JPS60247627A - Optical deflector - Google Patents

Optical deflector

Info

Publication number
JPS60247627A
JPS60247627A JP10537984A JP10537984A JPS60247627A JP S60247627 A JPS60247627 A JP S60247627A JP 10537984 A JP10537984 A JP 10537984A JP 10537984 A JP10537984 A JP 10537984A JP S60247627 A JPS60247627 A JP S60247627A
Authority
JP
Japan
Prior art keywords
light beam
crystal
refractive index
optical material
relatively large
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10537984A
Other languages
Japanese (ja)
Inventor
Shiro Ogata
司郎 緒方
Junichi Takagi
高木 潤一
Naohisa Inoue
直久 井上
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP10537984A priority Critical patent/JPS60247627A/en
Publication of JPS60247627A publication Critical patent/JPS60247627A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Abstract

PURPOSE:To obtain a relatively large deflection angle by forming an optical material to the thickness thinner on an incident side of a light beam than on the exit side thereof and arrying and disposing plural thermal elements which are used for heating or cooling the optical material and are independently driven in the propagating direction of the light beam. CONSTITUTION:The top and bottom surfaces of a crystal 11 of lithium niobate are formed into the staircase shapes symmetrical with each other in such a manner that the thickness increase stepwise in order of the front part 11a, central part 11b and rear part 11c of the crystal 11. Peltier elements 2a-2c are respectively provided on the top and bottom surfaces. The light beam is deflected upward by the refractive index gradients formed in the parts 11a-11c in the process of propagating in the central part 11b and the rear part 11c. The relatively large temp. gradient and consequently the relatively large refractive index gradient are obtd. in the thinly formed front part 11a and central part 11b.

Description

【発明の詳細な説明】 発明の背景 この発明は温度によって屈折率が変化する光学材料を利
用した光偏向器に関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION This invention relates to an optical deflector using an optical material whose refractive index changes depending on temperature.

ガラスまたは誘電体などの屈折率は、温度によって変化
することが知られている。このような温度光学効果を生
じさせる光学i+J I’ffを用いて光を偏向させる
ことが考えられる。光学材料の温度を変えるICめには
、その表面にNi −Orなどの発熱体やベルチェ素子
を設けることが考えられる。
It is known that the refractive index of glass, dielectric materials, etc. changes depending on temperature. It is conceivable to deflect light using optical i+J I'ff that produces such a thermo-optical effect. For an IC that changes the temperature of an optical material, it is conceivable to provide a heating element such as Ni-Or or a Vertier element on its surface.

第5図は、光学材料の上下面にベルチェ素子がそれぞれ
設けられた光偏向器の例を示している。温度光学効果を
もつ直方体の誘電体結晶、たとえばニオブ酸リチウム(
LiNbC)+)の結晶(1)の上下面にベルチェ素子
(2)がそれぞれ設けられている。ベルチェ素子〈2)
はよく知られているように1対の伝熱板(3)間に異種
の伝導形の半導体(4)が少なくとも1組設けられ、か
つこれらの半導体(4)が伝熱板(3)に固定された接
続導体(図示路)によってP形とN形とが交互になるよ
うに直列に接続されているものである。半導体(4)に
直流電流を流すと、1対の伝熱板(3)のうち一方の伝
熱板(3)に熱の発生、他方の伝熱板(3)に熱の吸収
が起こる。電流の向きを逆にすると、熱の発生の起こる
伝熱板(3)と、熱の吸収が起こる伝熱板(3)とが逆
になる。伝熱板(3)の外面が発熱吸収面である。各ベ
ルチェ素子(2)は一方の伝熱板(3)の発熱吸熱面が
結晶(1)の上面または下面に密着した状態で結晶(1
)に固定されている。各ベルチェ素子(2)の他方の伝
熱板(3)の発熱吸熱面には、放熱吸熱フィン(5)が
固定されている。
FIG. 5 shows an example of an optical deflector in which Vertier elements are provided on the upper and lower surfaces of an optical material. Rectangular dielectric crystals with thermo-optical effects, such as lithium niobate (
Vertier elements (2) are provided on the upper and lower surfaces of the LiNbC)+) crystal (1), respectively. Beltier element <2)
As is well known, at least one set of semiconductors (4) of different types of conductivity is provided between a pair of heat exchanger plates (3), and these semiconductors (4) are connected to the heat exchanger plate (3). The P-type and N-type are alternately connected in series by fixed connection conductors (paths shown). When direct current is passed through the semiconductor (4), heat is generated in one of the pair of heat transfer plates (3), and heat is absorbed in the other heat transfer plate (3). When the direction of the current is reversed, the heat exchanger plate (3) where heat is generated and the heat exchanger plate (3) where heat is absorbed are reversed. The outer surface of the heat exchanger plate (3) is a heat generation absorbing surface. Each Vertier element (2) is connected to the crystal (1) with the heat-generating and endothermic surface of one heat exchanger plate (3) in close contact with the upper or lower surface of the crystal (1).
) is fixed. A heat-radiating and heat-absorbing fin (5) is fixed to the heat-generating and heat-absorbing surface of the other heat exchanger plate (3) of each Vertier element (2).

上側のベルチェ素子(2)の結晶(1)側の伝熱板(3
)に発熱を起こさせるように電源(図示路)からこのベ
ルチェ素子(2)に電流を流し、下側のベルチェ素子(
2)の結晶(1)側の伝熱板(3)に吸熱を起こさせる
ように電源(図示路)からこのベルチエ素子(2)に電
流を流すと、結晶(1)の上面が加熱され、下面が冷却
される。これによって結晶(1)内部にその上下方向に
温度勾配が発生し、この温度勾配によって結晶内部に屈
折率の勾配が生じる。
Heat transfer plate (3) on the crystal (1) side of the upper Vertier element (2)
), a current is passed from the power supply (path shown) to this Beltier element (2) to generate heat, and the lower Beltier element (
When current is passed through this Bertier element (2) from the power source (path shown) so as to cause the heat transfer plate (3) on the crystal (1) side of 2) to absorb heat, the upper surface of the crystal (1) is heated, The lower surface is cooled. As a result, a temperature gradient is generated inside the crystal (1) in the vertical direction, and this temperature gradient causes a refractive index gradient inside the crystal.

この場合は、結晶(1)内部の上部の屈折率が高くなり
、下部の屈折率が低くなるような屈折率勾配が生じる。
In this case, a refractive index gradient occurs in which the refractive index in the upper part of the crystal (1) becomes higher and the refractive index in the lower part becomes lower.

結晶(1)の端面から光ビームAを結晶(1)の上下面
と平行に入射させると、屈折率の勾配によって光ビーム
は上下方向、この場合は上向きに偏向される。偏向され
た出射光ビームを82で、偏向されていない出射光ビー
ムを81でそれぞれ示す。光ビームを下向きに偏向する
には、各ベルチェ素子(2)に流す電流の向きを逆にす
ればよい。
When a light beam A is made incident from the end face of the crystal (1) parallel to the upper and lower surfaces of the crystal (1), the light beam is deflected in the vertical direction, in this case upward, due to the gradient of the refractive index. The output light beam that is deflected is indicated at 82 and the output light beam that is not deflected is indicated at 81. In order to deflect the light beam downward, the direction of the current flowing through each Vertier element (2) may be reversed.

このような光偏向器では、ベルチェ素子(2)の駆動電
流の大きさが同じ場合には、結晶(1)の厚さが薄いほ
ど、結晶(1)内に大きな温度勾配、したがって大きな
屈折率勾配が得られ、大きな偏向角が得られる。しかし
ながら、結晶(1)の厚さを薄くすると、第6図に示す
ように結晶(1)内において光ビームは比較的大きく偏
向されるが、偏向された光ビームが結晶(1)の端面に
到達する前に結晶(1)の上面(または下面)に達して
反射されてしまうという問題がある。
In such an optical deflector, if the driving current of the Bertier element (2) is the same, the thinner the crystal (1) is, the larger the temperature gradient within the crystal (1), and therefore the larger the refractive index. A gradient is obtained and a large deflection angle is obtained. However, when the thickness of the crystal (1) is reduced, the light beam is relatively largely deflected within the crystal (1) as shown in FIG. There is a problem in that the light reaches the upper surface (or lower surface) of the crystal (1) before reaching the crystal (1) and is reflected.

発明の概要 この発明は、比較的大きな偏向角が得られしかも上述の
ような問題を解消した光偏向器を提供することを目的と
する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical deflector that can obtain a relatively large deflection angle and solve the above-mentioned problems.

この発明による光偏向器は、温度によって屈折率が変化
する光学材料の厚さが光ビームの出射側よりも入射側の
方が薄く形成されており、光学材料の上面および下面の
うち少なくとも一方の面上に、光学材料を加熱または冷
却するためのかつ独立して駆動される複数の熱素子が光
ビームの伝搬方向に並んで配置されていることを特徴と
する。温度光学効果をもつ光学材料の代表的なものとし
ては、ガラス、LiNbO2、PLZTなどがある。光
学材料を加熱また(よ冷却するための熱素子としては、
たとえばベルチェ素子、N i Qr 、T ’などの
発熱体がある。
In the optical deflector according to the present invention, the thickness of the optical material whose refractive index changes depending on temperature is formed to be thinner on the incident side of the light beam than on the exit side of the light beam, and at least one of the upper surface and the lower surface of the optical material is formed. It is characterized in that on the surface a plurality of independently driven thermal elements for heating or cooling the optical material are arranged side by side in the direction of propagation of the light beam. Typical optical materials having a thermo-optical effect include glass, LiNbO2, and PLZT. As a thermal element for heating or cooling optical materials,
For example, there are heating elements such as a Vertier element, N i Qr , and T'.

この発明による光偏向器では、光学材料の厚さが光ビー
ムの出射側よりも入射側の方が薄く形成されており、光
学材料の上面および下面のうち少なくとも一方の面上に
複数の熱素子が並んで配置されているから、光学材料内
における光ビーム入射側の部分に比較的大きな温度勾配
(屈折率勾配)が得られる。このため光学材料の光ビー
ム入射側の端面から入射された光ビームは、光学材料内
における光ビーム入射側の部分を伝搬する過程で比較的
大きく偏向されるので、比較的大きな偏向角が得られる
。このように光学材料内の光ビーム入射側の部分で光ビ
ームが比較的大きく偏向されても、光学材料内の光ビー
ム出射側の部分ではその厚さが光ビーム入射側の部分の
厚さよりも厚くなっているので、光学材料内において光
ビームが光ビーム出射側の端面に達するまえに光学材料
の上下面に到達して反射されるといったことがない。
In the optical deflector according to the present invention, the thickness of the optical material is formed to be thinner on the incident side than on the exit side of the light beam, and a plurality of thermal elements are provided on at least one of the upper and lower surfaces of the optical material. Since they are arranged side by side, a relatively large temperature gradient (refractive index gradient) can be obtained in the portion of the optical material on the light beam incident side. Therefore, the light beam incident from the end face of the optical material on the light beam incident side is deflected relatively largely during the process of propagating through the part of the optical material on the light beam incident side, so a relatively large deflection angle can be obtained. . Even if the light beam is deflected relatively largely at the part of the optical material on the light beam entrance side, the thickness of the part of the optical material on the light beam exit side is greater than the thickness of the part on the light beam entrance side. Since it is thick, the light beam does not reach the upper and lower surfaces of the optical material and be reflected before reaching the end face on the light beam exit side within the optical material.

さらにこの発明による光偏向器では光学材料の上面およ
び下面のうち少なくとも一方に複数の熱素子が光ビーム
の伝搬方向に並んで配置されているから、駆動させる熱
素子の数を変化させることによって偏向角を制御するこ
とができる。
Furthermore, in the optical deflector according to the present invention, since a plurality of thermal elements are arranged in line in the propagation direction of the light beam on at least one of the upper and lower surfaces of the optical material, the deflection can be achieved by changing the number of driven thermal elements. The angle can be controlled.

実施例の説明 第1図および第2図はこの発明の第1実施例を示してい
る。第1図において第5図と同じものには同じ符号を付
してその説明を省略する。
DESCRIPTION OF THE EMBODIMENTS FIGS. 1 and 2 show a first embodiment of the invention. Components in FIG. 1 that are the same as those in FIG. 5 are given the same reference numerals and their explanations will be omitted.

この光偏向器では、ニオブ酸リチウムの結晶(11)の
上下面は、結晶(11)の前部分(11a)、中央部分
(11b )および後部分(11c)の順にその厚さが
段階的に厚くなるように互いに対称な段階状に形成され
ている。結晶(11〉の後部分(iib)の厚さは第5
図の光偏向器における結晶(第2図に鎖線1で示す)の
厚さと同じ厚さである。結晶(11)の前部分(Ila
 ) 、中央部分(11b)および後部分(11c )
の上下面にはベルチェ素子(2a > (2b ) (
2c )がそれぞれ設けられている。
In this optical deflector, the thickness of the upper and lower surfaces of the lithium niobate crystal (11) is graded in the order of the front part (11a), central part (11b) and rear part (11c) of the crystal (11). They are formed in symmetrical steps that increase in thickness. The thickness of the rear part (iib) of the crystal (11) is 5th
It has the same thickness as the crystal (indicated by the dashed line 1 in FIG. 2) in the optical deflector shown in the figure. The front part of the crystal (11) (Ila
), central part (11b) and rear part (11c)
Vertier elements (2a > (2b) (
2c) are provided respectively.

結晶(11)の各部分(11a)〜(11C)の上面に
それぞれ設けられたベルチェ素子(2a)〜(2C)に
よって各部分(11a)〜(11C)の上面を加熱し、
各部分(11a )〜(11c )の下面にそれぞれ設
けられたベルチェ素子(2a)〜(2C)によって各部
分(11a)〜(11C)の下面を冷却すると、各部分
(11a )〜(Ilc )内に上下方向に温度勾配が
発生する。この温度勾配によって各部分(11a )〜
(11c )内に上部の屈折率が高くなり、下部の屈折
率が低くなるような屈折率勾配が発生する。屈折率勾配
は、結晶(11)の厚さが薄いほど大きくなるので、各
部分(Ila ) (11b ) (llc )内に発
生する屈折率勾配の大きさは、前部分(11a )内の
ものが最も大きく、中央部分(11b)内のものがその
次に大ぎく、後部分(11c)内のものが最も小さい。
The top surface of each portion (11a) to (11C) is heated by the Vertier elements (2a) to (2C) provided on the top surface of each portion (11a) to (11C) of the crystal (11), respectively;
When the lower surface of each portion (11a) to (11C) is cooled by the Vertier elements (2a) to (2C) provided on the lower surface of each portion (11a) to (11c), each portion (11a) to (Ilc) is cooled. A temperature gradient occurs in the vertical direction. Due to this temperature gradient, each part (11a) ~
A refractive index gradient occurs within (11c) such that the refractive index in the upper part becomes higher and the refractive index in the lower part becomes lower. The refractive index gradient becomes larger as the thickness of the crystal (11) becomes thinner, so the magnitude of the refractive index gradient occurring in each portion (Ila) (11b) (llc) is equal to that in the front portion (11a). is the largest, that in the central portion (11b) is the next largest, and that in the rear portion (11c) is the smallest.

結晶(11)の前部分(11a)の前端面の高さ中央部
付近から光ビームAを前端面に直交する方向に入射させ
ると、光ビームは、前部分(11a)、中央部分(ii
b )および後部分(11c )内を伝搬する過程で、
各部分(11a)〜(11c )内に形成された屈折率
勾配によって上向きに偏向され、後部分(11c )の
後端面からB2で示すように出射される。このように光
ビームは、各部分(11a )〜(,11c )内を伝
搬する過程でそれぞれ上向き偏向されるが、光ビームの
偏向の度合は、前部分(11a )内において最も太き
く、中央部分(1111>内においてその次に大きく、
後部分く11C)内において最も小さい。
When a light beam A is made incident in a direction perpendicular to the front end surface from near the center of the height of the front end surface of the front end surface (11a) of the crystal (11), the light beam enters the front end section (11a), the center section (ii
b) and in the process of propagating within the posterior part (11c),
The light is deflected upward by the refractive index gradient formed in each of the portions (11a) to (11c), and is emitted from the rear end face of the rear portion (11c) as indicated by B2. In this way, the light beam is deflected upward in the process of propagating through each of the sections (11a) to (, 11c), but the degree of deflection of the light beam is greatest in the front section (11a) and at the center. The next largest part (1111>)
It is the smallest in the rear part 11C).

光ビームを下向きに偏向するには、結晶(11)の各部
分(lla )〜(llc )の上面に設けられたベル
チェ素子(2a)〜(2G)に流す電流と、各部分(1
1,1)〜(11c )の下面に設けられたベルチェ素
子(2a)〜(2C)に流す電流の向きを逆にすればよ
い。下向きに偏向された出射光ビームをB3で示す。
In order to deflect the light beam downward, a current is applied to the Vertier elements (2a) to (2G) provided on the upper surface of each part (lla) to (llc) of the crystal (11), and a current is applied to each part (11).
The direction of the current flowing through the Vertier elements (2a) to (2C) provided on the lower surfaces of the elements 1, 1) to (11c) may be reversed. The downwardly deflected output light beam is indicated by B3.

この光偏向器では、結晶(11)の中央部分(iib 
)の厚さが後部分(11c )の厚さよりも薄く形成さ
れ、前部分(11a )の厚さが中央部分(11b )
の厚さよりさらに薄く形成されているので、前部分(1
1a)および中央部分(11b)に比較的大きな温度勾
配、したがって比較的大きな屈折率勾配が得られる。こ
のため、結晶(11)の前部分(Ila )の前端面か
ら入射され光ビームは前部分(11a )および中央部
分(11b)内を伝搬する過程で比較的大きく偏向され
る。このため大きな偏向角が得られる。このように光ビ
ームが結晶(11)の前部分(lla)および中央部分
(11b )内を伝搬する過程で比較的大きく偏向され
ても、中央部分(llb )の厚さは前部分(11a 
)の厚さより厚く形成され、後部分(11c )の厚さ
は中央部分(11b )の厚さよりも厚く形成されてい
るので、結晶(11)内において光ビームが結晶(11
)の後端面に到達するまでに結晶(11)の上下面に達
して反射されてしまうということがない。上記のように
比較的大きな偏向角が得られるということは、ベルチェ
素子への供給電流を小さくしても比較的大きな偏向角が
得られることを意味し、低電力の光偏向器が実現する。
In this optical deflector, the central part (iib
) is formed to be thinner than the rear portion (11c), and the front portion (11a) is thinner than the central portion (11b).
Since it is formed thinner than the thickness of the front part (1
A relatively large temperature gradient and therefore a relatively large refractive index gradient is obtained in 1a) and the central part (11b). Therefore, the light beam incident from the front end face of the front portion (Ila) of the crystal (11) is relatively largely deflected while propagating within the front portion (11a) and the central portion (11b). Therefore, a large deflection angle can be obtained. In this way, even if the light beam is relatively largely deflected in the process of propagating in the front part (lla) and the central part (11b) of the crystal (11), the thickness of the central part (llb) is the same as that of the front part (11a).
), and the rear portion (11c) is formed thicker than the central portion (11b), so that the light beam within the crystal (11)
) will not reach the upper and lower surfaces of the crystal (11) and be reflected. Obtaining a relatively large deflection angle as described above means that a relatively large deflection angle can be obtained even if the current supplied to the Bertier element is reduced, and a low-power optical deflector is realized.

また、この光偏向器では、結晶(11)の各部分(ll
a)〜(11G)の上下面に設けられた3組のベルチェ
素子(2a〉〜(2c)のうち、電流を流すベルチェ素
子の組数を変えることによって偏向角を変化させること
が可能である。
In addition, in this optical deflector, each part (ll
Among the three pairs of Beltier elements (2a> to (2c)) provided on the upper and lower surfaces of a) to (11G), it is possible to change the deflection angle by changing the number of pairs of Beltier elements through which current flows. .

すべてのベルチェ素子(2a)〜(2c)に電流を流し
ていない場合の出射光ビームを81、前部分(11a 
)に設けられたベルチェ素子(2a)のみに電流を流し
て光ビームを上向ぎまたは下向きに偏向させた場合の出
射光ビームを821、B31、後部分(11c)ニ設ケ
ラレタヘルチェ素子(2C)を除いて前部分(11a 
)および中央部分(Ilb )に設けられたベルチェ素
子(2a ) (2c )に電流を流して光ビームを上
向きまたは下向きに偏向させた場合の出射光ビームを8
22、B32でそれぞれ示す。
The output light beam when no current is flowing through all the Vertier elements (2a) to (2c) is 81, and the front part (11a
) The output light beam when the light beam is deflected upward or downward by applying a current only to the Vertier element (2a) provided in the rear part (11c) is 821, B31, and the rear part (11c) has two vignetting Hertier elements (2C). The front part (11a
) and the center portion (Ilb) of the Vertier elements (2a) (2c) to deflect the light beam upward or downward, the output light beam is
22 and B32, respectively.

第3図および第4図はこの発明の第2実施例を示してい
る。この光偏向器は、光ビームを上向きにのみ偏向させ
るものであるため、結晶(12)の上面のみが段階状に
形成されている。
3 and 4 show a second embodiment of the invention. Since this optical deflector deflects the light beam only upward, only the upper surface of the crystal (12) is formed in a stepwise manner.

このように上面が段階状に形成されることによって、結
晶(12)の厚さが前部分(12a)、中央部分(12
b)、後部分(12C)の順に段階的に厚く形成されて
いる。結晶(12)の後部分(12c)の厚さは、上述
のようにこの光偏向器が光ビームを上向きのみに偏向さ
せるものであることから、第1実施例の光偏向器におけ
る結晶(11)の後部分(11c)の厚さのほぼ半分の
厚さに形成されている。
By forming the upper surface in steps in this way, the thickness of the crystal (12) is reduced between the front part (12a) and the central part (12).
b), and the rear portion (12C) is formed to be thicker in steps. The thickness of the rear portion (12c) of the crystal (12) is the same as that of the crystal (11 ) is formed to have a thickness approximately half that of the rear portion (11c).

結晶(12)の各部分(12a ) 〜(12c )の
上面には、発熱体(6a)〜(6G)がそれぞれ形成さ
れている。発熱体(6a〉〜(6C〉は、たとえばNi
 −Cr N Tiが各部分(12a)〜(12c)の
上面に真空蒸着されることによって形成される。発熱体
(6a)〜(6C)に電流を流して発熱体(6a)〜(
6C〉を発熱させることによって、結晶(12)の各部
分(12a)〜(12C>内に上下方向に温度勾配が形
成され、この温度勾配により屈折率勾配が形成される。
Heating elements (6a) to (6G) are formed on the upper surface of each portion (12a) to (12c) of the crystal (12), respectively. The heating elements (6a> to (6C>) are, for example, Ni
-CrNTi is formed by vacuum deposition on the top surface of each portion (12a) to (12c). A current is passed through the heating elements (6a) to (6C) to heat the heating elements (6a) to (6C).
6C> generates heat, a temperature gradient is formed in the vertical direction within each portion (12a) to (12C>) of the crystal (12), and this temperature gradient forms a refractive index gradient.

結晶(12)の前部分(12a)の前端面から光ビーム
八を入射させると、光ビームは各部分(12a)〜(1
2C)を伝搬する過程で上向きに偏向され後部分(12
c)の後端面から82で示すように出射される。
When the light beam 8 is incident from the front end surface of the front part (12a) of the crystal (12), the light beam 8 enters each part (12a) to (1
2C) is deflected upward in the process of propagating, and the rear part (12
c) The light is emitted from the rear end face as shown at 82.

この光偏向器においても、第1実施例と同様に、結晶(
12)の中央部分(12b)の厚さが後部分(12c)
の厚さよりも薄く形成され、前部分(12a)の厚さが
中央部分(12c)の厚さよりも薄く形成されているの
で、比較的大きな偏向角が得られるとともに、結晶(1
2)内を伝搬する光ビームが後端面に達するまでに結晶
(12)の上面に到達して反射されることがないという
利点がある。また電流を流す発熱体(6a)〜(6C)
の数を変えることによって偏向角を変化させることも可
能である。すべての発熱体(6a)〜(6C)に電流を
流1ノでいない場合の出射光ビームを81、前部分(1
2a)に設けられた発熱体(6a)のみに電流を流した
場合の出射光ビームを821、前部分(12a )およ
び中央部分(12b)に設番プられた2つの発熱体(6
a ) (6b )に電流を流した場合の出射光ビーム
を82でそれぞれ示す。
In this optical deflector as well, the crystal (
12) The thickness of the central part (12b) is the same as that of the rear part (12c).
Since the front portion (12a) is formed thinner than the central portion (12c), a relatively large deflection angle can be obtained, and the crystal (1
2) There is an advantage that the light beam propagating therein does not reach the upper surface of the crystal (12) and be reflected before reaching the rear end surface. Also, heating elements (6a) to (6C) that flow electric current
It is also possible to change the deflection angle by changing the number of . The output light beam when the current is not flowing through all the heating elements (6a) to (6C) is 81, and the front part (1
The output light beam when a current is passed only through the heating element (6a) provided in 2a) is 821, and the two heating elements (6a) installed in the front part (12a) and the center part (12b) are
The emitted light beams when a current is applied to a) and (6b) are shown at 82, respectively.

上記実施例では、結晶は厚さの異なる3つの ・部分か
ら構成されているが、光ビームの入射側に近い部分はど
厚さが小さくなるようになっていれば2つまたは4つ以
上の部分から構成されるようにしてもよい。また結晶の
上下両面また−は一方の面を傾斜面または曲面に形成す
ることによって結晶の厚さが光ビームの入射側から出射
側にいくにしたがって連続的に大きくなるようにしても
よい。さらに光ビームの伝搬方向に並んで配置される熱
素子の数は、3つに限らず任意の数だけ設けることがで
きる。
In the above embodiment, the crystal is composed of three parts with different thicknesses, but if the thickness of the part closer to the light beam incidence side is smaller, then the crystal has two or more parts. It may be made up of parts. Alternatively, the thickness of the crystal may be made to increase continuously from the incident side to the exit side of the light beam by forming both the upper and lower surfaces of the crystal, or one side thereof, into an inclined surface or a curved surface. Further, the number of thermal elements arranged in parallel in the propagation direction of the light beam is not limited to three, but any number can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の第1実施例を示し、第
1図は側面図、第2図は誘電体結晶を示す斜視図、第3
図および第4図はこの発明の第2実施例を示し、第3図
は側面図、第4図は誘電体結晶を示す斜視図、第5図は
直方体誘電体結晶の上下面にペルチェ素子が設けられた
光偏向器の例を示す斜視図、第6図は第5図の誘電体結
晶の厚さを薄くした場合の光ビームの伝搬の様子を示す
図である。 (2a ) 〜(2c >−・・ペルチェ素子、(6a
)〜(6C)・・・発熱体、(11) (12)・・・
温度光学誘電体結晶。 以 上 外4名 第3図 5 第4図
1 and 2 show a first embodiment of the present invention, in which FIG. 1 is a side view, FIG. 2 is a perspective view showing a dielectric crystal, and FIG. 3 is a perspective view showing a dielectric crystal.
3 and 4 show a second embodiment of the present invention, FIG. 3 is a side view, FIG. 4 is a perspective view showing a dielectric crystal, and FIG. 5 shows Peltier elements on the upper and lower surfaces of a rectangular parallelepiped dielectric crystal. FIG. 6 is a perspective view showing an example of the provided optical deflector, and FIG. 6 is a diagram showing the state of propagation of the light beam when the thickness of the dielectric crystal shown in FIG. 5 is made thinner. (2a) ~(2c >-... Peltier element, (6a
) ~ (6C)... Heating element, (11) (12)...
Temperature-optical dielectric crystal. Figure 3 5 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 温度によって屈折率が変化する光学材料の厚さが光ビー
ムの出射側よりも入射側の方が薄く形成されており、光
学材料の上面および下面のうち少なくとも一方の面上に
、光学材料を加熱または冷却するためのかつ独立して駆
動される複数の熱素子が光ビームの伝搬方向に並んで配
置されている光偏向器。
The optical material whose refractive index changes depending on the temperature is formed thinner on the incident side of the light beam than on the exit side, and the optical material is heated on at least one of the upper and lower surfaces of the optical material. or a light deflector in which a plurality of independently driven thermal elements for cooling are arranged side by side in the direction of propagation of the light beam.
JP10537984A 1984-05-23 1984-05-23 Optical deflector Pending JPS60247627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10537984A JPS60247627A (en) 1984-05-23 1984-05-23 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10537984A JPS60247627A (en) 1984-05-23 1984-05-23 Optical deflector

Publications (1)

Publication Number Publication Date
JPS60247627A true JPS60247627A (en) 1985-12-07

Family

ID=14406044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10537984A Pending JPS60247627A (en) 1984-05-23 1984-05-23 Optical deflector

Country Status (1)

Country Link
JP (1) JPS60247627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7729041B2 (en) 2006-11-10 2010-06-01 Seiko Epson Corporation Electro optic device, method of manufacturing electro optic device, and scanning type optical apparatus
CN111427215A (en) * 2020-03-25 2020-07-17 天津大学 Method for manufacturing array electric control optical deflector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7729041B2 (en) 2006-11-10 2010-06-01 Seiko Epson Corporation Electro optic device, method of manufacturing electro optic device, and scanning type optical apparatus
CN111427215A (en) * 2020-03-25 2020-07-17 天津大学 Method for manufacturing array electric control optical deflector

Similar Documents

Publication Publication Date Title
US4253739A (en) Thermally compensated mirror
US6043423A (en) Thermoelectric device and thermoelectric module
US3708223A (en) Cooled mirrors
EP0206220A2 (en) Higher harmonic generator
US9470957B2 (en) Optical device
CN211151052U (en) Laser device
JPS60247627A (en) Optical deflector
US7476038B2 (en) Optical device module
JPS60242434A (en) Optical deflector
US20230221083A1 (en) Radiative heatsink
JP2681278B2 (en) Solid-state laser device
JP4359105B2 (en) Liquid crystal panel device
JPH0430586A (en) Thermoelectric device
JPS60247626A (en) Optical deflector
CA1109553A (en) Fluid laser flow channel liner
JPS60247625A (en) Optical deflector
JPS60242432A (en) Optical deflector
JPS60242431A (en) Optical deflector
JP2588931B2 (en) Solid state laser
Jang et al. A thin-film polymeric waveguide beam deflector based on thermooptic effect
JPS60256123A (en) Optical deflector
JP3154689B2 (en) Semiconductor laser pumped slab solid-state laser device.
JPH06174249A (en) Optical and thermal complex panel
JPS60242433A (en) Optical deflector
JP4997481B2 (en) Light switch