JPS60242432A - Optical deflector - Google Patents

Optical deflector

Info

Publication number
JPS60242432A
JPS60242432A JP9963284A JP9963284A JPS60242432A JP S60242432 A JPS60242432 A JP S60242432A JP 9963284 A JP9963284 A JP 9963284A JP 9963284 A JP9963284 A JP 9963284A JP S60242432 A JPS60242432 A JP S60242432A
Authority
JP
Japan
Prior art keywords
crystal
refractive index
heat exchanger
heat
semiconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9963284A
Other languages
Japanese (ja)
Inventor
Shiro Ogata
司郎 緒方
Junichi Takagi
高木 潤一
Naohisa Inoue
直久 井上
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP9963284A priority Critical patent/JPS60242432A/en
Publication of JPS60242432A publication Critical patent/JPS60242432A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To reduce the size and power consumption of the optical deflector by providing semiconductors of different conduction types connected in series so that an N type and a P type alternate and an optical material which varies in refractive index with temperature between a couple of heat conductive plates. CONSTITUTION:A series of semiconductors 4 of different conduction types and dielectric crystal which varies in refractive index with temperature, e.g. crystal 1 of lithium niobate are provided between the couple of ceramic plates 3. The semiconductors 4 are so connected in series that an N type and a P type alternate across a connection conductor. When a power source 5 flows a current to the semiconductors 4, one ceramic plate 3 generates heat according to the direction of the current and the other ceramic plate 3 absorbs the heat to generate a vertical temperature gradient in the crystal 1, thereby obtaining a refractive index gradient. A light beam A when is made incident from an end surface of the crystal 1 in parallel on the ceramic plates 3 is deflected because of the refractive index gradient.

Description

【発明の詳細な説明】 発明の置屋 この発明は湿度によって屈折率が変化する光学材料を利
用した光偏向器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical deflector using an optical material whose refractive index changes depending on humidity.

ガラスまたは誘電体などの屈折率は、温度によって変化
することが知られている。このような湿度光学効果を生
じさせる光学材料を用いて光を偏向させることが考えら
れる。大きな偏向角を得るためには、光学材料の内部に
大きな屈折率勾配を形成することか必要であり、したが
って光学材料の内部に大きな温度勾配を形成することが
必要となる。このように大きな温度勾配を得るために、
第3図に示すように温度によって屈折率か変化する光学
材料たとえばニオブ酸リチウム(LiNb03)の結晶
(1)の上面と下面にペルチェ素子(2)をそれぞれ設
け、一方のペルチェ素子(2)で結晶(1)上面(また
は下面)を加熱し、他方のペルチェ素子(2)で結晶(
1)の下面(または上面)を冷却することが考えられる
。ペルチェ素子(2)はよく知られているように1対の
伝熱板(3)間に異種の伝導形の半導体(4)が少なく
とも1組慇けられ、かつこれらの半導体(4)が伝熱板
(3)に固定された接続導体(図示略)によってP形と
N形とが交互になるように直列に接続されているもので
ある。半導体(4)に直流電流を温熱の発生が起こる伝
熱板(3)肩と熱の吸収が起る伝熱板N側とが逆になる
It is known that the refractive index of glass, dielectric materials, etc. changes depending on temperature. It is conceivable to deflect light using an optical material that produces such a humidity optical effect. In order to obtain a large deflection angle, it is necessary to create a large refractive index gradient inside the optical material, and therefore it is necessary to create a large temperature gradient inside the optical material. In order to obtain such a large temperature gradient,
As shown in Fig. 3, Peltier elements (2) are provided on the upper and lower surfaces of a crystal (1) of an optical material whose refractive index changes depending on temperature, such as lithium niobate (LiNb03), and one Peltier element (2) The top (or bottom) of the crystal (1) is heated, and the other Peltier element (2) is used to heat the crystal (1).
1) Cooling the lower surface (or upper surface) can be considered. As is well known, the Peltier element (2) has at least one set of semiconductors (4) of different types of conductivity placed between a pair of heat exchanger plates (3), and these semiconductors (4) The P-type and N-type are connected in series so as to alternate with each other by connecting conductors (not shown) fixed to the hot plate (3). The shoulder of the heat exchanger plate (3) where direct current is applied to the semiconductor (4) and where heat is generated is opposite to the N side of the heat exchanger plate where heat absorption occurs.

上側のペルチェ素子(2)の結晶(1)側の伝熱板(3
)情に発熱を起こさせるように電源(5)からこのペル
チェ素子(2)に電流を流し、下側のペルチェ素子(2
)の結晶(1)側の伝熱板(3)真に吸熱を起こさせる
ように電源(6)からこのペルチェ素子(2)に電流を
流すと、結晶(1)の上面が加熱され、下面が冷却され
る。これによって結晶(1)内部l(その上下方向に温
度勾配が発生し、この温度勾配によって結晶(1)内部
に屈折率の勾配が生じる。この場合は、結晶(1)内部
の上部の屈折率が高く、下部の屈折率が低い屈折率勾配
が生じる。結晶(1)の端面から光ビームAを結晶+1
1の上下面と平行に入射させると、屈折率の勾配によっ
て光ビームは上下方向、この場合は上向に偏向される。
Heat transfer plate (3) on the crystal (1) side of the upper Peltier element (2)
) A current is passed from the power supply (5) to this Peltier element (2) so as to generate heat, and the lower Peltier element (2)
) on the crystal (1) side of the heat exchanger plate (3) When current is passed from the power source (6) to this Peltier element (2) to cause true heat absorption, the upper surface of the crystal (1) is heated and the lower surface is heated. is cooled. This creates a temperature gradient inside the crystal (1) in the vertical direction, and this temperature gradient creates a refractive index gradient inside the crystal (1).In this case, the refractive index at the top inside the crystal (1) A refractive index gradient occurs where the refractive index is high and the lower part is low.The light beam A is directed from the end face of the crystal (1) to the crystal +1
When the light beam is made incident parallel to the upper and lower surfaces of 1, the light beam is deflected in the vertical direction, in this case upward, due to the gradient of the refractive index.

偏向された出射ビームをB2で、偏向されていない出射
ビームをB1でそれぞれ示す。光ビームを下向き偏向す
るには、各ペルチェ素子(2)に流す電流の向きを逆に
すればよい。このような光偏向器では、ペルチェ素子(
2)を結晶(1)の上下面、にそれぞれ設けることが必
要であるため、小型化することが難しくかつ消費電力も
多くなるという問題がある。
The deflected output beam is designated by B2, and the undeflected output beam is designated by B1. In order to deflect the light beam downward, the direction of the current flowing through each Peltier element (2) may be reversed. In such an optical deflector, a Peltier element (
Since it is necessary to provide 2) on the upper and lower surfaces of the crystal (1), there are problems in that it is difficult to miniaturize and the power consumption increases.

発明の概要 この発明は、小型化を図れるとともに少ない電力で比較
的大きな偏向角が得られる光偏向器を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical deflector that can be downsized and obtain a relatively large deflection angle with little power.

この発明による光偏向器は、一対の非導電性の伝熱板間
に異種の伝導形の半導体が少なくとも1組設けられかつ
各半導体が伝熱板に固定された接続導体によってN形と
P形とが交互になるように直列に接続されており、この
一対の伝熱板間に、温度によって屈折率が変化する光学
材料が設けられていることを特徴とする。温度光学効果
をもつ光学材料の代表的なものとしては、ガラス、Ti
O2、L i N b O3、PLZTなどがある。半
導体に電流を流すと一方の伝熱板製に熱の発生が起き、
他方の伝熱板\に熱の吸収が起きる。これにより光学材
料の一方の伝熱板に固定されている面が加熱され他方の
伝熱板に固定されている面が冷却される。この結果、光
学材料内に温度勾配が形成され、これにより屈折率勾配
が得られる。゛光学材料に伝熱板と平行に光ビームを入
射させると、屈折率勾配によって光ビームが偏向される
The optical deflector according to the present invention includes at least one set of semiconductors of different types of conductivity between a pair of non-conductive heat exchanger plates, and each semiconductor is connected to an N type and a P type by a connecting conductor fixed to the heat exchanger plate. are alternately connected in series, and an optical material whose refractive index changes depending on the temperature is provided between the pair of heat exchanger plates. Typical optical materials with thermo-optical effects include glass and Ti.
Examples include O2, L i N b O3, and PLZT. When a current is passed through a semiconductor, heat is generated in one of the heat transfer plates,
Heat absorption occurs in the other heat exchanger plate. As a result, the surface of the optical material fixed to one heat exchanger plate is heated, and the surface fixed to the other heat exchanger plate is cooled. This results in the formation of a temperature gradient within the optical material, which results in a refractive index gradient. ``When a light beam is incident on an optical material parallel to the heat exchanger plate, the light beam is deflected by the refractive index gradient.

光学材料の両面にペルチェ素子をそれぞれ設けた場合に
は、各ペルチェ素子の一対の伝熱板のうち光学材料側と
反対側の伝熱板に発生または吸収された熱が無駄になっ
ていた。この発明による光偏向器では、このような熱の
無駄を省くことができるので電力が少なくて済む。また
1対の伝熱板間に、半導体と光学材料とが設けられてい
るので、光学材料の両面にペルチェ素子をそれぞれ設け
た場合に比べて光偏向器を小型化することができる。
When Peltier elements are provided on both sides of the optical material, heat generated or absorbed by the heat exchanger plate on the opposite side to the optical material side of the pair of heat exchanger plates of each Peltier element is wasted. The optical deflector according to the present invention can eliminate such wasted heat, and therefore requires less power. Furthermore, since the semiconductor and the optical material are provided between the pair of heat exchanger plates, the optical deflector can be made smaller than when Peltier elements are provided on both sides of the optical material.

実施例の説明 第1図および第2図はこの発明の実施例を示している。Description of examples 1 and 2 show an embodiment of the invention.

上下一対のセラミック板(3)間には、その両側部に異
種の伝導形の半導体(4)が複数組設けられているとと
もにその左右中央部に湿度によって屈折率が変化する誘
電体結晶、たとえばニオブ酸リチウムの結晶(1)が設
けられている。
Between the pair of upper and lower ceramic plates (3), a plurality of sets of semiconductors (4) of different types of conductivity are provided on both sides thereof, and a dielectric crystal whose refractive index changes depending on humidity, for example, is provided in the left and right center portions. A crystal (1) of lithium niobate is provided.

各半導体(4)は、セラミック板(3)に固定された接
続導体(図示略)を介してN形とP形とが交互になるよ
うに直列に接続されている。結晶(1)の上面および下
面は、上側のセラミック板(3)の下面および下側のセ
ラミック板(3)の上面にシリコングリースを介して密
着固定されている。電源(5)から1.半導体(4)に
直流電流を流すと、電流の方向によって一方のセラミッ
ク板(3)\に熱の発生か起こり、他方のセラミック板
(31mに熱の吸収が起こる。たとえば上側のセラミッ
ク板+3) Qに熱の発生を起こさせ、下側のセラミッ
ク板(3)側に熱の吸収を起こさせると、結晶(1)の
上面が加熱され、下面が冷却される。この場合における
熱伝導の様子を第1図に矢印で示す。これによって結晶
(1)内部に上下方向に温度勾配が発生し、この温度勾
配によって結晶(1)内部に上側の屈折率が高く下側の
屈折率が低い屈折率の勾配が生じる。結晶(1)の端面
から光ビームAをセラミック板(3)に平行に入射させ
ると、屈折率の勾配によって光ビームは、上向に偏向さ
れる。電流の方向を逆にして上側のセラミック板(31
Jに熱の吸収を起こさせ、下側のセラミック板+31 
Jに熱の発生を起こさせると光ビームは下向に偏向され
る。偏向されていない出射ビームをB1で、上向に偏向
された出射ビームをB3てそれぞれ示す。
The semiconductors (4) are connected in series so that N-type and P-type are alternately connected via connection conductors (not shown) fixed to the ceramic plate (3). The upper and lower surfaces of the crystal (1) are closely fixed to the lower surface of the upper ceramic plate (3) and the upper surface of the lower ceramic plate (3) via silicone grease. From the power supply (5) 1. When direct current is passed through the semiconductor (4), heat is generated in one ceramic plate (3) depending on the direction of the current, and heat is absorbed in the other ceramic plate (31m. For example, the upper ceramic plate +3). When Q is caused to generate heat and the lower ceramic plate (3) side absorbs the heat, the upper surface of the crystal (1) is heated and the lower surface is cooled. The state of heat conduction in this case is shown by arrows in FIG. This generates a temperature gradient in the vertical direction inside the crystal (1), and this temperature gradient creates a refractive index gradient inside the crystal (1) with a high refractive index on the upper side and a low refractive index on the lower side. When a light beam A is made parallel to the ceramic plate (3) from the end face of the crystal (1), the light beam is deflected upward due to the gradient of the refractive index. Reverse the direction of the current and insert the upper ceramic plate (31
Let J absorb heat and lower ceramic plate +31
When J is caused to generate heat, the light beam is deflected downward. The undeflected outgoing beam is shown as B1, and the upwardly deflected outgoing beam is shown as B3.

結晶(1)を両セラミック板(3)間の中央部に段重す
、半導体(4)をセラミック板(3)間にお番する結晶
(1)の周囲に設けるようにしてもよし)。この場合:
こlま、光ビームの結晶(1)への入射および出射をさ
またげないように半導体(4)を設けること力≦必要で
ある。
The crystal (1) may be layered in the center between both ceramic plates (3), and the semiconductor (4) may be provided around the crystal (1) between the ceramic plates (3). in this case:
It is necessary to provide the semiconductor (4) so as not to obstruct the incidence and exit of the light beam from the crystal (1).

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明の実施例を示し、第1図
は正面図、第2図は斜視図、第3図桟’il<i hA は龜嘉二易4aの上下両面にペルチェ素子力Sそれぞれ
設けられた光偏向器を示す倶Ij面図。 (1)・榔・温度光学誘電体結晶、(3)・・・伝熱板
、(4)拳・・半導体。 以 上 第1図 第2閲 第3図 手続補正書(ふべ) 1、事件の表示 昭和59年持重、J]願第99632
 号2、発明の名称 光偏向器 3、補正をする者 事件との関係 特許出願人 住 所 京都市右京区花園土堂町10番地氏名・名称 
(294)立石電機株式会社5、補正命令の日付 昭和
 年 月 口6、補正により増加する発明の数 7、補正の対象 明細書全文 明 細 書 く補正〉 1、発明の名称 光偏向器 2、特許請求の範囲 (1) 一対の非導電性の伝熱板間に異種の伝導形の半
導体が少なくとも1組設けられかつ各半導体が伝熱板に
固定された接続導体によってN形とP形とが交互になる
ように直列に接続されており、この一対の伝熱板間に、
温度によって屈折率が変化する光学材料が設けられてい
る光偏向器。 (2) 半導体が伝熱板間の両側部に設(プられ、光学
材料が伝熱板間の中央部に設けられている特許請求の範
囲第1項記載の光偏向器。 3、発明の詳細な説明 発明の背景 この発明は温度によって屈折率が変化する光学材料を利
用した光偏向器に関する。 ガラスまたは誘電体などの屈折率は、温度によって変化
することが知られている。このような温度光学効果を生
じさせる光学材料を用いて光を偏向させることが考えら
れる。大きな偏向角を得るためには、光学材料の内部に
大きな屈折率勾配を形成することが必要であり、したが
って光学材料の内部に大きな温度勾配を形成することが
必要となる。このように大きな温度勾配を得るために、
第3図に示すように温度によって屈折率が変化する光学
材料たとえばニオブ酸リチウム(L!、Nb Oa >
の結晶(1)の上面と下面にペルチェ素子(2)をそれ
ぞれ設け、一方のペルチェ素子(2)で結晶(1)上面
(または下面)を加熱し、他方のペルチェ素子(2)で
結晶(1)の下面(または上面)を冷却することが考え
られる。ペルチェ素子(2)はよく知られているように
1対の伝熱板(3)間に異種の伝導形の半導体(4〉が
少なくとも1組設けられ、かつこれらの半導体(4)が
伝熱板(3)に固定された接続導体(図示路)によって
P形とN形とが交互になるように直列に接続されている
ものである。半導体(4〉に直流電流を流すと、1対の
伝熱板(3)のうち一方の伝熱板(3)に熱の発生が起
こり、他方の伝熱板(3)に熱の吸収が起こる。電流の
向きを逆にすると、熱の発生が起こる伝熱板(3)と熱
の吸収が起こる伝熱板(3)とが逆になる。 上側のペルチェ素子(2)の結晶(1)側の伝熱板(3
)に発熱を起こさせるように電源(5)からこのペルチ
ェ素子(2)に電流を流し、下側のペルチェ素子(2)
の結晶(1)側の伝熱板(3)に吸熱を起こさせるよう
に電源(6)からこのペルチェ素子(2)に電流を流す
と、結晶(1)の上面が加熱され、下面が冷却される。 これによって結晶(1)内部にその上下方向に温度勾配
が発生し、この温度勾配によって結晶(1)内部に屈折
率の勾配が生じる。 この場合は、結晶(1)内部の上部の屈折率が高くなり
、下部の屈折率が低くなるような屈折率勾配が生じる。 結晶(1)の端面から光ビームAを結晶(1)の上下面
と平行に入射させると、屈折率の勾配によって光ビーム
は上下方向、この場合は上向きに偏向される。偏向され
た出射光ビームをB2で、偏向されていない出射光ビー
ムを81でそれぞれ示す。光ビームを下向き偏向するに
は、各ペルチェ素子(2)に流す電流の向きを逆にすれ
ばよい。このような光偏向器では、ペルチェ素子(2)
を結晶(1)の上下面にそれぞれ設けることが必要であ
るため、小型化することが難しくかつ消費電力も多くな
るという問題がある。 発明の概要 この発明は、小型化を図れるとともに少ない電力で比較
的大きな偏向角が18られる光偏向器を提供することを
目的とする。 この発明による光偏向器は、一対の非導電性の伝熱板間
に異種の伝導形の半導体が少なくとも1組設けられかつ
各半導体が伝熱板に固定された接続導体によってN形と
P形とが交互になるように直列に接続されており、この
一対の伝熱板間に、温度によって屈折率が変化する光学
材料が設【プられていることを特徴とする。温度光学効
果をもつ光学材料の代表的なものとしては、ガラス、T
i 02 、Lt Nb Os 、PLZTなどがある
。半導体に電流を流ずと一方の伝熱板に熱の発生が起き
、他方の伝熱板に熱の吸収が起きる。これにより光学材
料の一方の伝熱板に固定されている面が加熱され他方の
伝熱板に固定されている面が冷却される。この結果、光
学材料内に温度勾配が形成され、これにより屈折率勾配
が得られる。光学材料に伝熱板と平行に光ビームを入射
させると、屈折率勾配によって光ビームが偏向される。 光学材料の両面にペルチェ素子をそれぞれ設けた場合は
、各ペルチェ素子の一対の伝熱板のうち光学材料側と反
対側の伝熱板に発生する加熱または冷却用熱エネルギが
無駄になっていた。 この発明による光偏向器では、このような熱工ネルギの
無駄を省くことができるので電力が少なくて済む。また
1対の伝熱板間に、半導体と光学材料とが設けられてい
るので、光学材料の両面にペルチェ素子をそれぞれ設け
た場合に比べて光偏向器を小型化することができる。 実施例の説明 第1図および第2図はこの発明の実施例を示している。 上下一対のセラミック板(3ン間には、その両側部に異
種の伝導形の半導体(4)が複数組設けられているとと
もにその左右中央部に温度によって屈折率が変化する誘
電体結晶、たとえばニオブ酸リチウムの結晶(1)が設
しプられている。各半導体(4)は、セラミック板(3
)に固定された接続導体(図示路)を介してN形とP形
とが交互になるように直列に接続されている。結晶(1
)の上面および下面は、上側のセラミック板(3)の下
面および下側のセラミック板(3)の上面にシリコング
リースを介して密着固定されている。?I[(5)から
、半導体(4)に直流電流を流すと、電流の方向によっ
て一方のセラミック板(3)に熱の発生が起こり、他方
のセラミック板(3)に熱の吸収が起こる。たとえば上
側のセラミック板(3〉に熱の発生を起こさせ、下側の
セラミック板(3)に熱の吸収を起こさせると、結晶(
1)の上面が加熱され、下面が冷却される。この場合に
おける熱伝導の様子を第1図に矢印で示す。 これによって結晶(1)内部に上下方向に温度勾配が発
生し、この温度勾配によって結晶(1)内部に上部の屈
折率が高くなり、下部の屈折率が低くなるような屈折率
の勾配が生じる。結晶(1)の端面から光ビームAをセ
ラミック板(3)に平行に入射させると、屈折率の勾配
によって光ビームは、上向きに偏向される。電流の方向
を逆にして上側のセラミック板(3)に熱の吸収を起こ
させ、下側のセラミック板(3)に熱の発生を起こさせ
ると光ビームは下向きに偏向される。偏向されていない
出射ビームを81で、上向きに偏向された出射ビームを
83でそれぞれ示す。 結晶(1)を両セラミック板(3)間の中央部に設け、
半導体(4)をセラミック板(3)間における結晶(1
)の周囲に設(プるようにしてもよい。この場合には、
光ビームの結晶(1)への入射および出射をさまたげな
いように半導体(4)を設けることが必要である。 4、図面の簡単な説明 第1図および第2図はこの発明の実施例を示し、第1図
は正面図、第2図は斜視図、第3図は誘電体結晶の上下
両面にペルチェ素子がそれぞれ設けられた光偏向器を示
す側面図。 (1)・・・温度光学誘電体結晶、(3)・・・伝熱板
、(4)・・・半導体。 以 上 外4名
1 and 2 show an embodiment of the present invention, FIG. 1 is a front view, FIG. 2 is a perspective view, and FIG. FIG. 7 is a plane view showing the optical deflectors provided with each element force S; (1) - Temperature optical dielectric crystal, (3) - Heat exchanger plate, (4) Fist - Semiconductor. Above, Figure 1, Review of Figure 2, Figure 3, Procedural Amendment (Fube) 1. Indication of the case 1981 Mochiju, J] Application No. 99632
No. 2, Title of the invention Light deflector 3, Relationship to the case of the person making the amendment Patent applicant address 10 Hanazono Tsuchido-cho, Ukyo-ku, Kyoto City Name/designation
(294) Tateishi Electric Co., Ltd. 5, Date of amendment order: Showa 6, Number of inventions increased by the amendment 7, Subject of the amendment: Amendment to the entire specification 1, Name of the invention: Optical deflector 2, Claims (1) At least one set of semiconductors of different types of conductivity is provided between a pair of non-conductive heat exchanger plates, and each semiconductor is connected to an N type and a P type by a connecting conductor fixed to the heat exchanger plate. are connected in series so that they alternate, and between this pair of heat exchanger plates,
An optical deflector equipped with an optical material whose refractive index changes depending on temperature. (2) The optical deflector according to claim 1, wherein the semiconductor is provided on both sides between the heat transfer plates, and the optical material is provided in the center between the heat transfer plates. DETAILED DESCRIPTION BACKGROUND OF THE INVENTION This invention relates to an optical deflector using an optical material whose refractive index changes depending on temperature.It is known that the refractive index of glass or dielectric materials changes depending on temperature. It is conceivable to deflect light using an optical material that produces a thermo-optical effect.In order to obtain a large deflection angle, it is necessary to form a large refractive index gradient inside the optical material, and therefore the optical material It is necessary to form a large temperature gradient inside.In order to obtain such a large temperature gradient,
As shown in Figure 3, optical materials whose refractive index changes depending on temperature, such as lithium niobate (L!, Nb Oa >
A Peltier element (2) is provided on the upper and lower surfaces of the crystal (1), respectively, one Peltier element (2) heats the upper surface (or lower surface) of the crystal (1), and the other Peltier element (2) heats the crystal (1). 1) Cooling the lower surface (or upper surface) can be considered. As is well known, the Peltier element (2) has at least one set of semiconductors (4) of different types of conductivity between a pair of heat exchanger plates (3), and these semiconductors (4) conduct heat transfer. P-type and N-type are connected in series alternately by connecting conductors (paths shown) fixed to the plate (3).When a direct current is passed through the semiconductor (4), one pair Heat is generated in one of the heat exchanger plates (3), and heat is absorbed in the other heat exchanger plate (3).If the direction of the current is reversed, heat generation The heat exchanger plate (3) where heat absorption occurs and the heat exchanger plate (3) where heat absorption occurs are reversed.The heat exchanger plate (3) on the crystal (1) side of the upper Peltier element (2)
), a current is passed from the power supply (5) to this Peltier element (2) so as to generate heat, and the lower Peltier element (2)
When a current is passed from the power source (6) to this Peltier element (2) so as to cause the heat transfer plate (3) on the crystal (1) side to absorb heat, the upper surface of the crystal (1) is heated and the lower surface is cooled. be done. This generates a temperature gradient in the vertical direction inside the crystal (1), and this temperature gradient creates a refractive index gradient inside the crystal (1). In this case, a refractive index gradient occurs in which the refractive index in the upper part of the crystal (1) becomes higher and the refractive index in the lower part becomes lower. When a light beam A is made incident from the end face of the crystal (1) parallel to the upper and lower surfaces of the crystal (1), the light beam is deflected in the vertical direction, in this case upward, due to the gradient of the refractive index. The output light beam that is deflected is indicated by B2, and the output light beam that is not deflected is indicated by 81. In order to deflect the light beam downward, the direction of the current flowing through each Peltier element (2) may be reversed. In such an optical deflector, a Peltier element (2)
Since it is necessary to provide these on the upper and lower surfaces of the crystal (1), there are problems in that it is difficult to miniaturize and the power consumption increases. SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical deflector that can be downsized and provide a relatively large deflection angle with less power. The optical deflector according to the present invention includes at least one set of semiconductors of different types of conductivity between a pair of non-conductive heat exchanger plates, and each semiconductor is connected to an N type and a P type by a connecting conductor fixed to the heat exchanger plate. are alternately connected in series, and an optical material whose refractive index changes depending on the temperature is provided between the pair of heat exchanger plates. Typical optical materials with thermo-optical effects include glass and T.
Examples include i 02 , Lt Nb Os , and PLZT. When no current flows through the semiconductor, heat is generated in one heat exchanger plate, and heat is absorbed in the other heat exchanger plate. As a result, the surface of the optical material fixed to one heat exchanger plate is heated, and the surface fixed to the other heat exchanger plate is cooled. This results in the formation of a temperature gradient within the optical material, which results in a refractive index gradient. When a light beam is incident on an optical material parallel to the heat exchanger plate, the light beam is deflected by the refractive index gradient. When Peltier elements are provided on both sides of the optical material, the heating or cooling thermal energy generated in the heat exchanger plate on the opposite side to the optical material side of the pair of heat exchanger plates for each Peltier element is wasted. . The optical deflector according to the present invention can eliminate such wastage of thermal energy, and therefore requires less electric power. Furthermore, since the semiconductor and the optical material are provided between the pair of heat exchanger plates, the optical deflector can be made smaller than when Peltier elements are provided on both sides of the optical material. DESCRIPTION OF THE EMBODIMENT FIGS. 1 and 2 show an embodiment of the invention. A pair of upper and lower ceramic plates (3) are provided with a plurality of sets of semiconductors (4) of different conduction types on both sides thereof, and a dielectric crystal whose refractive index changes depending on the temperature, for example, in the left and right center portions. A crystal of lithium niobate (1) is provided. Each semiconductor (4) is provided with a ceramic plate (3).
) The N-type and P-type are alternately connected in series through connection conductors (paths shown) fixed to the terminals. Crystal (1
) are closely fixed to the lower surface of the upper ceramic plate (3) and the upper surface of the lower ceramic plate (3) via silicone grease. ? From I[(5), when direct current is passed through the semiconductor (4), heat is generated in one ceramic plate (3) depending on the direction of the current, and heat is absorbed in the other ceramic plate (3). For example, if the upper ceramic plate (3) is made to generate heat and the lower ceramic plate (3) is made to absorb heat, the crystal (
1) The upper surface is heated and the lower surface is cooled. The state of heat conduction in this case is shown by arrows in FIG. This creates a temperature gradient in the vertical direction inside the crystal (1), and this temperature gradient creates a refractive index gradient inside the crystal (1) in which the refractive index in the upper part becomes higher and the refractive index in the lower part becomes lower. . When a light beam A is made parallel to the ceramic plate (3) from the end face of the crystal (1), the light beam is deflected upward due to the gradient of the refractive index. The light beam is deflected downward by reversing the direction of the current, causing the upper ceramic plate (3) to absorb heat and the lower ceramic plate (3) to generate heat. The undeflected output beam is shown at 81, and the upwardly deflected output beam is shown at 83. A crystal (1) is provided in the center between both ceramic plates (3),
The semiconductor (4) is placed between the ceramic plates (3) and the crystal (1)
).In this case,
It is necessary to provide the semiconductor (4) so as not to obstruct the incidence and exit of the light beam into the crystal (1). 4. Brief description of the drawings FIGS. 1 and 2 show an embodiment of the present invention. FIG. 1 is a front view, FIG. 2 is a perspective view, and FIG. 3 is a Peltier device on both upper and lower surfaces of a dielectric crystal. FIG. (1)...Thermo-optical dielectric crystal, (3)...Heat exchange plate, (4)...Semiconductor. 4 people other than the above

Claims (2)

【特許請求の範囲】[Claims] (1) 一対の非導電性の伝熱板間に異種の伝導形の半
導体が少なくとも1組設けられかつ各半導体が伝熱板に
固定された接続導体によってN形とP形とが交互になる
ように直列に接続されており、この一対の伝熱板間に、
温度によって屈折率が変化する光学材料が設けられてい
る光偏向器。
(1) At least one set of semiconductors of different types of conductivity is provided between a pair of non-conductive heat exchanger plates, and each semiconductor is alternately N-type and P-type by a connecting conductor fixed to the heat exchanger plate. They are connected in series, and between this pair of heat exchanger plates,
An optical deflector equipped with an optical material whose refractive index changes depending on temperature.
(2) 半導体が伝熱板間の両側部に設けられ、光学材
料が伝熱板間の中央部に設けられている特許請求の範囲
第(1)項記載の光偏向器。
(2) The optical deflector according to claim (1), wherein the semiconductor is provided on both sides between the heat exchanger plates, and the optical material is provided at the center between the heat exchanger plates.
JP9963284A 1984-05-16 1984-05-16 Optical deflector Pending JPS60242432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9963284A JPS60242432A (en) 1984-05-16 1984-05-16 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9963284A JPS60242432A (en) 1984-05-16 1984-05-16 Optical deflector

Publications (1)

Publication Number Publication Date
JPS60242432A true JPS60242432A (en) 1985-12-02

Family

ID=14252450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9963284A Pending JPS60242432A (en) 1984-05-16 1984-05-16 Optical deflector

Country Status (1)

Country Link
JP (1) JPS60242432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219498A (en) * 2013-05-07 2014-11-20 昭和オプトロニクス株式会社 Optical deflector and laser source including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219498A (en) * 2013-05-07 2014-11-20 昭和オプトロニクス株式会社 Optical deflector and laser source including the same

Similar Documents

Publication Publication Date Title
US3213630A (en) Thermoelectric apparatus
US6043423A (en) Thermoelectric device and thermoelectric module
US4282862A (en) Thin-line collectors
US3626704A (en) Thermoelectric unit
US3240628A (en) Thermoelectric panel
CN102738378A (en) Thermoelectric cluster, method for operating same, device for connecting an active element in said cluster to a thermoelectric drive, generator (variants) and heat pump (variants) based thereon
US5028763A (en) High heat dissipation PTC heater structure
US9470957B2 (en) Optical device
JPH1168173A (en) Heat exchanger using thermoelectric module
JPS60242432A (en) Optical deflector
JPH06151979A (en) Thermoelectric device
Meng et al. Simulation of a thermoelectric module having parallelogram elements
JPS60242434A (en) Optical deflector
JPH0430586A (en) Thermoelectric device
JPS60247627A (en) Optical deflector
JPH0640478Y2 (en) Thermoelectric generator using Zebeck element
CN107065389A (en) A kind of liquid crystal optical phased array device for being resistant to high laser power
JPS60242431A (en) Optical deflector
JPS60247626A (en) Optical deflector
JPS60256123A (en) Optical deflector
JPH0595137A (en) Thermoelectric module
JPS60247625A (en) Optical deflector
JPS62159120A (en) Liquid crystal light valve
JPH01164079A (en) Thermoelectric device
JPS59191001A (en) Variable refractive index distribution type lens