JPS6050518A - Optical modulating device - Google Patents

Optical modulating device

Info

Publication number
JPS6050518A
JPS6050518A JP15846183A JP15846183A JPS6050518A JP S6050518 A JPS6050518 A JP S6050518A JP 15846183 A JP15846183 A JP 15846183A JP 15846183 A JP15846183 A JP 15846183A JP S6050518 A JPS6050518 A JP S6050518A
Authority
JP
Japan
Prior art keywords
light
refractive index
index distribution
heating resistors
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15846183A
Other languages
Japanese (ja)
Inventor
Kazuo Minoura
一雄 箕浦
Masayuki Usui
臼井 正幸
Kazuhiko Matsuoka
和彦 松岡
Yukio Nishimura
征生 西村
Takeshi Baba
健 馬場
Atsushi Someya
染谷 厚
Yuko Miyajima
宮嶋 祐子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15846183A priority Critical patent/JPS6050518A/en
Publication of JPS6050518A publication Critical patent/JPS6050518A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Abstract

PURPOSE:To converge satisfactorily a modulated luminous flux by setting an image forming point of a luminous flux which is made incident on a refractive index distributing part, and a photodetecting medium, to an optically conjugate relation with regard to an optical system. CONSTITUTION:A titled device is provided with a transparent protecting plate 1, a liquid thin layer 2, an insulating layer 3 having a heat conductivity, a heating resistor layer 4 on which heating resistors 6a, 6b- are arranged, and a supporting body 5 of the insulating layer 3 and the heating resistors 6a, 6b-. The heating resistors 6a, 6b- are connected to each driving voltage by a conductive line 9 so as to be driven independently, respectively, and the other end of the heating resistors 6a, 6b- is grounded or set to a common voltage. When a voltage signal is applied to the heating resistors 6a, 6b- through the conductive line 9, a refractive index distribution is generated in a medium thin layer in the vicinity of each heating resistor, and this refractive index distribution is returned again to its original state that there is no refractive index distribution, after setting the voltage signal to zero.

Description

【発明の詳細な説明】 本発明は、光記録装置、光表示装置、光スィッチ、光シ
ヤツター装置等に好適な光学変調装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical modulation device suitable for optical recording devices, optical display devices, optical switches, optical shutter devices, and the like.

記録或いは表示等を光束を用いて行うことは、従来から
広く行われている。この為に、光束しこ変調を与える技
術が種々知られているが、特開昭%−5526号には、
電気光学効果を持つ結晶内の電界分布を変化させ、この
−電界分布に伴って生じる結晶内の屈折率が変化してい
る部分に入射する光束を回折させて、変調を行うことが
示されている。
2. Description of the Related Art Recording, displaying, etc. using a luminous flux has been widely practiced. For this purpose, various techniques for providing light beam modulation are known;
It has been shown that modulation is achieved by changing the electric field distribution within a crystal that has an electro-optic effect, and diffracting the light beam incident on the portion of the crystal where the refractive index that occurs with this electric field distribution changes. There is.

これに対して近年、熱効果による屈折率分布を利用して
光の変調を行うことが注目されている。
On the other hand, in recent years, attention has been focused on modulating light by utilizing the refractive index distribution due to thermal effects.

この熱効果による屈折率分布を利用した光変調に関する
ものとしては、「熱による屈折率変化で光が偏向」 (
日経エレクトロニクス1982年8月16日号)或いは
「TOガラス導波型光スイッチの応答速度」 (昭和5
7年度電子通信学会総合全国大会)に紹介されている。
Regarding light modulation using the refractive index distribution caused by this thermal effect, "light is deflected due to a change in the refractive index due to heat" (
Nikkei Electronics August 16, 1982 issue) or “Response speed of TO glass waveguide optical switch” (Showa 5
It was introduced at the 7th Annual National Conference of the Institute of Electronics and Communication Engineers (IEICE).

本件出願人は、この光変調の原理に基づく光変調素子を
特願昭57−179265号にて提案した。この屈折率
分布を用いた光変調素子は、その屈折率分布の特性上、
屈折率分布部で変調された光束の見かけ上の原点と、屈
折率分布が存在する位置とが一致しないことが分った。
The applicant proposed an optical modulation element based on this principle of optical modulation in Japanese Patent Application No. 179265/1983. Due to the characteristics of the refractive index distribution, the light modulation element using this refractive index distribution has
It has been found that the apparent origin of the light beam modulated by the refractive index distribution section does not match the position where the refractive index distribution exists.

本発明の目的は、上述した屈折率分布で光束を変調する
素子を用いた光変調装置において、受光媒体上に良好に
変調光束を収束させる装置を提供することにある。
An object of the present invention is to provide a light modulation device using an element that modulates a light beam with the above-mentioned refractive index distribution, which can converge a modulated light beam well onto a light receiving medium.

本発明に係る光変調装置においては、屈折率分布部で唆
調される光束の見かけ上の原点、換言すれば屈折率分布
部に入射した光束の該分布部による結像点と受光媒体と
を、光変調素子からの光束を集光する光学系に閑して光
学的に共役な関係にすることにより上記目的を達成せん
とするものである。
In the light modulation device according to the present invention, the apparent origin of the light flux modulated by the refractive index distribution section, in other words, the imaging point of the light flux incident on the refractive index distribution section and the light receiving medium is determined by the distribution section. The above object is achieved by creating an optical system that condenses the light beam from the light modulation element into an optically conjugate relationship.

以下図面を用いて本発明を詳述する。The present invention will be explained in detail below using the drawings.

第1図は本発明の光変調装置に適用する光変調素子の一
実施例を示す図である。第1図において、1は透明保護
板、2は液体薄層、6は熱伝導性のある絶縁層、4は6
 ELH6bg 6Q、 6(1@II @で示される
発熱抵抗体が配列される発熱抵抗体層、5は絶縁層6及
び発熱抵抗体6a、6b、6C16d・・拳の支持体で
ある。そして発熱抵抗体が発熱すると、この熱は前記絶
縁層3を伝わり液体薄層2に伝わり、液体薄層内に温度
分布を生ぜしめて、屈折率分布を形成する。例えば、第
1図に示す様に、発熱抵抗体6bが選択されて発熱する
と、この熱は抵抗体6bに1接する絶縁層6を介して液
体薄N2に伝達され、抵抗体6bに対向する液体薄層2
の領域の液体を加熱させて、この領域に屈折率分布7を
形成する。
FIG. 1 is a diagram showing an embodiment of a light modulation element applied to the light modulation device of the present invention. In Figure 1, 1 is a transparent protective plate, 2 is a thin liquid layer, 6 is a thermally conductive insulating layer, and 4 is 6
ELH6bg 6Q, 6 (1@II @ A heating resistor layer in which heating resistors are arranged, 5 is an insulating layer 6 and heating resistors 6a, 6b, 6C16d... support for the fist. And the heating resistor When the body generates heat, this heat is transmitted through the insulating layer 3 to the thin liquid layer 2, creating a temperature distribution within the thin liquid layer and forming a refractive index distribution.For example, as shown in FIG. When the resistor 6b is selected and generates heat, this heat is transferred to the thin liquid layer 2 through the insulating layer 6 that is in contact with the resistor 6b, and the thin liquid layer 2 facing the resistor 6b is transferred to the thin liquid layer 2 facing the resistor 6b.
The liquid in the region is heated to form the refractive index distribution 7 in this region.

この屈折率分布7は所定の時間が経過すると、この領域
の液体が冷却するに伴って、消滅する。この屈折率分布
形成から消滅までの1サイクルは非常に短い時間であり
、KHzのオーダーで行うことが可能である。上記発熱
抵抗体は、エリの製造技術により支持体5上に形成され
るものであり、隣接する発熱抵抗体の間隔をμmオーダ
ーで形成している。
This refractive index distribution 7 disappears after a predetermined period of time as the liquid in this region cools. One cycle from the formation of this refractive index distribution to its extinction is a very short time, and can be performed on the order of KHz. The heating resistors described above are formed on the support body 5 using Eri manufacturing technology, and the spacing between adjacent heating resistors is on the order of μm.

尚、屈折率分布を形成する為の熱効果媒体としては、上
述した液体の外に、アクリル樹脂、ポリカーボネートな
どの高分子材料を使用することが出来る。屈折率温度依
存性−は、水では−L OX 10−’、T エチルアルコールでは−4,OX 10””’、四基化
炭素では−5,8X 10−’である。又、7クリルは
約−1,OX 10−ポリカーボネートは約−1,3X
 10−’ である。
In addition to the above-mentioned liquid, polymeric materials such as acrylic resin and polycarbonate can be used as the thermal effect medium for forming the refractive index distribution. The temperature dependence of the refractive index is -L OX 10-' for water, -4,OX 10""' for T ethyl alcohol, and -5,8X 10-' for tetracarbon. Also, 7cryl is about -1,OX and 10-polycarbonate is about -1,3X
10-'.

第2図は第1図に示す光変調素子の構成を示す斜視概略
図であり、付番l〜6は第1図に示したものと同じであ
る。8は導電線であり、発熱抵抗体(6&、<Sb・・
・)を各々独立に駆動できる様個々の駆動電圧に接続さ
れ、一方発熱抵抗体の他端は接地あるいは共通の電圧に
設定されている。導電線8より、発熱抵抗体6a、6b
@・・に各々電圧信号が印加されると、各発熱抵抗体の
近傍の媒体薄層内に屈折率分布が発生する。この屈折率
分布は、電圧信号を零にすると冷却され再び元の屈折率
分布のない状態に戻る。
FIG. 2 is a schematic perspective view showing the structure of the light modulation element shown in FIG. 1, and the numbers 1 to 6 are the same as those shown in FIG. 1. 8 is a conductive wire, and a heating resistor (6 &, <Sb...
) are connected to individual drive voltages so that they can be driven independently, while the other end of the heating resistor is grounded or set to a common voltage. From the conductive wire 8, the heating resistors 6a and 6b
When a voltage signal is applied to each of the heating resistors, a refractive index distribution is generated in the thin medium layer in the vicinity of each heating resistor. When the voltage signal is reduced to zero, this refractive index distribution is cooled and returns to the original state without refractive index distribution.

第6図は前記屈折率分布による光変調素子L−Mを使用
した本発明に係る光変調装置の一実施例を示す図で、屈
折率分布で波面が変形される光束を先 情報光として使用する場合を示している。前記変△ 調素子L6Mに光束10を入射し、発熱抵抗体(6a。
FIG. 6 is a diagram showing an embodiment of the light modulation device according to the present invention using the light modulation element LM with the refractive index distribution, in which a light beam whose wavefront is modified by the refractive index distribution is used as the pre-information light. Indicates when to do so. A light beam 10 is incident on the variable Δ adjustment element L6M, and the heating resistor (6a)

6b・0・)のうち任意の発熱抵抗体6oが電圧v1に
よって駆動されたとき、屈折率分布7が発生し、発熱抵
抗体6Cに入射した光束は波面が変形された光束12と
なって射出する。発熱抵抗体の表面で正反射して、屈折
率分布7によって波面が変形されない光束11は、レン
ズteaによって結像され、その結像位置に配した遮光
フィルター15aによって遮光される。前記波面が変形
された光束12はその遮光フィルター15aによって一
部遮光されるが、遮光フィルター15aの大きさを前記
の波面が変形されない光束11の結像スポットを遮光す
る最小限の大きさにすることによって、大部分の波面変
換光束12′を受光媒体14上に照射することが可能で
ある。第3図において、点Pは入射光束10が屈折率分
布7の中を通過することによってできる変挾された波面
をもつ光束12の発散原点である。すなわち、屈折率分
布7は1つの微小レンズとみなすことができ、点Pはそ
のレンズによってできる入射光束10の結像点と考える
ことができる。前記レンズ15aによって、上記点Pの
共役像P′を受光媒体14上に形成せしめる配置によっ
て受光媒体14上にて最も輝度の大きい結像スポットを
受けることが可能となる。すなわち前記発熱抵抗体6c
に電圧を印加した時に、そうでない場合に対して最大の
コントラストを有する光偉が得られる。
When any heating resistor 6o among the heating resistors 6b. do. A light beam 11 that is specularly reflected on the surface of the heat generating resistor and whose wavefront is not deformed by the refractive index distribution 7 is imaged by the lens tea, and is blocked by a light blocking filter 15a disposed at the image forming position. The light beam 12 whose wavefront has been deformed is partially blocked by the light blocking filter 15a, but the size of the light blocking filter 15a is set to the minimum size that blocks the imaging spot of the light beam 11 whose wavefront is not deformed. By doing so, it is possible to irradiate most of the wavefront-converted light beam 12' onto the light-receiving medium 14. In FIG. 3, a point P is the origin of divergence of a light beam 12 having a distorted wavefront created by the incident light beam 10 passing through the refractive index distribution 7. That is, the refractive index distribution 7 can be considered as one microlens, and the point P can be considered as the imaging point of the incident light beam 10 formed by the lens. The lens 15a is arranged so that a conjugate image P' of the point P is formed on the light receiving medium 14, thereby making it possible to receive an imaging spot with the highest brightness on the light receiving medium 14. That is, the heating resistor 6c
When a voltage is applied, a light beam with the maximum contrast is obtained with respect to the case where no voltage is applied.

以上の如く、発熱抵抗体6oに、画像信号に応じた電圧
パルスv1を導電線8を通じて印加あるいは零にするこ
とにより、それに応じて屈折率分布7の発生あるいは消
滅が繰り返される。その場合、受光媒体14上には、最
大の輝度をもつ光スポットの点滅が発生される。
As described above, by applying the voltage pulse v1 corresponding to the image signal to the heating resistor 6o through the conductive wire 8 or making it zero, the refractive index distribution 7 is repeatedly generated or eliminated accordingly. In that case, a flashing light spot with maximum brightness is generated on the light receiving medium 14.

第4図は受光媒体上の光の点滅コントラストを良くする
、即ち光利用効率を最良にするための光変調素子L−M
に入射する光束の様子を示す為の図であり、第4図(A
)は光変?Fi素子を発熱抵抗体の配列方向から見た図
、第4図(B)は同じく発熱抵抗体の配列方向と直交す
る方向から見た図である。屈折率分布は発熱抵抗体に近
い移層折率勾配は急になり、そこに光束16を集中して
入射させるとき最も発散効率が高くなる。また支持体5
あるいは発熱抵抗体(6&、 6b・−・)あるいは、
絶縁m3の表面の平面性あるいは粗さによっては、屈折
率分布による発散光以外の光束に門して、遮光フィルタ
ー15による遮光効率が悪くなり、受光41シ体14上
にノイズ光として照射される。このノイズ光は、導電線
8より印加される入力信号電圧パルスv1とは無関係に
受光媒体14上に照射されるので、コントラストが低下
する。この様な不都合をなくす為にも、第4図(A)に
示すように、発熱抵抗体の近傍に入射光束16を線状に
収束することが望ましい。17は入射光束16の正反射
光束(屈折率分布による発散を受けない光)であり、破
線で示す1日は、屈折率分布による発散光束である。第
4図(B)は、第41fi(A)のA−A’で示される
断面の図で、17は入射光束16の正反射光束、18は
画像信号の入力された発熱抵抗体6cの近傍に発生した
屈折率分布による発散光束であり、前述のように点Pを
発散原点として前記正反射光束17に対して異った方向
に散乱される。
Figure 4 shows a light modulation element L-M for improving the blinking contrast of light on the light-receiving medium, that is, for maximizing the light utilization efficiency.
This is a diagram for showing the state of the luminous flux incident on the
) is light change? FIG. 4B is a view of the Fi element viewed from the direction in which the heating resistors are arranged, and FIG. In the refractive index distribution, the gradient of the refractive index becomes steeper near the heating resistor, and the divergence efficiency is highest when the luminous flux 16 is incident thereon in a concentrated manner. Also, the support 5
Or heating resistor (6&, 6b...) or,
Depending on the flatness or roughness of the surface of the insulator m3, light beams other than the diverging light due to the refractive index distribution will enter, the light blocking efficiency of the light blocking filter 15 will deteriorate, and the light will be irradiated onto the light receiving body 14 as noise light. . Since this noise light is irradiated onto the light-receiving medium 14 regardless of the input signal voltage pulse v1 applied from the conductive line 8, the contrast is reduced. In order to eliminate such inconveniences, it is desirable to converge the incident light beam 16 linearly near the heating resistor, as shown in FIG. 4(A). 17 is a specularly reflected light beam (light that is not subject to divergence due to the refractive index distribution) of the incident light beam 16, and 1st indicated by a broken line is a divergent light beam due to the refractive index distribution. FIG. 4(B) is a cross-sectional view taken along the line AA' of the 41st fi(A), where 17 is a specularly reflected light beam of the incident light beam 16, and 18 is the vicinity of the heating resistor 6c to which the image signal is input. This is a diverging light beam due to the refractive index distribution generated in the above-mentioned period, and is scattered in a different direction with respect to the specularly reflected light beam 17 with the point P as the origin of divergence, as described above.

第5図は、第4図で説明した光利用効率を高め、11’
jJ&体14上での光の点滅のフントラストを良くする
場合の光変調装置の一実施例の配置図である。半導体レ
ーザーあるいは発光ダイオードの如き光源19より出射
した光束を、球面レンズ20aとアナモフィックレンズ
20b %によって構成される線像形成光学系2oによ
って前記光変調素子L−Mの発熱抵抗体(6a、6b*
・・)の配列方向に線状に結像する。この線状に形成さ
れる光束の、発熱抵抗体の配列方向と直交する面内の成
分は発熱抵抗光束の状態である。従って前記発熱抵抗体
で発散されない光束17は三角柱状の光路をとり正のシ
リンドリカルレンズ221Lに入射する。シリンドリカ
ルレンズ22&は発熱抵抗体の配列方向にその母線を有
し、その焦線が発熱抵抗体の位置と金敷する様に設けら
れている。従って前記光束17はシリンドリカルレンズ
22&を通過した後に、アフォーカルな光束となり、球
面レンズ22bに入射する。
Figure 5 shows how to increase the light utilization efficiency explained in Figure 4 and
FIG. 2 is a layout diagram of an embodiment of a light modulation device for improving the stability of blinking light on the JJ& body 14; A light beam emitted from a light source 19 such as a semiconductor laser or a light emitting diode is passed through a line image forming optical system 2o composed of a spherical lens 20a and an anamorphic lens 20b to the heating resistors (6a, 6b*
...) is formed linearly in the direction of arrangement. A component of this linearly formed light flux in a plane perpendicular to the arrangement direction of the heat generating resistors is a heat generating resistor light flux. Therefore, the light beam 17 that is not diverged by the heating resistor takes a triangular prism-shaped optical path and enters the positive cylindrical lens 221L. The cylindrical lens 22& has its generatrix in the direction in which the heating resistors are arranged, and is provided so that its focal line coincides with the position of the heating resistors. Therefore, after the light beam 17 passes through the cylindrical lens 22&, it becomes an afocal light beam and enters the spherical lens 22b.

そして前記光束17は球面レンズ22bにより、このレ
ンズの焦点面に集光する。この焦点面には、前記光束1
7を遮ぎるだけの大きさを有する矩形フィルター2′5
が設けられており、従って該フィルター23により、発
熱抵抗体で発散を受けなかった光束は遮光される。一方
、発熱抵抗体で発散された光束18は、シリンドリカル
レンズ22&により発熱抵抗体の配列方向と直交する面
内での光束のみが平行光となり、更に前記球面レンズ2
2bにより前記矩形フィルター26の近傍に線状に結像
される。従って、発散光束1Bの一部は、この矩形フィ
ルター26により遮光されるが、大部分の光束は、この
遮光フィルターで遮ぎられることなく、前記シリンドリ
カルレンズ22aと同一方向に母線を有する正のシリン
ドリカルレンズ22cに入射し、受光媒体14上に点イ
象(24&、 241)・・@)となって形成される。
The light beam 17 is then focused by a spherical lens 22b on the focal plane of this lens. At this focal plane, the light beam 1
A rectangular filter 2'5 large enough to block 7.
Therefore, the light beam that has not been diverged by the heating resistor is blocked by the filter 23. On the other hand, the light beam 18 diverged by the heating resistor becomes parallel light only in a plane perpendicular to the arrangement direction of the heating resistor by the cylindrical lens 22.
2b, a linear image is formed near the rectangular filter 26. Therefore, a part of the diverging light beam 1B is blocked by this rectangular filter 26, but most of the light beam is not blocked by this light blocking filter, and is transmitted through the positive cylindrical lens 22a, which has a generatrix in the same direction as the cylindrical lens 22a. The light enters the lens 22c and is formed as a dot image (24&, 241)...@) on the light receiving medium 14.

尚、フィルター23と受光媒体14とは、シリンドリカ
ルレンズ220の光学的に共役な焦線面内に位置し、又
、発熱抵抗体と受光媒体とは球面レンズ系22bに関し
て光学的に共役な位置にある。又、別の表現をすれば、
シリンドリカルレンズ22&、 220及び球面レンズ
系22bては前記発熱抵抗体(6〜6b・・・)と受光
媒体14とは光学的に共役な焦線面内に配され、又アナ
モフィックレンズ系22の光軸と前記発熱抵抗体の配列
方向とで定まるb内においては、前記受光媒体14はア
ナモフィックレンズ系22の焦線面上に位置する。尚、
第5図においては前記光変調素子L−Mは発熱抵抗体の
部分のみを示した。
The filter 23 and the light-receiving medium 14 are located in an optically conjugate focal plane of the cylindrical lens 220, and the heating resistor and the light-receiving medium are located in an optically conjugate position with respect to the spherical lens system 22b. be. Or, to put it another way,
In the cylindrical lenses 22 & 220 and the spherical lens system 22b, the heating resistors (6 to 6b...) and the light receiving medium 14 are arranged in an optically conjugate focal plane, and the light of the anamorphic lens system 22 is The light-receiving medium 14 is located on the focal line plane of the anamorphic lens system 22 within a region b defined by the axis and the direction in which the heating resistors are arranged. still,
In FIG. 5, only the heating resistor portion of the light modulation element LM is shown.

上述した実施例では、発熱抵抗体は反射部材で構成され
ている側を述べ、発散光束も、発散を受けない光束も、
いずれも抵抗体で反射される場合を示したが、いずれの
光束も光変調素子を通過する場合を第6図に示す。第6
図で示される光変調素子の構成自体は第1図に示すもの
と同じであるが、支持体5′、発熱抵抗体(6a′、6
b′・・・)及び絶縁層6′が透明な媒体で構成されて
いる。この場合も、前述した光学系を使用して充分な実
用効果が得られる。すなわち第6図において、点Pは入
射光束16が屈折率分布7を通過することによってでき
る結像点と考えられ、第6図で説明したと同様にこの点
Pと共役結侭の関係になる様にレンズ及び受光媒体を配
置すれば、第6図の構成と同じ効果を得ることができる
In the embodiments described above, the heating resistor is made of a reflective member, and both the diverging light flux and the non-diverging light flux are
Although the case where both light beams are reflected by a resistor is shown, FIG. 6 shows the case where both light beams pass through a light modulation element. 6th
The configuration itself of the light modulation element shown in the figure is the same as that shown in FIG.
b'...) and the insulating layer 6' are made of a transparent medium. In this case as well, sufficient practical effects can be obtained using the optical system described above. In other words, in FIG. 6, point P is considered to be an image forming point formed when the incident light beam 16 passes through the refractive index distribution 7, and there is a conjugate relationship with this point P as explained in FIG. By arranging the lenses and the light-receiving medium in the same manner, the same effect as the structure shown in FIG. 6 can be obtained.

第7図(A) (B)は、本発明に係る光変調装置の他
の実施例を示す図で、第5図に示す光学系と同様に、光
変調素子L−M内の発熱抵抗体6a、6b・・・の配列
方向に線状結像が形成される。第7図(A)はその線像
に直交する方向からみた展開図である。第7図(B)は
第7図(A)を側面からみた図である。第5図に示す光
学系との違いは、光源から出射した光束をレンズ20a
で集光し、第7図(A)に示す如く、光変調素子L−M
とレンズ25の間に光源の共役像を形成し、第7図(B
)に示す如く、レンズ20a 、!=7 t %フィッ
クレンズ20bの合成系である線像形成光学系20によ
って、光変調素子L−Mの発熱抵抗体近傍に線像を形成
することである。第7図(A)において、光源の共役像
位置に、発熱抵抗体6a、6b・・・の配列方向と直交
する方向に長辺を有する矩形の遮光フィルター23を配
することにより、屈折率分布によって発散されない光束
は遮断され、屈折率分布によって発散された光束は、遮
光フィルター23の周囲を通過して、発熱抵抗体(6a
、 6b・・りと受光媒体14を共役な位置に保つレン
ズ25に入射し、受光媒体14上に結像スボッ) 24
5Ll 24b@・・を形成する。この様にすると、第
5図に示した様な光学系の構成を簡略化できる。
FIGS. 7(A) and 7(B) are diagrams showing other embodiments of the light modulation device according to the present invention, in which the heating resistor in the light modulation element LM is similar to the optical system shown in FIG. A linear image is formed in the arrangement direction of 6a, 6b, . . . . FIG. 7(A) is a developed view seen from a direction perpendicular to the line image. FIG. 7(B) is a side view of FIG. 7(A). The difference from the optical system shown in FIG. 5 is that the light beam emitted from the light source is
As shown in FIG. 7(A), the light modulator L-M
A conjugate image of the light source is formed between the lens 25 and the lens 25, as shown in FIG.
), the lens 20a, ! =7t% A line image is formed in the vicinity of the heating resistor of the light modulation element LM by the line image forming optical system 20 which is a combination system of the Fick lens 20b. In FIG. 7(A), by arranging a rectangular light shielding filter 23 having long sides in a direction perpendicular to the arrangement direction of the heat generating resistors 6a, 6b, . . . at the conjugate image position of the light source, the refractive index distribution is improved. The luminous flux that is not diverged by the refractive index distribution is blocked, and the luminous flux that is diverged by the refractive index distribution passes around the light shielding filter 23 and passes through the heating resistor (6a
, 6b... enters the lens 25 that keeps the light-receiving medium 14 in a conjugate position, and forms an image on the light-receiving medium 14) 24
5Ll 24b@... is formed. In this way, the configuration of the optical system as shown in FIG. 5 can be simplified.

以上、本発明に係る光変調装置においては、熱効果媒体
内に生じた屈折率分布により変調された光束の原点と受
光媒体とを光学的に共役な1係に保つことにより、受光
媒体上に輝度の大きい、鮮鋭な点像を形成出来るもので
ある。
As described above, in the light modulation device according to the present invention, by keeping the origin of the light beam modulated by the refractive index distribution generated in the thermal effect medium and the light-receiving medium in an optically conjugate ratio of 1, It can form a sharp point image with high brightness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係る光変調装置に適用する
光変調素子の一実施例を示す図、第6図#→琲は伶鴫、
本発明に係る光変調装置の一実施例を示す図、第4図(
A)(B)は本発明において、光変調素子を照明する好
ましい実施例を示す図、第5図は本発明に係る光変調装
置の、他の実施例を示す図、第6図は本発明に係る光変
調装置に適用する光変調素子の他の実施例を示す図、第
7図(A) (B)は各々、本発明に係る光度ル“1装
置の他の実施例を示す図。 1・・拳透明保蝕板、6a、6b、6Q、6dφ・・発
熱抵抗体、2・・・媒体薄層、L−M・・・光変調素子
、6・0絶縁層、7・・・屈折率分布 4・・・発熱抵抗体層、11・・・非発散光束5・ψ・
支持体、12・・・発散光束 P・・・発散原点、14・・・受光媒体15a−・・遮
光フィルター 出願人 キャノン株式会社
FIGS. 1 and 2 are diagrams showing an embodiment of the light modulation element applied to the light modulation device according to the present invention, and FIG.
FIG. 4 is a diagram showing an embodiment of the light modulation device according to the present invention.
A) and (B) are diagrams showing a preferred embodiment of illuminating a light modulation element according to the present invention, FIG. 5 is a diagram showing another embodiment of the light modulation device according to the present invention, and FIG. FIGS. 7(A) and 7(B) are diagrams showing other embodiments of the light modulation element applied to the light modulation device according to the present invention, respectively. 1...Fist transparent preservation plate, 6a, 6b, 6Q, 6dφ...Heating resistor, 2...Medium thin layer, LM...Light modulation element, 6.0 Insulating layer, 7... Refractive index distribution 4...Heating resistor layer, 11...Non-divergent light flux 5・ψ・
Support, 12...Divergent light flux P...Divergent origin, 14...Light-receiving medium 15a--Light shielding filter Applicant Canon Corporation

Claims (1)

【特許請求の範囲】 0)熱により屈折率分布を媒体内に生じることにより入
射光束を変調する素子と、該素子からの光束を受光媒体
上へ集束させる光学系とを備えた光変調装置において、 前記屈折率分布部に入射した光束の結像点と受光媒体と
を前記光学系に関して光学的に共役な関係にしたことを
特徴とする光変調装置。
[Scope of Claims] 0) An optical modulator comprising an element that modulates an incident light beam by generating a refractive index distribution in a medium using heat, and an optical system that focuses the light beam from the element onto a light-receiving medium. . A light modulation device, characterized in that an imaging point of a light beam incident on the refractive index distribution section and a light receiving medium are in an optically conjugate relationship with respect to the optical system.
JP15846183A 1983-08-30 1983-08-30 Optical modulating device Pending JPS6050518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15846183A JPS6050518A (en) 1983-08-30 1983-08-30 Optical modulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15846183A JPS6050518A (en) 1983-08-30 1983-08-30 Optical modulating device

Publications (1)

Publication Number Publication Date
JPS6050518A true JPS6050518A (en) 1985-03-20

Family

ID=15672244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15846183A Pending JPS6050518A (en) 1983-08-30 1983-08-30 Optical modulating device

Country Status (1)

Country Link
JP (1) JPS6050518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943133A (en) * 1988-08-08 1990-07-24 Bell Communications Research, Inc. Low loss semiconductor optical phase modulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943133A (en) * 1988-08-08 1990-07-24 Bell Communications Research, Inc. Low loss semiconductor optical phase modulator

Similar Documents

Publication Publication Date Title
US4872743A (en) Varifocal optical element
US4729641A (en) Functional optical element having a non-flat planar interface with variable-index medium
US6614574B2 (en) Total internal reflection light modulating microstructure devices
US6115168A (en) Integrated optical retroreflecting modulator
US4848879A (en) Light modulating device
TW201107676A (en) Lighting device for a direct viewing display
GB2360603A (en) Planar optical waveguide and float glass process
KR960015003A (en) Video device
US4635082A (en) Thermo-optic light modulation array
US6211997B1 (en) Modulator for optical printing
JPS6050518A (en) Optical modulating device
JPS645174A (en) Projecting television receiver
JPS6014221A (en) Optical modulating method and optical modulating element
JPS5968723A (en) Optical modulating element
JPS59189326A (en) Optical modulator
JPS59154427A (en) Light controlling device
JP2774346B2 (en) Spatial light matrix switch device
JPS6031115A (en) Optical modulating device
JPS59160127A (en) Optical modulating element
JPS59228631A (en) Optical modulating element
JPS59189313A (en) Optical modulator
JPH0522888B2 (en)
JPS6079335A (en) Function optical element
JPS6079334A (en) Optical modulating element
JPS59197021A (en) Optical modulator