JP2774346B2 - Spatial light matrix switch device - Google Patents

Spatial light matrix switch device

Info

Publication number
JP2774346B2
JP2774346B2 JP1862490A JP1862490A JP2774346B2 JP 2774346 B2 JP2774346 B2 JP 2774346B2 JP 1862490 A JP1862490 A JP 1862490A JP 1862490 A JP1862490 A JP 1862490A JP 2774346 B2 JP2774346 B2 JP 2774346B2
Authority
JP
Japan
Prior art keywords
heating
substrate
reflecting mirror
function
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1862490A
Other languages
Japanese (ja)
Other versions
JPH03221925A (en
Inventor
正良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1862490A priority Critical patent/JP2774346B2/en
Publication of JPH03221925A publication Critical patent/JPH03221925A/en
Application granted granted Critical
Publication of JP2774346B2 publication Critical patent/JP2774346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信、光情報処理システム等の分野で用
いられる空間光変調器、並列光スイッチ、光交換器等の
空間光マトリックススイッチデバイスに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spatial light matrix switch device such as a spatial light modulator, a parallel optical switch, and an optical switch used in the fields of optical communication, an optical information processing system, and the like.

従来の技術 従来、この種の空間光マトリックススイッチデバイス
として特開昭58−111019号公報に示されるものがある。
第4図はその構成を示すもので、感光媒質1上に光の干
渉を利用して回折格子(図示せず)を形成し、フォトエ
ミッタ回路2から出た光をコリメート手段3を通してコ
リメートし、感光媒質1上に形成された回折格子により
フォトレセプタ回路4上の所定位置に光ビームを出射さ
せて光学的結合を得るようにしたものである。このデバ
イスでは、感光媒質1にBSO結晶のような光導電効果と
電気光学効果とを併せ持つ結晶を用いることにより、回
折格子を可変にして書込み光により任意の回折格子を形
成できるため、フォトエミッタ回路2とフォトレセプタ
回路4との間の光学的結合を任意に選択することが可能
となる。
2. Description of the Related Art A conventional spatial light matrix switch device of this type is disclosed in Japanese Patent Application Laid-Open No. 58-111019.
FIG. 4 shows the structure, in which a diffraction grating (not shown) is formed on the photosensitive medium 1 by utilizing the interference of light, and the light emitted from the photo-emitter circuit 2 is collimated through a collimating means 3. A light beam is emitted to a predetermined position on the photoreceptor circuit 4 by a diffraction grating formed on the photosensitive medium 1 to obtain optical coupling. In this device, a crystal having both a photoconductive effect and an electro-optical effect, such as a BSO crystal, is used as the photosensitive medium 1 so that the diffraction grating can be varied and an arbitrary diffraction grating can be formed by writing light. The optical coupling between the photoreceptor circuit 2 and the photoreceptor circuit 4 can be arbitrarily selected.

発明が解決しようとする課題 ところが、このような空間光マトリックススイッチデ
バイスでは、基本的に回折格子を形成するための書込み
系や、書込み光と信号光とを分離させるための光学系な
どが必要であり、素子自体が大きくなってしまう。ま
た、BSOなどの電気光学結晶は一般にその電気光学効果
が小さく、光の作用によって誘起される格子の回折効率
も小さいものである。よって、光路変換などに用いた場
合、その変換が不十分となりスイッチ特性を悪化させる
一因ともなる。
Problems to be Solved by the Invention However, such a spatial light matrix switch device basically requires a writing system for forming a diffraction grating and an optical system for separating writing light from signal light. Yes, the element itself becomes large. In addition, an electro-optic crystal such as BSO generally has a small electro-optic effect and a small diffraction efficiency of a grating induced by the action of light. Therefore, when used for optical path conversion or the like, the conversion becomes insufficient, which is one of the causes of deteriorating switch characteristics.

課題を解決するための手段 熱光学効果を有する物質により形成された基板と、2
次元アレイ状に配列された入力側光導波路間に規則的に
配設させて前記基板の一面に形成された加熱機能及び反
射鏡機能を持つ単層又は複数層の加熱側反射鏡と、前記
入力側光導波路に対応する出力側光導波路用の出射窓を
備えて前記基板の他面に形成された放熱機能及び反射鏡
機能を持つ単層又は複数層の放熱側反射鏡と、前記加熱
側反射鏡の各々に選択的に電力を供給する電力供給手段
とよりなり、加熱側反射鏡に選択的に電力を供給したと
きの加熱による基板の熱光学効果により入・出力側光導
波路間の結合を切換え制御するようにした。
Means for Solving the Problems A substrate formed of a substance having a thermo-optical effect,
A single-layer or multiple-layer heating-side reflecting mirror having a heating function and a reflecting mirror function formed on one surface of the substrate and regularly arranged between input-side optical waveguides arranged in a three-dimensional array; A single-layer or multiple-layer heat-radiation-side reflector having a heat-radiation function and a reflection-mirror function formed on the other surface of the substrate with an output window for the output-side optical waveguide corresponding to the side-light waveguide; It comprises power supply means for selectively supplying power to each of the mirrors, and the coupling between the input and output side optical waveguides due to the thermo-optic effect of the substrate caused by heating when the power is selectively supplied to the heating side reflection mirror. Switching control is performed.

作用 加熱側反射鏡に対して電力を供給しない状態では基板
が加熱されず熱光学効果を発揮しないため、入射光は基
板を直進透過し対応する出射窓の出力側光導波路に結合
される。一方、注目するある入力側光導波路に近接した
ある加熱側反射鏡に電力を供給して加熱すると、対応す
る放熱側反射鏡部分との間で基板内部が加熱される。こ
れにより、この部分の基板は熱光学効果によって屈折率
が変化して屈折率分布を持つため、基板内部で入射光を
屈折させる。屈折された光は、放熱側反射鏡と加熱側反
射鏡との間で反射を繰返しながら進路を変えて伝搬し、
近接する別の出射側光導波路に切換え結合される。これ
により、確実かつ高速の光スイッチングが可能となり、
かつ、熱光学効果を利用しているため、偏光や波長に依
存しないスイッチングが可能となる。構成的にも基板両
面に対して所定の加熱側、放熱側反射鏡の膜を面内に一
括に形成すればよく、薄型構造として小型デバイス化が
可能で、製作も容易なものとなる。
In the state where power is not supplied to the heating-side reflecting mirror, the substrate is not heated and does not exhibit the thermo-optic effect, so that the incident light passes straight through the substrate and is coupled to the output-side optical waveguide of the corresponding exit window. On the other hand, when power is supplied to and heated a certain heating-side reflector close to a certain input-side optical waveguide of interest, the inside of the substrate is heated between the heating-side reflector and the corresponding heat-radiation-side reflector. As a result, the refractive index of the substrate in this portion changes due to the thermo-optic effect and has a refractive index distribution, so that the incident light is refracted inside the substrate. The refracted light propagates by changing the course while repeating reflection between the heat radiation side reflection mirror and the heating side reflection mirror,
It is switch-coupled to another adjacent output side optical waveguide. This enables reliable and high-speed optical switching,
In addition, since the thermo-optic effect is used, switching independent of polarization and wavelength can be performed. In terms of constitution, it is only necessary to form a film of the predetermined heating side and heat radiation side reflecting mirrors on the both surfaces of the substrate at a time.

実施例 本発明の一実施例を第1図ないし第3図に基づいて説
明する。本実施例の空間光マトリックススイッチデバイ
スは、熱光学効果を有する物質、例えばガラス、PLZTな
どにより形成されて使用する波長光に対して透明な基板
11をベースとして構成される。この基板11の入射側一面
には加熱機能と反射鏡機能とを持つ加熱側反射鏡12の膜
が単層又は複数層構造で複数個個別に形成されている。
これらの加熱側反射鏡12は2次元アレイ状配列の入力側
光導波路、ここでは入射光ファイバ13による入射位置14
間を埋めるように規則的に正しく配設されている。即
ち、基板11の一面において縦横に一定の間隔で配列され
ている。また、基板11の出射側他面には放熱機能(ヒー
トシンク)と反射鏡機能とを持つ放熱側反射鏡15の膜、
例えば金属膜が形成されている。ここに、この放熱側反
射鏡15には前記入射位置14に対応させて2次元アレイ状
に正しく配列させた円形の出射窓16が形成されている。
ここに、前記加熱側反射鏡12は例えば第1図に示すよう
にTiやNi/Crによる薄膜ヒータ12AとAuを用いた薄膜反射
鏡12Bとを保護膜12Cで分離した3層構造として形成され
ている。また、放熱側反射鏡15は熱伝導率の高いAuを用
いた厚膜反射鏡構造とされている。このような反射鏡1
2,15はスパッタリング法、蒸着法等の通常の薄膜形成技
術やフォトリソグラフィ等の加工技術によって、高精度
かつ簡単に形成できる。
Embodiment An embodiment of the present invention will be described with reference to FIGS. The spatial light matrix switch device of this embodiment is a substrate having a thermo-optical effect, for example, glass, a substrate that is formed of PLZT or the like and is transparent to wavelength light used.
It is composed based on 11. A plurality of films of the heating-side reflecting mirror 12 having a heating function and a reflecting mirror function are individually formed on one surface on the incident side of the substrate 11 in a single-layer or multi-layer structure.
These heating-side reflecting mirrors 12 are arranged on an input-side optical waveguide in a two-dimensional array, in this case, an incident position 14 by an incident optical fiber 13.
They are arranged regularly to fill the gap. That is, they are arranged at regular intervals vertically and horizontally on one surface of the substrate 11. On the other side of the emission side of the substrate 11, a film of a heat radiation side reflector 15 having a heat radiation function (heat sink) and a reflector function,
For example, a metal film is formed. Here, the radiation-side reflector 15 is formed with a circular exit window 16 which is correctly arranged in a two-dimensional array corresponding to the incident position 14.
Here, the heating-side reflecting mirror 12, for example three layers were separated and the thin film reflective mirror 12 B using a thin film heater 12 A and Au by Ti and Ni / Cr, as shown in FIG. 1 with the protective film 12 C structure It is formed as. Further, the heat radiation side reflection mirror 15 has a thick film reflection mirror structure using Au having high thermal conductivity. Such a reflector 1
The layers 2 and 15 can be formed easily and with high precision by ordinary thin film forming techniques such as sputtering and vapor deposition, and processing techniques such as photolithography.

ここに、加熱側反射鏡12は各々個別に電力供給手段
(図示せず)により選択的な電力の供給を受けて加熱作
用を示す。また、入射位置14に対しては第1図に示すよ
うに、入射光ファイバ13とともにコリメートレンズ17が
結合され、出射窓16に対しては集光レンズ18を介して出
射側光導波路としての出射側光ファイバ19が結合される
ものである。
Here, the heating-side reflecting mirrors 12 individually receive a selective power supply from a power supply means (not shown) to exhibit a heating action. As shown in FIG. 1, a collimating lens 17 is coupled to the incident position 14 together with the incident optical fiber 13, and an exiting optical waveguide as an exit side optical waveguide is passed through the condensing lens 18 to the exit window 16. The side optical fiber 19 is coupled.

このような構成において、本実施例の動作原理を第1
図により説明する。いま、ある入射光ファイバ13aを伝
搬してきた入射光20aがコリメートレンズ17aによりコリ
メートされて基板11に入射する場合を考える。この時、
加熱側反射鏡12に電力が供給されず加熱されていないと
すると、入射光20aは一点鎖線で示すように基板11中を
直進透過して、対応する出射窓16aの集光レンズ18aを通
り、出射光21aとして出射光ファイバ19a中に出射され
る。一方、直下の加熱側反射鏡12aに電力を供給して加
熱すると、この加熱側反射鏡12aと対応する放熱側反射
鏡15部分との間で基板11内部が加熱される。この時、基
板11の熱光学効果により屈折率が変化して屈折率分布が
形成される。よって、入射位置14aから入射した入射光2
0aは実線で示すように基板11内部で屈折されるととも
に、反射鏡12a,15により反射を繰返して伝搬し、近接し
た出射側の出射窓16bの集光レンズ18bbに結合して対応
する出射光ファイバ19b中に出射光21bとして出射され
る。この場合、偏光や波長には依存しない。
In such a configuration, the operation principle of this embodiment is the first.
This will be described with reference to the drawings. Now, consider a case where incident light 20a propagating through a certain incident optical fiber 13a is collimated by a collimating lens 17a and enters the substrate 11. At this time,
Assuming that no power is supplied to the heating-side reflecting mirror 12 and the heating-side reflecting mirror 12 is not heated, the incident light 20a passes straight through the substrate 11 as indicated by a dashed line, passes through the condenser lens 18a of the corresponding exit window 16a, The outgoing light 21a is emitted into the outgoing optical fiber 19a. On the other hand, when electric power is supplied to the heating-side reflecting mirror 12a immediately below to heat the heating-side reflecting mirror 12a, the inside of the substrate 11 is heated between the heating-side reflecting mirror 12a and the corresponding radiation-side reflecting mirror 15 portion. At this time, the refractive index changes due to the thermo-optic effect of the substrate 11, and a refractive index distribution is formed. Therefore, the incident light 2 incident from the incident position 14a
0a is refracted inside the substrate 11 as shown by the solid line, propagates repeatedly by the reflection mirrors 12a and 15 and propagates, and is coupled to the condensing lens 18bb of the exit window 16b on the exit side in the vicinity to emit the corresponding output light. The emitted light 21b is emitted into the fiber 19b. In this case, it does not depend on polarization or wavelength.

従って、一般論としては、第3図に示すように、入射
側のある1つの入射光ファイバ13に注目した場合、その
周り(上下左右)の4つの加熱側反射鏡を12b〜12eと
し、出射側において入射光ファイバ13に対応する出射光
ファイバを19a、出射光ファイバ19aの周り(上下左右)
の4つの出射光ファイバを19b〜19eとすると、加熱側反
射鏡12b〜12eに対する電力供給の制御により、出射光フ
ァイバ19a〜19eの任意のものに結合させることができ
る。即ち、何れの加熱側反射鏡12b〜12eにも電力を供給
しなければ出射光ファイバ19aに結合させ、加熱側反射
鏡12bのみに電力を供給すれば出射光ファイバ19bに結合
させ、…、同様にして、加熱側反射鏡12eのみに電力を
供給すれば出射光ファイバ19eに結合させることができ
る。
Therefore, as a general theory, as shown in FIG. 3, when attention is paid to one incident optical fiber 13 on the incident side, the four heating-side reflecting mirrors around (up, down, left, and right) are designated as 12b to 12e, and On the side, the outgoing optical fiber corresponding to the incoming optical fiber 13 is 19a, around the outgoing optical fiber 19a (up, down, left and right)
If the four outgoing optical fibers are 19b to 19e, they can be coupled to any of the outgoing optical fibers 19a to 19e by controlling the power supply to the heating-side reflecting mirrors 12b to 12e. That is, if power is not supplied to any of the heating-side reflecting mirrors 12b to 12e, the light is coupled to the outgoing optical fiber 19a, and if power is supplied only to the heating-side reflecting mirror 12b, the light is coupled to the outgoing optical fiber 19b. Then, if power is supplied only to the heating-side reflecting mirror 12e, it can be coupled to the output optical fiber 19e.

なお、図示例に限らず、例えば加熱側反射鏡12等の構
成、配列を工夫することにより、入出力光ファイバ間の
接続を任意に変えることができる。
The connection between the input and output optical fibers can be arbitrarily changed by devising, for example, the configuration and arrangement of the heating-side reflecting mirror 12 and the like, without being limited to the illustrated example.

発明の効果 本発明は、上述したように熱光学効果を有する物質に
よる基板の両面に、各々、加熱機能及び反射鏡機能を持
つ単層又は複数層の加熱側反射鏡と、放熱機能及び反射
鏡機能を持つ単層又は複数層の放熱側反射鏡とを形成し
て、加熱側反射鏡の各々に選択的に電力を供給すること
により基板の熱光学効果を利用して入・出力側光導波路
間の結合を切換え制御するようにしたので、確実かつ高
速の光スイッチングが可能で、特に、熱光学効果を利用
しているため、偏光や波長に依存しないスイッチングも
可能で、また、構成的にも基板両面に対して所定の加熱
側、放熱側反射鏡の膜を面内に一括に形成すればよく、
薄型構造として小型デバイス化が可能で、製作も容易な
ものとすることができる。
As described above, the present invention provides a single-layer or multiple-layer heating-side reflector having a heating function and a reflector function on both sides of a substrate made of a substance having a thermo-optic effect as described above, and a heat-dissipating function and a reflector. Forming a single-layer or multiple-layer heat-radiation-side reflector having a function, and selectively supplying power to each of the heating-side reflectors, making use of the thermo-optic effect of the substrate to input / output optical waveguides The switching between the couplings is controlled, so that reliable and high-speed optical switching is possible. In particular, since the thermo-optic effect is used, switching independent of polarization and wavelength is also possible. Also, it is only necessary to form the film of the predetermined heating side and the radiation side reflection mirror on the both surfaces of the substrate at once,
It is possible to make a small device with a thin structure, and it is easy to manufacture.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第3図は本発明の一実施例を示すもので、
第1図は動作原理を示す概略断面構造図、第2図は空間
光マトリックススイッチ単体の構造を示す斜視図、第3
図は動作原理の一般論を説明するための斜視図、第4図
は従来例を示す概略斜視図である。 11……基板、12……加熱側反射鏡、13……入射側光導波
路、15……放熱側反射鏡、16……出射窓、19……出射側
光導波路
1 to 3 show an embodiment of the present invention.
FIG. 1 is a schematic sectional structural view showing the principle of operation, FIG. 2 is a perspective view showing the structure of a spatial light matrix switch alone, and FIG.
FIG. 1 is a perspective view for explaining the general theory of the operation principle, and FIG. 4 is a schematic perspective view showing a conventional example. 11 ... Substrate, 12 ... Heating-side reflecting mirror, 13 ... Incoming-side optical waveguide, 15 ... Heat-radiating-side reflecting mirror, 16 ... Outgoing window, 19 ... Outgoing-side optical waveguide

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱光学効果を有する物質により形成された
基板と、2次元アレイ状に配列された入力側光導波路間
に規則的に配設させて前記基板の一面に形成された加熱
機能及び反射鏡機能を持つ単層又は複数層の加熱側反射
鏡と、前記入力側光導波路に対応する出力側光導波路用
の出射窓を備えて前記基板の他面に形成された放熱機能
及び反射鏡機能を持つ単層又は複数層の放熱側反射鏡
と、前記加熱側反射鏡の各々に選択的に電力を供給する
電力供給手段とよりなり、加熱側反射鏡に選択的に電力
を供給したときの加熱による基板の熱光学効果により入
・出力側光導波路間の結合を切換え制御するようにした
ことを特徴とする空間光マトリックススイッチデバイ
ス。
1. A heating function formed on one surface of a substrate, which is regularly arranged between a substrate formed of a substance having a thermo-optic effect and input-side optical waveguides arranged in a two-dimensional array. A heat-dissipating function and a reflecting mirror formed on the other surface of the substrate with a single-layer or multiple-layer heating-side reflecting mirror having a reflecting mirror function and an output window for an output-side optical waveguide corresponding to the input-side optical waveguide A single-layer or multiple-layer radiating-side reflector having a function, and power supply means for selectively supplying power to each of the heating-side reflectors, when power is selectively supplied to the heating-side reflector. A spatial light matrix switch device wherein the coupling between the input and output optical waveguides is switched and controlled by the thermo-optic effect of the substrate due to the heating of the substrate.
JP1862490A 1990-01-29 1990-01-29 Spatial light matrix switch device Expired - Fee Related JP2774346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1862490A JP2774346B2 (en) 1990-01-29 1990-01-29 Spatial light matrix switch device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1862490A JP2774346B2 (en) 1990-01-29 1990-01-29 Spatial light matrix switch device

Publications (2)

Publication Number Publication Date
JPH03221925A JPH03221925A (en) 1991-09-30
JP2774346B2 true JP2774346B2 (en) 1998-07-09

Family

ID=11976779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1862490A Expired - Fee Related JP2774346B2 (en) 1990-01-29 1990-01-29 Spatial light matrix switch device

Country Status (1)

Country Link
JP (1) JP2774346B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580845B1 (en) 2000-08-11 2003-06-17 General Nutronics, Inc. Method and device for switching wavelength division multiplexed optical signals using emitter arrays

Also Published As

Publication number Publication date
JPH03221925A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
JP3522117B2 (en) Self-guided optical circuit
US5337183A (en) Distributed resonant cavity light beam modulator
US5630004A (en) Controllable beam director using poled structure
US5781670A (en) Optical frequency channel selection filter with electronically-controlled grating structures
US5586206A (en) Optical power splitter with electrically-controlled switching structures
US20190033684A1 (en) Saw Modulator Having Optical Power Component for Extended Angular Redirection of Light
US5491762A (en) ATM switch with electrically-controlled waveguide-routing
WO1996007949A1 (en) Method for manipulating optical energy using poled structure
US5007694A (en) Light wavelength converter
EP0219069B1 (en) Light modulator and wave guide device
JP2774346B2 (en) Spatial light matrix switch device
US7515804B2 (en) Optical waveguide device
JP2004212979A (en) Beam splitting prism, manufacturing method of the prism and optical-optical switch device
JP3555888B2 (en) Self-guided optical circuit
US6894851B2 (en) Optical device
JP2837511B2 (en) Optical switch array
JP2834844B2 (en) Optical switch array
JP2003084320A (en) Optical device
JP2848209B2 (en) Waveguide type N × N optical switch
JP2946056B2 (en) Light switch
JP3887552B2 (en) Wavelength management apparatus and optical modulator management method
Nishizawa et al. Micro-optics research activities in Japan
JPH03267922A (en) Optical switch array
JPS63174002A (en) Optical integrated circuit
JPS6050518A (en) Optical modulating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees