JPH03267922A - Optical switch array - Google Patents

Optical switch array

Info

Publication number
JPH03267922A
JPH03267922A JP16642590A JP16642590A JPH03267922A JP H03267922 A JPH03267922 A JP H03267922A JP 16642590 A JP16642590 A JP 16642590A JP 16642590 A JP16642590 A JP 16642590A JP H03267922 A JPH03267922 A JP H03267922A
Authority
JP
Japan
Prior art keywords
substrate
incident
reflecting mirrors
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16642590A
Other languages
Japanese (ja)
Inventor
Masayoshi Kato
正良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16642590A priority Critical patent/JPH03267922A/en
Publication of JPH03267922A publication Critical patent/JPH03267922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow sure and high-speed optical switching by forming incident side reflecting mirrors and exit side reflecting mirrors respectively having electrode functions on both surfaces of a substrate and controlling the switching of the coupling between incident and exit side optical waveguides by utilizing the electrooptic effect of the substrate. CONSTITUTION:The transparent substrate 11 formed of a material having the electrooptical effect, for example, PLZT or liquid crystal is used as a base. The incident side reflecting mirrors 12 of single or plural layers which are disposed between the incident side optical waveguides 13 and have the electrode function are provided on one surface of this substrate 11 and the exit side reflecting mirrors 14 of single or plural layers which are provided with exit windows for the exit side optical waveguides 18 and have the electrode function are provided on the other surface. Voltage impressing means for impressing voltages selectively to these respective reflecting mirrors 12, 14 are provided. The electric field distribution in the substrate 11 is controlled by the selective voltage impression and the coupling between the incident and exit side optical waveguides 13 and 18 is switched and controlled by the electrooptic effect thereof. The sure and high-speed optical switching is possible in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信、光情報処理、光交換等の分野で用い
られる光スイツチアレイに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical switch array used in fields such as optical communications, optical information processing, and optical switching.

従来の技術 従来、この種の光スィッチとして特開昭58−9061
9号公報に示されるものがある。第4図はその構成を示
すもので、電気光学結晶1の一表面上にその深さ方向に
電界を発生させる電極対2a、2bを設け、電気光学結
晶1の前記−表面に直交する一端面に複数の光ファイバ
3a、3b。
Prior Art Conventionally, this type of optical switch was published in Japanese Patent Application Laid-Open No. 58-9061.
There is one shown in Publication No. 9. FIG. 4 shows its configuration, in which a pair of electrodes 2a and 2b for generating an electric field in the depth direction is provided on one surface of the electro-optic crystal 1, and one end surface perpendicular to the above-mentioned surface of the electro-optic crystal 1 is provided. and a plurality of optical fibers 3a, 3b.

3cを結合させ、対向する他端面に集光作用を示す凹面
反射鏡4a、4bを設けてなり、各光ファイバ3a、3
b、3cはこれらの凹面反射鏡4a。
3c, and concave reflecting mirrors 4a, 4b which exhibit a light condensing effect are provided on the other end faces facing each other, and each optical fiber 3a, 3
b, 3c are these concave reflecting mirrors 4a.

4bを介して光学的に結合されている。5はコリメート
用のセルフォックレンズである。
They are optically coupled via 4b. 5 is a SELFOC lens for collimation.

このような構成において、電極対2a、2b間に電源6
により電圧印加することにより、電気光学結晶1の深さ
方向に電界分布を発生させ、その電気光学効果により内
部に屈折率分布を形成する。
In such a configuration, a power source 6 is connected between the electrode pair 2a and 2b.
By applying a voltage, an electric field distribution is generated in the depth direction of the electro-optic crystal 1, and a refractive index distribution is formed inside due to the electro-optic effect.

すると、光ファイバ38〜3Cの何れかから電気光学結
晶1中に出射された光は屈折しながら内部を伝搬する。
Then, the light emitted from any of the optical fibers 38 to 3C into the electro-optic crystal 1 propagates inside while being refracted.

よって、電気光学結晶1の屈折率分布を電気的に制御し
、凹面反射鏡4a、4bへの入射を切換えることで、入
出力間の光ファイバ3a〜3Cの光学的結合を切換え得
るというものである。
Therefore, by electrically controlling the refractive index distribution of the electro-optic crystal 1 and switching the incidence on the concave reflectors 4a and 4b, it is possible to switch the optical coupling between the input and output optical fibers 3a to 3C. be.

発明が解決しようとする課題 ところが、電気光学結晶の電気光学効果は一般に小さい
ため、第4図に示すような構成の場合、結合できる光フ
ァイバに限界がある。また、凹面反射鏡4a、4bにつ
いても高精度に製作しなければならず、コスト高となる
。さらには、電極対2a、2bが光の伝搬方向に平行に
形成されているため、1次元もしくは2次元アレイ状に
集積化させること、即ち、アレイ化が困難である。また
、入出力光の伝搬方向が反対のため、積層光回路への応
用が困難であるという問題もある。
Problems to be Solved by the Invention However, since the electro-optic effect of an electro-optic crystal is generally small, in the case of the configuration shown in FIG. 4, there is a limit to the number of optical fibers that can be coupled. Further, the concave reflecting mirrors 4a and 4b must also be manufactured with high precision, resulting in high costs. Furthermore, since the electrode pairs 2a and 2b are formed parallel to the light propagation direction, it is difficult to integrate them into a one-dimensional or two-dimensional array, that is, to form an array. Another problem is that it is difficult to apply to laminated optical circuits because the input and output light propagation directions are opposite.

課題を解決するための手段 電気光学効果を有する物質により形成された基板を設け
、この基板の一面には1次元アレイ状に配列された入射
側光導波路間に配設させて電極機能を持つ単層又は複数
層の入射側反射鏡を設け、他面には入射側光導波路に対
応する出射側光導波路用の出射窓を備えて電極機能を持
つ単層又は複数層の出射側反射鏡を設け、かつ、これら
の各入射側反射鏡と出射側反射鏡とに対して選択的に電
圧を印加する電圧印加手段を設け、これらの反射鏡間に
対する選択的な電圧印加により前記基板内部の電界分布
を制御しその電気光学効果により入・出射側光導波路間
の結合を切換え制御するようにした。
Means for Solving the Problem A substrate made of a substance having an electro-optic effect is provided, and on one surface of this substrate, a single unit having an electrode function is arranged between incident side optical waveguides arranged in a one-dimensional array. A layer or multiple layers of an input side reflecting mirror are provided, and a single layer or multiple layers of an output side reflecting mirror having an electrode function and having an output window for an output side optical waveguide corresponding to an input side optical waveguide is provided on the other surface. , and a voltage applying means for selectively applying a voltage to each of the incident side reflecting mirror and the exiting side reflecting mirror is provided, and the electric field distribution inside the substrate is changed by selectively applying a voltage between these reflecting mirrors. The coupling between the input and output optical waveguides can be switched and controlled using the electro-optic effect.

作用 電極機能を持つ反射鏡を等電位にした状態では基板が電
気光学効果を発揮しないため、入射光は基板を直進透過
して対応する出射窓の出射側光導波路に結合される。一
方、注目するある入射側光導波路に隣接したある入射側
反射鏡と出射側反射鏡との間に電圧を印加すると、基板
内部に電界分布が生ずる。これにより、この部分の基板
は電気光学効果により屈折率が変化して屈折率分布を持
つため、基板内部で入力光を屈折させる。屈折された光
は出射側反射鏡と入射側反射鏡との間で複数回の反射を
繰返しながら進路を変えて伝搬し、隣接する別の出射側
光導波路に切換え結合される。
Since the substrate does not exhibit an electro-optic effect when the reflector functioning as a working electrode is set at equal potential, the incident light passes straight through the substrate and is coupled to the output-side optical waveguide of the corresponding output window. On the other hand, when a voltage is applied between a certain incident-side reflecting mirror and an exit-side reflecting mirror adjacent to a certain incident-side optical waveguide of interest, an electric field distribution is generated inside the substrate. As a result, the refractive index of this portion of the substrate changes due to the electro-optic effect and has a refractive index distribution, so that input light is refracted inside the substrate. The refracted light propagates while changing its course while repeating reflection a plurality of times between the output-side reflecting mirror and the input-side reflecting mirror, and is switched and coupled to another adjacent output-side optical waveguide.

これにより、確実かつ高速の光スイッチングが可能とな
る。また、反射鏡間の多重反射を利用するため、電気光
学効果が小さくても切換え可能であり、かつ、低電圧駆
動できる。構造的にも、基板両面に対して所定の入射側
、出射側反射鏡の膜を形成すればよく、面内−括処理が
可能で、小型デバイス化、アレイ化が可能となる。さら
には、伝搬方向として入射から出射までが同一方向であ
るので、積層光回路への応用も容易である。
This enables reliable and high-speed optical switching. Furthermore, since multiple reflections between reflecting mirrors are utilized, switching is possible even if the electro-optic effect is small, and low voltage driving is possible. Structurally, it is sufficient to form films of predetermined incident side and output side reflecting mirrors on both sides of the substrate, and in-plane batch processing is possible, making it possible to form small devices and arrays. Furthermore, since the propagation direction is the same from input to output, it is easy to apply to laminated optical circuits.

実施例 本発明の一実施例を第1図ないし第3図に基づいて説明
する。本実施例の光スイツチアレイは、電気光学効果を
有する物質、例えばPLZTや液晶などにより形成され
て使用する波長光に対して透明な基板11をベースとし
て構成される。この基板11の入射側−面には電極機能
を持つ入射側反射鏡12の膜単層又は複数層構造で複数
個個別に形成されている。本実施例では、基板11はP
LZT、入射側反射鏡12はAu金属膜とされている。
Embodiment An embodiment of the present invention will be described with reference to FIGS. 1 to 3. The optical switch array of this embodiment is constructed based on a substrate 11 made of a material having an electro-optic effect, such as PLZT or liquid crystal, and transparent to the wavelength of light used. On the incident side surface of the substrate 11, a plurality of incident side reflecting mirrors 12 having an electrode function are individually formed in a single layer or multilayer structure. In this embodiment, the substrate 11 is P
LZT and the incident side reflecting mirror 12 are made of an Au metal film.

これらの入射側反射鏡12は1次元アレイ状等間隔配列
の入射側光導波路、ここでは入射側光ファイバ13によ
る入射位置2間を埋めるように1次元に規則的に等間隔
に配設されている。また、前記基板11の出射側他面に
は電極機能を持たせた出射側反射鏡14の膜が単層又は
複数層構形成されている。本実施例では、ITOによる
薄膜透明電極14aとAuによる金属膜14bとの2層
構造とされている。この出射側反射鏡14の金属膜14
bには前記入射側光ファイバ13の入射位置Pに対応さ
せて1次元アレイ状に正しく配列させた円形の出射窓1
5が形成されている。このような反射鏡12.14を含
め、本実施例の光スイツチアレイは、スパッタリング法
、蒸着法等の通常の薄膜形成技術や、フォトリソグラフ
ィ法、エツチング等の加工技術によって、高精度かつ簡
単に作製できる。
These incident-side reflecting mirrors 12 are one-dimensionally arranged at regular intervals so as to fill the space between the incident positions 2 of the incident-side optical waveguides arranged in a one-dimensional array at equal intervals, and here the incident-side optical fibers 13. There is. Further, on the other surface of the substrate 11 on the emission side, a film of an emission side reflecting mirror 14 having an electrode function is formed in a single layer or in a multi-layer structure. This embodiment has a two-layer structure consisting of a thin film transparent electrode 14a made of ITO and a metal film 14b made of Au. The metal film 14 of this output side reflecting mirror 14
In b, circular output windows 1 are arranged correctly in a one-dimensional array in correspondence with the input position P of the input side optical fiber 13.
5 is formed. The optical switch array of this embodiment, including such reflecting mirrors 12 and 14, can be formed easily and with high precision using ordinary thin film forming techniques such as sputtering and vapor deposition, and processing techniques such as photolithography and etching. It can be made.

ここに、前記入射側反射鏡12は各々個別に電圧印加手
段(図示せず)により選択的に電圧印加されるものであ
る。出射側反射鏡14は共通電極的に作用し、入射側反
射鏡12の何れとも電気的に独立して電圧印加を受は得
るように配線接続されている。また、前記光ファイバ1
3の入射位置Pに対しては第1図に示すようにコリメー
トレンズ16が結合され、出射窓15に対しては集光レ
ンズ17を介して出射側光導波路としての出射側光ファ
イバ18が結合されるものである。
Here, a voltage is selectively applied to each of the incident side reflecting mirrors 12 by a voltage applying means (not shown). The output-side reflecting mirror 14 acts as a common electrode, and is wire-connected to both of the input-side reflecting mirrors 12 so as to receive and receive voltage electrically independently. Further, the optical fiber 1
A collimating lens 16 is coupled to the incident position P of No. 3 as shown in FIG. It is something that will be done.

このような構成において、本実施例の動作原理を第1図
により説明する。いま、ある入射側光ファイバ13aを
伝搬してきた入射光19a(ただし、アレイ方向に偏波
面を有する直線偏光)は、コリメートレンズ16aによ
りコリメートされて基板11に入射する場合を考える。
In such a configuration, the operating principle of this embodiment will be explained with reference to FIG. Now, consider the case where incident light 19a (linearly polarized light having a polarization plane in the array direction) propagating through a certain incident optical fiber 13a is collimated by collimating lens 16a and enters substrate 11.

この時、入射側、出射側反射鏡12.14を等電位(こ
の場合、接地でよい)とすると、入射光19aは一点鎖
線で示すように基板ll中を直進透過して、対応する出
射窓15aの集光レンズ17aを通り、出射光20aと
して出射側光フアイバ18a中に出射される。一方、入
射側光ファイバ13aに隣接する入射側反射鏡12bに
電圧Vを印加し、他の入射側反射鏡12a及び出射側反
射鏡14は接地したままとすると、入射側反射鏡12b
に対応する基板11内部に破線で示すような電界分布が
生ずる。これにより、基板11は電気光学効果により屈
折率が変化して屈折率分布が形成される。よって、光フ
ァイバ13aから入射した入射光19aは実線で示すよ
うに基板11内部で屈折されるとともに、反射鏡14,
12c間で複数回の反射を繰返して伝搬し、隣接の出射
窓15bの集光レンズ17bに結合して対応する出射側
光ファイバlsb中に出射光20bとして出射される。
At this time, if the incident side and output side reflecting mirrors 12 and 14 are set to have the same potential (in this case, they may be grounded), the incident light 19a passes straight through the substrate 11 as shown by the dashed line, and passes through the corresponding output window. The light passes through the condenser lens 17a of 15a and is emitted into the emitting optical fiber 18a as emitted light 20a. On the other hand, if a voltage V is applied to the input side reflector 12b adjacent to the input side optical fiber 13a, and the other input side reflector 12a and the output side reflector 14 remain grounded, then the input side reflector 12b
An electric field distribution as shown by the broken line is generated inside the substrate 11 corresponding to this. Thereby, the refractive index of the substrate 11 changes due to the electro-optic effect, and a refractive index distribution is formed. Therefore, the incident light 19a that has entered from the optical fiber 13a is refracted inside the substrate 11 as shown by the solid line, and is also reflected by the reflecting mirror 14,
12c, the light beam propagates through repeated reflections a plurality of times, is coupled to the condenser lens 17b of the adjacent output window 15b, and is emitted as output light 20b into the corresponding output side optical fiber lsb.

従って、一般論としては、第3図に示すように、入射側
のある1つの入射側光ファイバ13に注目した場合、そ
の両側の2つの入射側反射鏡を12b、12cとし、出
射側において入射側光ファイバ13に対応する出射側光
ファイバを18a、その両側の出射側光ファイバを18
b、18cとすると、入射側反射鏡12b、12cに対
する電圧印加の制御により、出射側光ファイバ18a〜
18cの任意のものに結合させることができる。即ち、
入射側反射鏡12b、12cの何れにも電圧印加しなけ
れば出射側光ファイバ18aに結合し、入射側反射鏡1
2cのみに電圧印加すれば出射側光ファイバ18bに結
合し、入射側反射鏡12bのみに電圧印加すれば出射側
光ファイバ18cに結合することになる。
Therefore, in general terms, as shown in FIG. The output side optical fiber corresponding to the side optical fiber 13 is 18a, and the output side optical fibers on both sides thereof are 18a.
b, 18c, the output side optical fibers 18a to 18c are controlled by controlling the voltage application to the input side reflecting mirrors 12b and 12c.
18c. That is,
If no voltage is applied to either of the incident side reflecting mirrors 12b and 12c, the output side optical fiber 18a is coupled to the incident side reflecting mirror 1.
If voltage is applied only to 2c, it will be coupled to the output side optical fiber 18b, and if voltage is applied only to the input side reflector 12b, it will be coupled to the output side optical fiber 18c.

なお、図示例に限らず、種々の変形構成が可能で、例え
ば反射鏡12.14を誘電体多層膜構造とすれば吸収の
ない高反射率のものとなる。
It should be noted that various modified configurations are possible, not limited to the illustrated example. For example, if the reflecting mirrors 12 and 14 have a dielectric multilayer structure, they will have a high reflectance without absorption.

発明の効果 本発明は、上述したように電気光学効果を有する物質に
よる基板の両面に、各々電極機能を持つ入射側反射鏡と
出射側反射鏡とを形成し、入射側反射鏡の各々に選択的
に電圧印加することにより基板の電気光学効果を利用し
て入・出射側光導波路間の結合を切換え制御するように
したので、確実かつ高速の光スイッチングが可能で、特
に、反射鏡間の多重反射を利用するため、電気光学効果
が小さくても切換え可能であり、かつ、低電圧駆動が可
能となり、構造的にも、基板両面に対して所定の入射側
、出射側反射鏡の膜を形成すればよく、面内−括処理が
可能で、小型デバイス化、アレイ化が可能となり、加え
て、伝搬方向が入射から出射まで同一方向であるので、
積層光回路への応用も容易なものである。
Effects of the Invention As described above, the present invention forms an entrance-side reflecting mirror and an exit-side reflecting mirror each having an electrode function on both sides of a substrate made of a substance having an electro-optic effect, and selects a By applying a voltage to the substrate, the electro-optic effect of the substrate is used to switch and control the coupling between the input and output optical waveguides, making it possible to perform reliable and high-speed optical switching. Since multiple reflections are used, switching is possible even if the electro-optic effect is small, and low voltage driving is possible.Structurally, the films of the reflection mirrors on the incident and exit sides are placed on both sides of the substrate. It only needs to be formed, in-plane batch processing is possible, and miniaturization of devices and arrays is possible.In addition, since the propagation direction is the same from input to output,
Application to laminated optical circuits is also easy.

【図面の簡単な説明】[Brief explanation of drawings]

第工図ないし第3図は本発明の一実施例を示すもので、
第1図は動作原理を示す概略断面構造図、第2図はスイ
ッチアレイ単体の構造を示す斜視図、第3図は動作原理
の一般論を説明するための斜視図、第4図は従来例を示
す斜視図である。 11・・・基板、12・・・入射側反射鏡、13・・・
入射側光導波路、14・・・出射側反射鏡、15・・・
出射窓、18・・・出射側光導波路 は図
Figures 1 to 3 show an embodiment of the present invention.
Fig. 1 is a schematic cross-sectional structural diagram showing the operating principle, Fig. 2 is a perspective view showing the structure of a single switch array, Fig. 3 is a perspective view for explaining the general principle of operation, and Fig. 4 is a conventional example. FIG. 11...Substrate, 12...Incidence side reflecting mirror, 13...
Incoming side optical waveguide, 14... Outgoing side reflecting mirror, 15...
Output window, 18...The output side optical waveguide is shown in the figure.

Claims (1)

【特許請求の範囲】[Claims] 電気光学効果を有する物質により形成された基板と、1
次元アレイ状に配列された入射側光導波路間に配設させ
て前記基板の一面に形成された電極機能を持つ単層又は
複数層の入射側反射鏡と、前記入射側光導波路に対応す
る出射側光導波路用の出射窓を備えて前記基板の他面に
形成された電極機能を持つ単層又は複数層の出射側反射
鏡と、前記各入射側反射鏡と前記出射側反射鏡とに対し
て選択的に電圧を印加する電圧印加手段とよりなり、こ
れらの反射鏡間に対する選択的な電圧印加により前記基
板内部の電界分布を制御しその電気光学効果により入・
出射側光導波路間の結合を切換え制御するようにしたこ
とを特徴とする光スイッチアレイ。
a substrate formed of a substance having an electro-optical effect;
A single-layer or multi-layer input-side reflecting mirror having an electrode function is disposed between the input-side optical waveguides arranged in a dimensional array and formed on one surface of the substrate, and an output mirror corresponding to the input-side optical waveguides. A single-layer or multi-layer output side reflector having an electrode function and provided with an output window for a side optical waveguide and having an electrode function formed on the other surface of the substrate, and each of the input side reflectors and the output side reflector. The electric field distribution inside the substrate is controlled by selectively applying a voltage between these reflecting mirrors, and the electro-optical effect is used to control the electric field distribution.
An optical switch array characterized in that coupling between output side optical waveguides is switched and controlled.
JP16642590A 1990-02-21 1990-06-25 Optical switch array Pending JPH03267922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16642590A JPH03267922A (en) 1990-02-21 1990-06-25 Optical switch array

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4042290 1990-02-21
JP2-40422 1990-02-21
JP16642590A JPH03267922A (en) 1990-02-21 1990-06-25 Optical switch array

Publications (1)

Publication Number Publication Date
JPH03267922A true JPH03267922A (en) 1991-11-28

Family

ID=26379889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16642590A Pending JPH03267922A (en) 1990-02-21 1990-06-25 Optical switch array

Country Status (1)

Country Link
JP (1) JPH03267922A (en)

Similar Documents

Publication Publication Date Title
US20210356838A1 (en) Non-moving optical beam steering using non-pixelated liquid crystal optical phased arrays
US5664032A (en) Display panel with electrically-controlled waveguide-routing
US5724463A (en) Projection display with electrically controlled waveguide-routing
US6614574B2 (en) Total internal reflection light modulating microstructure devices
US6865312B2 (en) Compact dynamic crossbar switch by means of planar optics
EP0078454B1 (en) Interferometric multimode fiber optic switch and modulator
KR970705771A (en) CONTROLLABLE BEAM DIRECTOR USING POLED STRUCTURE USING POLARIZING STRUCTURE
EP0783719A1 (en) Method for manipulating optical energy using poled structure
US5071232A (en) Optical deflection element and space optical matrix switching device
US4815827A (en) Optical switch structures
US4767170A (en) Optical deflector device
US4792212A (en) Liquid crystal switching device
JP2834844B2 (en) Optical switch array
JPH03267922A (en) Optical switch array
JP2837511B2 (en) Optical switch array
JP3224585B2 (en) Light switch
JPH0750284B2 (en) Optical path switch
JP2774346B2 (en) Spatial light matrix switch device
JPS61121042A (en) Optical switch
JPH0246431A (en) Two-dimensional optical switch
SU1005174A1 (en) Matrix indicator
JPH11281831A (en) Grating coupler
JPS5890620A (en) Electrooptic switch
JPS626230A (en) Optical deflecting device
JPH03259127A (en) Optical arithmetic unit