JPS60242431A - Optical deflector - Google Patents

Optical deflector

Info

Publication number
JPS60242431A
JPS60242431A JP9963184A JP9963184A JPS60242431A JP S60242431 A JPS60242431 A JP S60242431A JP 9963184 A JP9963184 A JP 9963184A JP 9963184 A JP9963184 A JP 9963184A JP S60242431 A JPS60242431 A JP S60242431A
Authority
JP
Japan
Prior art keywords
heat
crystal
relatively large
refractive index
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9963184A
Other languages
Japanese (ja)
Inventor
Shiro Ogata
司郎 緒方
Junichi Takagi
高木 潤一
Naohisa Inoue
直久 井上
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP9963184A priority Critical patent/JPS60242431A/en
Publication of JPS60242431A publication Critical patent/JPS60242431A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To speed up the response of the deflection of a light beam and obtain a relatively large angle of deflection by coupling one heat absorbing surface of each Peltier element, provided on the top and reverse surface of an optical material which varies in refractive index with temperature, through a heat conductive member. CONSTITUTION:Heat absorbing surfaces of Peltier elements 2 and 3 at the opposite sides of lithium niobate crystal 1 are fixed to the U-shaped heat conductive member 11 is contact. Power sources 7 and 8 flow a current to the elements 2 and 3 to heat the top surface of the crystal 1 by, for example, the element 2 and cool the reverse surface of the crystal 1 by the element 3. Heat is well concucted from the heating side to the cooling side through the conductive member 11, so the time in which a stationary temperature gradient is obtained in the crystal 1 is shortened and the temperature gradient is relatively large. Consequently, a relatively large refractive index gradient is obtained in the crystal 1 and a light beam made incident on an end surface of the crystal 1 is deflected at a relatively large angle of deflection.

Description

【発明の詳細な説明】 発明の背景 この発明は温度によって屈折率が変化する光学材料を利
用した光偏向器に関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION This invention relates to an optical deflector using an optical material whose refractive index changes depending on temperature.

ガラスまたは誘電体などの屈折率は、温度によって変化
することが知られている。このような温度光学効果を生
じさせる光学材料を用いて光を偏向させることが考えら
れる。光学材料の温度を変えるためには、その表面にベ
ルチェ素子を設けることが考えられる。
It is known that the refractive index of glass, dielectric materials, etc. changes depending on temperature. It is conceivable to deflect light using an optical material that produces such a thermo-optical effect. In order to change the temperature of an optical material, it is conceivable to provide a Vertier element on its surface.

第5図は、光学材料の上下面にベルチェ素子がそれぞれ
設けられた光偏向器の例を示している。温度光学効果を
もつ誘電体結晶、たとえばニオブ酸リチウム(LiNb
O3)の結晶(1)の上下面にベルチェ素子(2>(3
)がそれぞれ設けられている。ベルチェ素子(2>(3
)はよく知られているように1対の伝熱板(4)間に異
種の伝導形の半導体(5)が少なくとも1組設けられ、
かつこれらの半導体(5)が伝熱板(4)に固定された
接続導体(図示路)によってP形とN形とが交互になる
ように直列に接続されているものである。半導体(5)
に直流電流を流すと、1対の伝熱板(4)のうち一方の
伝熱板(4)に熱の発生、他方の伝熱板(4)に熱の吸
収が起こる。電流の向きを逆にすると、熱の発生の起こ
る伝熱板(4)と熱の吸収が起こる伝熱板(4)とが逆
になる。伝熱板(4)の外面が発熱吸熱面である。各ベ
ルチェ素子(2)(3)は、一方の伝熱板(4)の発熱
吸熱面が結晶(1)の上面または下面に密着した状態で
結晶(1)に固定されている。各ベルチェ素子(2)(
3)の他方の伝熱板(4)の発熱吸熱面には、放熱吸熱
フィン(6)が固定されている。
FIG. 5 shows an example of an optical deflector in which Vertier elements are provided on the upper and lower surfaces of an optical material. Dielectric crystals with thermo-optical effects, such as lithium niobate (LiNb)
Vertier elements (2>(3
) are provided for each. Beltier element (2>(3
), as is well known, at least one set of semiconductors (5) of different conduction types is provided between a pair of heat exchanger plates (4),
These semiconductors (5) are connected in series so that the P-type and N-type are alternated by connecting conductors (paths shown) fixed to the heat exchanger plate (4). Semiconductor (5)
When a direct current is passed through, one of the pair of heat exchanger plates (4) generates heat, and the other heat exchanger plate (4) absorbs heat. When the direction of the current is reversed, the heat exchanger plate (4) where heat is generated and the heat exchanger plate (4) where heat is absorbed are reversed. The outer surface of the heat exchanger plate (4) is a heat generating and endothermic surface. Each of the Vertier elements (2) and (3) is fixed to the crystal (1) with the heat-generating and endothermic surface of one heat exchanger plate (4) in close contact with the top or bottom surface of the crystal (1). Each Vertier element (2) (
A heat-radiating and heat-absorbing fin (6) is fixed to the heat-generating and heat-absorbing surface of the other heat exchanger plate (4) in 3).

上側のベルチェ素子(2)の結晶(1)側の伝熱板(4
)に発熱を起こさせるように電源く7)からこのベルチ
ェ素子(2)に電流を流し、下側のベルチェ素子(3)
の結晶(1)側の伝熱板(4)に吸熱を起こさせるよう
に電源(8)からこのベルチェ素子〈3)に電流を流す
と、結晶(1)の上面が加熱され、下面が冷却される。
Heat transfer plate (4) on the crystal (1) side of the upper Vertier element (2)
), a current is passed from the power source 7) to this Beltier element (2) so as to generate heat, and the lower Beltier element (3)
When a current is passed from the power source (8) to this Vertier element (3) so as to cause the heat transfer plate (4) on the crystal (1) side to absorb heat, the upper surface of the crystal (1) is heated and the lower surface is cooled. be done.

これによって結晶(1)内部にその上下方向に温度勾配
が発生し、この温度勾配によって結晶内部に屈折率の勾
配が生じる。この場合は、結晶(1)内部の上部の屈折
率が高くなり、下部の屈折率が低くなるような屈折率勾
配が生じる。
As a result, a temperature gradient is generated inside the crystal (1) in the vertical direction, and this temperature gradient causes a refractive index gradient inside the crystal. In this case, a refractive index gradient occurs in which the refractive index in the upper part of the crystal (1) becomes higher and the refractive index in the lower part becomes lower.

結晶(1)の端面から光ビームAを結晶(1)の上下面
と平行に入射させると、屈折率の勾配によって光ビーム
は上下方向に偏向される。偏向された出射ビームを82
で、偏向されていない出射ビームを81でそれぞれ示す
。光ビームを下向きに偏向するには、ベルチェ素子(2
)(3)に流す電流の向きを逆にすればよい。
When a light beam A is made incident from the end face of the crystal (1) parallel to the upper and lower surfaces of the crystal (1), the light beam is deflected in the vertical direction due to the gradient of the refractive index. The deflected output beam is
and the undeflected output beams are indicated at 81, respectively. To deflect the light beam downward, a Bertier element (2
) (3) by reversing the direction of the current flowing.

第6図は、このような光偏向器における熱伝導の様子を
示している。熱は一方のベルチェ素子(2)に設けられ
たフィン(6)を介して空気中から吸収゛され、このベ
ルチェ素子(2)、結晶(1)および他方のベルチェ素
子(3)を通って、ベルチェ素子(3)に設けられたフ
ィン(6)を介して空気中に放出されている。このよう
に熱が熱伝導率の低い空気中から吸収されかつ空気中に
放出されているので結晶(1)内における熱伝導が充分
でない。このため、定常的な温度勾配が得られるまでに
時間がかかり、偏向の応答が比較的遅く、また比較的大
きな温度勾配が得られないからあまり大きな偏向角が得
られないという問題がある。
FIG. 6 shows the state of heat conduction in such an optical deflector. Heat is absorbed from the air through the fins (6) provided on one Vertier element (2), passes through this Vertier element (2), the crystal (1) and the other Vertier element (3), It is released into the air via the fins (6) provided on the Vertier element (3). Since heat is absorbed from the air, which has a low thermal conductivity, and released into the air, heat conduction within the crystal (1) is insufficient. For this reason, there are problems in that it takes time to obtain a steady temperature gradient, the deflection response is relatively slow, and since a relatively large temperature gradient cannot be obtained, a very large deflection angle cannot be obtained.

発明の概要 この発明は、光ビームの偏向の応答が比較的速く、かつ
比較的大きな偏向角が得ることができる光偏向器を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical deflector that has a relatively fast response in deflecting a light beam and can obtain a relatively large deflection angle.

この発明による光偏向器は、温度によって屈折率が変化
する光学材料の上下面にそれぞれベルチェ素子が設けら
れ、各ベルチェ素子の一方の発熱吸熱面が光学材料の上
下面にそれぞれ密着して固定されている光偏向器におい
て、各ベルチェ素子の他方の発熱吸熱面が、伝熱部材を
介して互いに結合されていることを特徴とする。
In the optical deflector according to the present invention, Beltier elements are provided on the upper and lower surfaces of an optical material whose refractive index changes depending on temperature, and one heat-generating and endothermic surface of each Beltier element is fixed in close contact with the upper and lower surfaces of the optical material. The optical deflector is characterized in that the other heat generating and heat absorbing surfaces of each Vertier element are coupled to each other via a heat transfer member.

温度光学効果をもつ光学材料の代表的なものとしては、
ガラス、T!02、L!Nb0a 、PLZTなどがあ
る。伝熱部材としてはたとえば銅、銀などの熱伝導の良
好なものが用いられる。
Typical optical materials with thermo-optical effects include:
Glass, T! 02, L! Examples include Nb0a and PLZT. As the heat transfer member, a material having good heat conductivity such as copper or silver is used.

光学材料の上下面にそれぞれ設けられたベルチェ素子に
電流が流されることにより、光学材料の上下面のうち一
方の面が加熱され、他方の面が冷却される。この際、加
熱側と吸熱側との間で、伝熱部材を通して熱が良く伝導
するから、偏向の応答が速くなるとともに光学材料内に
比較的大きな温度勾配を生じさせることができる。
By passing current through the Vertier elements provided on the upper and lower surfaces of the optical material, one of the upper and lower surfaces of the optical material is heated and the other surface is cooled. At this time, since heat is well conducted through the heat transfer member between the heating side and the endothermic side, the deflection response becomes faster and a relatively large temperature gradient can be generated within the optical material.

この結果、光学材料内に比較的大きな屈折率勾配が得ら
れ、比較的大きな光偏向角を得ることができる。
As a result, a relatively large refractive index gradient within the optical material can be obtained, and a relatively large optical deflection angle can be obtained.

実施例の説明 第1図〜第4図において第5図と同じものについては同
じ符号を付してその説明を省略する。
DESCRIPTION OF THE EMBODIMENTS In FIGS. 1 to 4, the same parts as in FIG. 5 are denoted by the same reference numerals, and the explanation thereof will be omitted.

第1図はこの発明の第1実施例を示している。FIG. 1 shows a first embodiment of the invention.

上下一対のベルチェ素子(2)(3)の一方の発熱吸熱
面は、ニオブ酸リチウムの結晶(1)との熱伝導を向上
させるためにシリコングリースを介して結晶(1)の上
下面にそれぞれ密着固定されている。各ベルチェ素子(
2>(3)における結晶(1)側と反対側の伝熱板(4
)の発熱吸収面は、正面からみてコの字形の伝熱部材(
11)の上部水平部(11a)の下面および下部水平部
(Ilb)の正面に密着して固定されている。
One of the heat-generating and endothermic surfaces of the upper and lower pair of Vertier elements (2) and (3) is coated with silicone grease on the upper and lower surfaces of the crystal (1), respectively, in order to improve heat conduction with the lithium niobate crystal (1). It is tightly fixed. Each Vertier element (
2> Heat exchanger plate (4) on the opposite side to the crystal (1) side in (3)
) is a U-shaped heat transfer member (
11) is closely fixed to the lower surface of the upper horizontal part (11a) and the front of the lower horizontal part (Ilb).

伝熱部材(11)としては、たとえば銅が用いられる。For example, copper is used as the heat transfer member (11).

電m(7>および(8)からベルチェ素子(2)(3)
に電流をそれぞれ流し、たとえば上側のベルチェ素子(
2)によって結晶(1)の正面を加熱し、下側のベルチ
ェ素子(3)によって結晶(1)の下面を冷却すると、
結晶(1)内に上下方向に温度勾配が発生し、この温度
勾配により屈折率勾配が得られる。この際加熱側と冷却
側との間で、伝熱部材(11)を通して熱が良く伝導さ
れるから、定常的な温度勾配が得られるまでの時間が比
較的短くなるとともに結晶(1)内部に比較的大きな温
度勾配が得られる。このため結晶(1)内部に比較的大
きな屈折率勾配が得られ、結晶(1)の端面から、結晶
(1)の上下面に平行に入射した光ビームAを比較的大
ぎな偏向角で偏向できるという利点がある。
Bertier elements (2) (3) from electric m(7> and (8))
For example, the upper Bertier element (
When the front side of the crystal (1) is heated by 2) and the lower side of the crystal (1) is cooled by the lower Vertier element (3),
A temperature gradient occurs in the vertical direction within the crystal (1), and this temperature gradient provides a refractive index gradient. At this time, since heat is well conducted between the heating side and the cooling side through the heat transfer member (11), the time required to obtain a steady temperature gradient is relatively short, and the inside of the crystal (1) A relatively large temperature gradient is obtained. Therefore, a relatively large refractive index gradient is obtained inside the crystal (1), and the light beam A that is incident parallel to the upper and lower surfaces of the crystal (1) from the end face of the crystal (1) is deflected at a relatively large deflection angle. It has the advantage of being possible.

第2図、第3図および第4図は、この発明の第2、第3
および第4実施例を示しており、伝熱部材の形状または
構造が第1実施例のものと異なっている。第2図の光偏
向器では、矩形枠状の伝熱部材(12)が用いられてお
り、上下一対のベルチェ素子(2)(3)における結晶
(1)側と反対側の伝熱板(4)の発熱吸熱面が伝熱部
材(12)の上梓部(12a)の下面および下枠部(1
2b)の上面にそれぞれ固定されている。この光偏向器
では、第1実施例のものに較べて構造状強固であるとい
う利点がある。第3図の光偏向器では、楕円環状の伝熱
部材(13)が用いられている。第4図の光偏向器では
、伝熱部材(14)として、矩形枠状であってかつ上部
分(14’a)と下部分(14b)とが分割されている
ものが用いられている。そして上部分(14a)と下部
分(14b)とはねじ(15)によって連結固定されて
いる。この光偏向器では、組み立てが簡単であるという
利点があるとともに、ねじ(15)を強くねじ込むこと
によって伝熱部材(14)とペルチェ素子(2)(3)
およびベルチェ素子(2)(3)と結晶(1)を、それ
らの接合部において強く密着させることができるため、
これらの接合部での熱伝導が良くなるという利点がある
2, 3, and 4 show the second and third embodiments of this invention.
and a fourth embodiment, in which the shape or structure of the heat transfer member is different from that of the first embodiment. In the optical deflector shown in Fig. 2, a rectangular frame-shaped heat transfer member (12) is used, and a heat transfer plate ( 4), the heat-generating and endothermic surface of the heat-transfer member (12)
2b) respectively fixed on the upper surface. This optical deflector has the advantage of being more rigid in structure than that of the first embodiment. In the optical deflector shown in FIG. 3, an elliptical annular heat transfer member (13) is used. In the optical deflector shown in FIG. 4, a heat transfer member (14) is used which has a rectangular frame shape and is divided into an upper part (14'a) and a lower part (14b). The upper part (14a) and the lower part (14b) are connected and fixed by screws (15). This optical deflector has the advantage that it is easy to assemble, and the heat transfer member (14) and Peltier elements (2) and (3) can be connected by firmly screwing the screw (15).
And since the Vertier elements (2) and (3) and the crystal (1) can be brought into close contact with each other at their joints,
This has the advantage of improving heat conduction at these joints.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例を示す正面図、第2図は
この発明の第2実施例を示す正面図、第3図はこの発明
の第3実施例を示す正面図、第4図はこの発明の第4実
施例を示す正面図、第5図は光学材料の上下面にペルチ
ェ素子がそれぞれ設けられた光偏向器を示す側面図、第
6図は第5図に示す光偏向器の熱伝導の様子を示す図で
ある。 (1)・・・温度光学誘電体結晶、(2)(3)・・・
ペルチェ素子、(11)〜(14)・・・伝熱部材。 以上 第1図
FIG. 1 is a front view showing a first embodiment of the invention, FIG. 2 is a front view showing a second embodiment of the invention, FIG. 3 is a front view showing a third embodiment of the invention, and FIG. The figure is a front view showing a fourth embodiment of the present invention, FIG. 5 is a side view showing an optical deflector in which Peltier elements are provided on the upper and lower surfaces of an optical material, and FIG. 6 is an optical deflector shown in FIG. 5. It is a figure showing the state of heat conduction of a container. (1)...Thermo-optical dielectric crystal, (2)(3)...
Peltier element, (11) to (14)...heat transfer member. Figure 1 above

Claims (1)

【特許請求の範囲】[Claims] 温度によって屈折率が変化する光学材料の上下面にそれ
ぞれベルチェ素子が設けられ、各ベルチェ素子の一方の
発熱吸熱面が光学材料の上下面にそれぞれ密着して固定
されている光偏向器において、各ベルチェ素子の他方の
発熱吸熱面が、伝熱部材を介して互いに結合されている
ことを特徴とする光偏向器。
In an optical deflector, Bertier elements are provided on the upper and lower surfaces of an optical material whose refractive index changes depending on temperature, and one heat-generating and endothermic surface of each Bertier element is fixed in close contact with the upper and lower surfaces of the optical material. An optical deflector characterized in that the other heat generating and heat absorbing surfaces of the Vertier elements are coupled to each other via a heat transfer member.
JP9963184A 1984-05-16 1984-05-16 Optical deflector Pending JPS60242431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9963184A JPS60242431A (en) 1984-05-16 1984-05-16 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9963184A JPS60242431A (en) 1984-05-16 1984-05-16 Optical deflector

Publications (1)

Publication Number Publication Date
JPS60242431A true JPS60242431A (en) 1985-12-02

Family

ID=14252423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9963184A Pending JPS60242431A (en) 1984-05-16 1984-05-16 Optical deflector

Country Status (1)

Country Link
JP (1) JPS60242431A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526901A (en) * 2016-10-28 2017-03-22 天津医科大学 Solid state optical scanner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526901A (en) * 2016-10-28 2017-03-22 天津医科大学 Solid state optical scanner

Similar Documents

Publication Publication Date Title
US4118249A (en) Modular assembly of a photovoltaic solar energy receiver
US6226994B1 (en) Thermoelectric element and thermoelectric cooling or heating device provided with the same
US6043423A (en) Thermoelectric device and thermoelectric module
US3719532A (en) Thermogenerator with thermoelectric elements in exhaust ducts
CN106340803A (en) Butterfly type packaging semiconductor laser heat sink apparatus
JPH04179180A (en) Short-wave laser ray source
JPH06151979A (en) Thermoelectric device
JPS60242431A (en) Optical deflector
JPH036875A (en) Semiconductor laser
JPH0430586A (en) Thermoelectric device
JPS63302584A (en) Temperature controller for laser diode
JP4359105B2 (en) Liquid crystal panel device
US3290177A (en) Thermoelectric heat exchange apparatus
JPS60242434A (en) Optical deflector
JP2563524B2 (en) Thermoelectric device
JPS60247627A (en) Optical deflector
JPS60242432A (en) Optical deflector
JPH02155281A (en) Thermoelectric device
JPS60247626A (en) Optical deflector
JPS60247625A (en) Optical deflector
JPH01214073A (en) Thermoelectric converter
JPS61292970A (en) Radiator plate for solar cell
JPH0951115A (en) Heat generation preventing device of solar cell
JPS6182450A (en) Package for semiconductor device
CN115826647A (en) Constant-temperature stable optical module isolator system and use method