper part and small at the lower part is obtained. The light beam A when is made incident on an end surface S1 of the crystal 1 at right angles is deflected upward and reflected by the reflecting film 6, and the reflected beam is further deflected upward and projected from the incidence end surface S1. The propagation length of the light beam is increased twice as long as when the reflecting film is not formed, so the large angle of deflection is obtained.

Description

【発明の詳細な説明】 発明の背景 この発明は、温度、電界、磁界等の物理量によって屈折
率が変化する光学林料を利用した光偏向器に関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION The present invention relates to an optical deflector using optical forest material whose refractive index changes depending on physical quantities such as temperature, electric field, and magnetic field.

ガラスまたは誘電体などの屈折率は、温度によって変化
することが知られている。このような温度光学効果を生
じさせる光学材料を用いて光を変更さけることが考えら
れる。光学材料の温度を変えるためには、その表面にN
i −Orなどの発熱体やペルチェ素子を設けることが
考えられる。
It is known that the refractive index of glass, dielectric materials, etc. changes depending on temperature. It is conceivable to avoid modifying light by using optical materials that produce such thermo-optical effects. In order to change the temperature of an optical material, it is necessary to add N to its surface.
It is conceivable to provide a heating element such as i-Or or a Peltier element.

第4図は、光学材料の上下面にペルチェ素子がそれぞれ
設けられた光偏向器の例を示している。温度光学効果を
もつ誘電体結晶、たとえばニオブ酸リチウム(LiNb
O3)の結晶(1)の上下面にペルチェ素子(2)がそ
れぞれ設けられている。ペルチェ素子(2)はよく知ら
れているように1対の伝熱板〈3)間に異種の伝導形の
半導体(4)が少なくとも1組設けられ、かつこれらの
半導体(4)が伝熱板(3)に固定された接続導体(図
示路)によってP形とN形とが交互になるように直列に
接続されているものである。半導体(4)に直流電流を
流すと、1対の伝熱板〈3)のうち一方の伝熱板(3)
に熱の発生、他方の伝熱板(3)に熱の吸収が起こる。
FIG. 4 shows an example of an optical deflector in which Peltier elements are provided on the upper and lower surfaces of an optical material. Dielectric crystals with thermo-optical effects, such as lithium niobate (LiNb)
Peltier elements (2) are provided on the upper and lower surfaces of the O3) crystal (1), respectively. As is well known, the Peltier element (2) has at least one set of semiconductors (4) of different conduction types between a pair of heat exchanger plates (3), and these semiconductors (4) conduct heat transfer. The P type and N type are connected in series so as to alternate with each other by connecting conductors (paths shown) fixed to the plate (3). When a direct current is passed through the semiconductor (4), one of the heat exchanger plates (3) of the pair of heat exchanger plates (3)
Heat is generated in the heat exchanger plate (3), and heat is absorbed in the other heat exchanger plate (3).

電流の向きを逆にすると、熱の発生の起こる伝熱板(3
)と、熱の吸収が起こる伝熱板(3)とが逆になる。伝
熱板(3)の外面が発熱吸熱面である。各ペルチェ索子
(2)は一方の伝熱板(3)の発熱吸熱面が結晶(1)
の上面または下面に密着した状態で結晶(1)に固定さ
れている。各ベルチェ素子(2)の他方の伝熱板(3)
の発熱吸熱面には、放熱吸熱フィン〈5)が固定されて
いる。
When the direction of the current is reversed, the heat exchanger plate (3
) and the heat exchanger plate (3) where heat absorption occurs are reversed. The outer surface of the heat exchanger plate (3) is a heat generating/endothermic surface. Each Peltier cord (2) has one heat exchanger plate (3) whose exothermic and endothermic surface is a crystal (1).
It is fixed to the crystal (1) in close contact with the upper or lower surface of the crystal (1). The other heat exchanger plate (3) of each Vertier element (2)
A heat-radiating and heat-absorbing fin (5) is fixed to the heat-generating and heat-absorbing surface.

上側のベルチェ素子(2)の結晶(1)側の伝熱板(3
)に発熱を起こさせるように電源(図示路)からこのベ
ルチェ素子(2)に電流を流し、下側のベルチェ素子(
2)の結晶(1)側の伝熱板(3)に吸熱を起こさせる
ように電源(図示路)からこのベルチェ素子(2)に電
流を流すと、結晶(1)の上面が加熱され、下面が冷却
される。これによって結晶(1)内部にその上下方向に
温度勾配が発生し、この温度勾配によって結晶内部に屈
折率の勾配が生じる。
Heat transfer plate (3) on the crystal (1) side of the upper Vertier element (2)
), a current is passed from the power supply (path shown) to this Beltier element (2) to generate heat, and the lower Beltier element (
When current is passed from the power supply (path shown) to this Vertier element (2) so as to cause the heat transfer plate (3) on the crystal (1) side of 2) to absorb heat, the top surface of the crystal (1) is heated, The lower surface is cooled. As a result, a temperature gradient is generated inside the crystal (1) in the vertical direction, and this temperature gradient causes a refractive index gradient inside the crystal.

この場合は、結晶(1)内部の上部の屈折率が高くなり
、下部の屈折率が低くなるような屈折率勾配が生じる。
In this case, a refractive index gradient occurs in which the refractive index in the upper part of the crystal (1) becomes higher and the refractive index in the lower part becomes lower.

結晶(1)の端面から光ビームAを結晶(1)の上下面
と平行に入射させると、屈折率の勾配によって光ビーム
は上下方向、この場合は上向きに偏向される。偏向され
た出射ビームを82で、偏向されていない出射ビームを
B1でそれぞれ示す。光ビームを下向きに偏向するには
、各ベルチェ素子(2)に流す電流の向きを逆にすれば
よい。このような光偏向器では、結晶(1)の温度変化
に対する屈折率変化が比較的小さいため、光ビームの偏
向角が比較的小さいという問題がある。
When a light beam A is made incident from the end face of the crystal (1) parallel to the upper and lower surfaces of the crystal (1), the light beam is deflected in the vertical direction, in this case upward, due to the gradient of the refractive index. The deflected output beam is designated 82 and the undeflected output beam is designated B1. In order to deflect the light beam downward, the direction of the current flowing through each Vertier element (2) may be reversed. Such an optical deflector has a problem in that the deflection angle of the light beam is relatively small because the refractive index change with respect to temperature change of the crystal (1) is relatively small.

発明の概要 この発明は、I成が簡単でしかも比較的太きな偏向角が
得られる光偏向器を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical deflector that is easy to form and can obtain a relatively large deflection angle.

この発明による光偏向器は、外部から加えられる物理量
によって屈折率が変化する光学材料を利用した光偏向器
において、光学材料における光ビームが入射される面に
対向する面に光ビーム反射膜が形成されていることを特
徴とする。
The optical deflector according to the present invention is an optical deflector that uses an optical material whose refractive index changes depending on a physical quantity applied from the outside, in which a light beam reflecting film is formed on the surface of the optical material opposite to the surface on which the light beam is incident. It is characterized by being

温度光学効果をもつ光学材料の代表的なものとしては、
ガラス、生i Nll 02 、PLZTなどがある。
Typical optical materials with thermo-optical effects include:
Examples include glass, raw iNll 02, PLZT, etc.

電気光学効果をbつ光学材料の代表的なものとしては、
Li Nb 03.3r Ti O3、PLZTなどが
ある。
Typical optical materials with electro-optic effects include:
Examples include Li Nb 03.3r Ti O3 and PLZT.

この発明による光偏向器では、光学材料の端面から光ビ
ームを入射させると、光ビームは光学材料内を対向する
端面に向かって伝搬する過程で偏向され、対向する端面
に到達すると、その端面に形成された反射膜によって反
射される。
In the optical deflector according to the present invention, when a light beam is incident from an end face of an optical material, the light beam is deflected while propagating within the optical material toward the opposite end face, and when it reaches the opposite end face, it It is reflected by the formed reflective film.

そして反射膜によって反射された光ビームは、光学材料
内を光ビームが入射した端面に向って伝搬する過程でさ
らに偏向され、光ビームが入射した端面から出射される
。このように光学材料内における光ビームの伝搬長が、
反射膜が形成されていない場合に比べてほぼ2倍になる
ので、大きな偏向角が得られる。
The light beam reflected by the reflective film is further deflected in the process of propagating within the optical material toward the end surface on which the light beam has entered, and is emitted from the end surface on which the light beam has entered. In this way, the propagation length of a light beam within an optical material is
The deflection angle is approximately twice that of the case where no reflective film is formed, so a large deflection angle can be obtained.

実施例の説明 第1図はこの発明の第1実施例を示している。Description of examples FIG. 1 shows a first embodiment of the invention.

第1図において第4図と同じものについては同じ符号を
付してその説明を省略する。
Components in FIG. 1 that are the same as those in FIG. 4 are given the same reference numerals, and their explanations will be omitted.

この光偏向器では、ニオブ酸リチウムの直方体の結晶(
1)における光ビーム八が入射される端面(Sl)と対
向する端面(B2)のほぼ全面に光ビーム反射膜(6)
が形成されている。
This optical deflector uses a rectangular parallelepiped crystal of lithium niobate (
A light beam reflecting film (6) is provided on almost the entire surface of the end face (B2) opposite to the end face (Sl) on which the light beam 8 is incident in 1).
is formed.

光ビーム反射膜(6)は、結晶(1)の端面(B2)に
、たとえばA/を真空蒸着することによって形成される
The light beam reflecting film (6) is formed by, for example, vacuum-depositing A/ on the end face (B2) of the crystal (1).

上側のペルチェ索子(2〉によって結晶く1〉の上面を
加熱し、下側のペルチェ索子(2)によって結晶(1〉
の下面を冷却すると、結晶く1)内の上部の屈折率が高
くなり、下部の屈折率が低くなるような屈折率勾配が得
られる。
The upper Peltier cord (2) heats the top surface of the crystal (1), and the lower Peltier cord (2) heats the crystal (1).
When the lower surface of the crystal is cooled, a refractive index gradient is obtained such that the upper part of the crystal 1) has a higher refractive index and the lower part has a lower refractive index.

結晶(1)の端面(Sl)から光ビームAを端面(Sl
)に直交する方向に入射させると、光ビームAは結晶く
1〉内を端面(B2)に向かって伝搬する過程で屈折率
の勾配によって上向きに偏向され、反則膜(6)に入射
角θ1で入射する。そして反射膜(6)によって反射さ
れる。反射膜(6〉によって反射角θ1で反射されr−
光ビームは、端面(Sl)に向かって伝搬する過程で、
さらに上向きに偏向され、光ビーム(A)が入射した端
面(B1)からB2で示すように出射角θ2で出射され
る。
The light beam A is directed from the end face (Sl) of the crystal (1) to the end face (Sl
), the light beam A is deflected upward by the gradient of the refractive index while propagating inside the crystal 1〉 toward the end face (B2), and the incident angle θ1 incident at The light is then reflected by the reflective film (6). It is reflected by the reflective film (6〉) at a reflection angle θ1 and r-
In the process of propagating the light beam toward the end surface (Sl),
It is further deflected upward and is emitted from the end face (B1) on which the light beam (A) is incident, at an emission angle θ2 as shown by B2.

この光偏向器では、結晶(1)内の光ビームの伝搬長が
、反射膜が形成されていない場合に比べて2倍となるの
で、反射膜が形成されていない場合の光偏向角(−B1
)よりも大きな光偏向角(−B2)が得られる。
In this optical deflector, the propagation length of the light beam within the crystal (1) is twice as long as when no reflective film is formed, so the optical deflection angle (- B1
), a larger optical deflection angle (-B2) can be obtained.

上述のように光ビームAを結晶(1〉の端面(Sl)に
直交する方向に入射させると、ペルチェ索子(2)に電
流が流されていない場合には、入用光ビームへと、反射
膜(6)によって反射された反射光ビームとが重なって
しまう。
When the light beam A is made incident in the direction perpendicular to the end face (Sl) of the crystal (1>) as described above, if no current is applied to the Peltier cord (2), the light beam A is converted into the desired light beam. The reflected light beam reflected by the reflective film (6) overlaps.

入射光ビームAと反射ll94(6)によって反射され
た反射光ビームが重ならないようにするためには、反射
膜(6)上であって、端面(Sl)の光ビーム(A>の
入射位置に対応する位置に光ビームAの径より少(〕大
きな孔(図示路)をあ(Jてd−3けばよい。このよう
にすると、ペルチェ素子(2)に電流が流されていない
場合には、端面(Sl)から入射した光ビームAは反射
膜(6)の孔を通って出射される。
In order to prevent the incident light beam A and the reflected light beam reflected by the reflection ll94 (6) from overlapping, it is necessary to adjust the incident position of the light beam (A> on the end surface (Sl) on the reflective film (6). It is sufficient to make a hole (path shown in the figure) that is smaller than the diameter of the light beam A at a position corresponding to the diameter of the light beam A. In this case, the light beam A incident from the end face (Sl) is emitted through the hole in the reflective film (6).

また、第2図に示すように結晶(1)の端面(Sl)に
直交する方向に対して水平方向に角度B3傾い1〔方向
に光ビームAを入射させてもよい。このようにすると、
ペルチェ素子(2)に電流が流されていない場合には、
反射膜(6)によって反射された光ビームは、結晶(1
)の端面(Sl)にお(プる光ビーム△の入射位置(U
l)の真横位置(U2)から出射される。
Alternatively, as shown in FIG. 2, the light beam A may be incident at an angle B3 of 1 in the horizontal direction with respect to the direction perpendicular to the end surface (Sl) of the crystal (1). In this way,
When no current is flowing through the Peltier element (2),
The light beam reflected by the reflective film (6) is reflected by the crystal (1
The incident position (U
The light is emitted from a position (U2) just beside the point (U2).

またペルチェ素子(2)に上述のように電流が流された
場合における出射光ビーム(B2)は、結晶(1)の端
面(Sl)における上記位置(U2)の真上位置(U3
)から出射される。
Further, when a current is applied to the Peltier element (2) as described above, the emitted light beam (B2) is located at a position (U3) directly above the above position (U2) on the end surface (Sl) of the crystal (1).
) is emitted from the

第3図はこの発明の第2実施例を示している。FIG. 3 shows a second embodiment of the invention.

この光偏向器では、ニオブ酸リチウムの結晶(1〉の上
面にたとえばNi−0rの発熱体(7)が形成され、結
晶(1)の下面に放熱フィン(5)が設けられている。
In this optical deflector, a heating element (7) made of, for example, Ni-0r is formed on the upper surface of a lithium niobate crystal (1), and a heat dissipation fin (5) is provided on the lower surface of the crystal (1).

そして結晶(1)の光ビーム△を入射させる端面(Sl
)と対向する端面(B2)に下部を残して反!8膜(6
)が形成されている。光ビーム△は、端面(Sl)の反
射膜(6)の下端に対応する高さ位置よりも少し下方位
置に、端面(Sl)に対して直交する方向に入射される
。したがって、発熱体(7)に電流が流されていないと
きには、光ビームAは結晶〈1)内を直進して端面(S
2)から81で示すように出射される。発熱体(7)に
電流が流され、結晶の上面が加熱されると、結晶(1)
内に上下方向に屈折率勾配が形成されるので、光ビーム
Aは結晶(1)内を伝搬する過程で上向きに偏向され、
光ビームAの入射位置よりも上方位置に形成された反射
膜(6)に入射し、反射される。反射された光ビームは
再び上向きに偏向され端面(Sl)から82で示ずよう
に出射される。
Then, the end face (Sl
) and leave the lower part on the end face (B2) opposite! 8 membranes (6
) is formed. The light beam Δ is incident in a direction perpendicular to the end surface (Sl) at a position slightly below the height position corresponding to the lower end of the reflective film (6) on the end surface (Sl). Therefore, when no current is flowing through the heating element (7), the light beam A travels straight through the crystal (1) and the end face (S
2) is emitted as shown at 81. When a current is passed through the heating element (7) and the top surface of the crystal is heated, the crystal (1)
Since a refractive index gradient is formed in the vertical direction within the crystal (1), the light beam A is deflected upward in the process of propagating within the crystal (1).
The light beam A enters a reflective film (6) formed above the incident position of the light beam A and is reflected. The reflected light beam is again deflected upward and exits from the end face (Sl) as shown at 82.

この発明は、さらに電界や磁界によって屈折率が変化す
る光学材料を利用した光偏向器にも適用することができ
る。
The present invention can also be applied to an optical deflector using an optical material whose refractive index changes depending on an electric field or a magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例を示ず側面図、第2図は
結晶の端面に直交する方向に対して水平方向に所定角度
傾いた方向に光ビームを入射させた場合の光ビームの伝
搬の様子を示す斜視図、第3図はこの発明の第2実施例
を示す側面図、第4図は温度光学効果をもつ光学材料を
利用1ノIC光偏向器の例を示づ側面図である。 (1)・・・温度光学誘電体結晶、(2)・・・ペルチ
ェ素子、(6)・・・反射膜、(7〉・・・発熱体。 以上 外4名 第1図 第1f 第3図 り
Fig. 1 is a side view of the first embodiment of the present invention, and Fig. 2 shows a light beam incident in a direction inclined at a predetermined angle horizontally with respect to a direction perpendicular to the end face of the crystal. FIG. 3 is a side view showing a second embodiment of the present invention, and FIG. 4 is a side view showing an example of an IC optical deflector using an optical material having a temperature optical effect. It is a diagram. (1)...Thermo-optical dielectric crystal, (2)...Peltier element, (6)...Reflection film, (7>...Heating element. 4 people other than the above. Figure 1, Figure 1f, Section 3. plan

Claims (1)

【特許請求の範囲】[Claims] 外部から加えられる物理Mによって屈折率が変化する光
学林料を利用した光偏向器において、光学林料における
光ビームが入射される面に対向する而に光ビーム反射膜
が形成されていることを特徴とする光偏向器。
In an optical deflector using an optical forest material whose refractive index changes depending on the physical M applied from the outside, a light beam reflecting film is formed on the surface of the optical forest material that faces the surface on which the light beam is incident. Characteristic optical deflector.
JP9963484A 1984-05-16 1984-05-16 Optical deflector Pending JPS60242434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9963484A JPS60242434A (en) 1984-05-16 1984-05-16 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9963484A JPS60242434A (en) 1984-05-16 1984-05-16 Optical deflector

Publications (1)

Publication Number Publication Date
JPS60242434A true JPS60242434A (en) 1985-12-02

Family

ID=14252500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9963484A Pending JPS60242434A (en) 1984-05-16 1984-05-16 Optical deflector

Country Status (1)

Country Link
JP (1) JPS60242434A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003652A1 (en) * 2002-06-28 2004-01-08 Fujitsu Limited Reflection type variable light polariscope and optical device using the polariscope
JP2008046537A (en) * 2006-08-21 2008-02-28 Seiko Epson Corp Scanning-type optical apparatus
JP2008064793A (en) * 2006-09-04 2008-03-21 Seiko Epson Corp Scanning type optical device
US7729041B2 (en) 2006-11-10 2010-06-01 Seiko Epson Corporation Electro optic device, method of manufacturing electro optic device, and scanning type optical apparatus
JP2014219498A (en) * 2013-05-07 2014-11-20 昭和オプトロニクス株式会社 Optical deflector and laser source including the same
CN106526901A (en) * 2016-10-28 2017-03-22 天津医科大学 Solid state optical scanner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003652A1 (en) * 2002-06-28 2004-01-08 Fujitsu Limited Reflection type variable light polariscope and optical device using the polariscope
US7280718B2 (en) 2002-06-28 2007-10-09 Fujitsu Limited Reflective adjustable optical deflector and optical device employing the same
JP2008046537A (en) * 2006-08-21 2008-02-28 Seiko Epson Corp Scanning-type optical apparatus
US7471446B2 (en) 2006-08-21 2008-12-30 Seiko Epson Corporation Scan-type optical apparatus
JP2008064793A (en) * 2006-09-04 2008-03-21 Seiko Epson Corp Scanning type optical device
US7729041B2 (en) 2006-11-10 2010-06-01 Seiko Epson Corporation Electro optic device, method of manufacturing electro optic device, and scanning type optical apparatus
JP2014219498A (en) * 2013-05-07 2014-11-20 昭和オプトロニクス株式会社 Optical deflector and laser source including the same
CN106526901A (en) * 2016-10-28 2017-03-22 天津医科大学 Solid state optical scanner

Similar Documents

Publication Publication Date Title
JP2892938B2 (en) Wavelength converter
EP0206220A2 (en) Higher harmonic generator
CN101681080A (en) Wavelength conversion laser and image display device
JPS60242434A (en) Optical deflector
US5007694A (en) Light wavelength converter
US4762383A (en) Two dimensional light beam deflectors utilizing thermooptical effect and method of using same
US5867303A (en) Method and apparatus for optimizing the output of a harmonic generator
US20070014008A1 (en) Birefringent beam displacer
JPS6118934A (en) Device for changing wavelength of light
US6137624A (en) Nonlinear optical wavelength converting device
JPS6344781A (en) Higher harmonics generator
US4907850A (en) Apparatus for periodically generating second harmonic
JPS60247627A (en) Optical deflector
JPS60242433A (en) Optical deflector
US5168388A (en) Optical waveguide device and optical second harmonic generator using the same
JPS60247626A (en) Optical deflector
JPS60242431A (en) Optical deflector
JPS60242432A (en) Optical deflector
JPH01257922A (en) Waveguide type wavelength converting element
JPS58174924A (en) Optical deflection element
JPS5855914A (en) Optical switch
JPS59154427A (en) Light controlling device
JP2658381B2 (en) Waveguide type wavelength conversion element
JPS60247625A (en) Optical deflector
JP2774346B2 (en) Spatial light matrix switch device