JPS60256123A - Optical deflector - Google Patents

Optical deflector

Info

Publication number
JPS60256123A
JPS60256123A JP11280684A JP11280684A JPS60256123A JP S60256123 A JPS60256123 A JP S60256123A JP 11280684 A JP11280684 A JP 11280684A JP 11280684 A JP11280684 A JP 11280684A JP S60256123 A JPS60256123 A JP S60256123A
Authority
JP
Japan
Prior art keywords
heat
crystal
optical
heat transfer
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11280684A
Other languages
Japanese (ja)
Inventor
Shiro Ogata
司郎 緒方
Junichi Takagi
高木 潤一
Naohisa Inoue
直久 井上
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP11280684A priority Critical patent/JPS60256123A/en
Publication of JPS60256123A publication Critical patent/JPS60256123A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To utilize heat energy effectively and to obtain a large angle of deflection with low electric power by providing a heat conducting member which forms a heat conduction path between a heat element and a surface of an optical material which corresponds to the propagation part of a light beam. CONSTITUTION:A heat radiation fin 3 is fitted onto the top surface of a rectangular-prism crystal of lithium niobate which varies in refractive index with temperature across the heat conducting member 4 for stopping down heat flux, and the heating body 2 is fitted to the reverse surface through the heat conducting member 4. The heating body 2 is formed of, for example, Ni-Cr by vacuum deposition. Therefore, heat generated by the heating body 2 is conducted concentrically to the center part of the crystal 1. Consequently, a relatively large temperature gradient is formed at the center part in the crystal 1, so the heat energy is utilized effectively to obtain the large angle of deflection with low electric power.

Description

【発明の詳細な説明】 発明の背景 この発明は温度によって屈折率が変化する光学材料を利
用した光偏向器に関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION This invention relates to an optical deflector using an optical material whose refractive index changes depending on temperature.

 1− ガラスま1.mは誘電体などの11iIn率は、温度(
、二J、って変化りることか知られている。このJ、゛
)な湯度光学9)+東を牛じさ14る光学材114用い
(光を偏向さUることが考えられる1、光学材料の温度
を変えるためには、ぞの表面にN1Grなとのft熱1
4、\ジペルブ1素了を設(〕ることが貨えら1する。
1- Glass 1. m is the 11iIn rate of the dielectric material, etc., is the temperature (
, 2J, is known to change. This J, ゛) temperature optics 9) + optical material 114 with the east side 14 (it is possible to deflect the light 1, in order to change the temperature of the optical material, N1Gr on the surface) nato's ft heat 1
4. It is worth 1 to set up \ Ziperub 1 soryo.

第5図おJ、び第0図は、1品1u光学効果を6つA′
4学祠料を利用した光偏向器の例を示しくいる。
Figures 5, J, and 0 show six 1u optical effects for one product A'
An example of an optical deflector using the 4th grade amulet will be shown below.

温度光学効果をもつ誘電体結晶、Iことえば二Aブ酸す
ヂウム(1:Nb03)の結晶(])の下下面体に発熱
体(2)たとえばNi□rが形成されている。結晶〈1
)の」−面には敢然フィン(3)が毅りられている。
A heating element (2), such as Ni□r, is formed on the lower surface of a dielectric crystal having a thermo-optical effect, such as a crystal (]) of sodium dibutate (1:Nb03). Crystal〈1
)'s '- side has a bold fin (3).

発熱体(2)に電源(図示路)にJ、 7)で電流が流
されると、発熱体(2)が発熱し、結晶−9− (1)のト面が加熱される。熱は矢印ぐ示JJ、うに結
晶(1〉の内部に面かつて熱伝導し、結晶〈1)の−1
而にRUIJられた発熱フィン(3)を介しく空気中に
拡散される。これにJ、って結晶(1)内部にに上方向
に温庶勾配が発イ[シ、このlfj度勾配によ−)で結
晶(1)内に屈折率の勾配がイ1しる。結晶く1)の仝
i:而の中央部から光じ一ム△を結晶(1)の1−下面
に! ?−Jに入射さUるど、l1ii JJi率の勾
配に」、つて光ビーl\は上手方向、この例では下向き
に偏向される。偏向されIご出q・1光ビームをBで示
す。
When a current is passed through the heating element (2) through the power source (path shown) at J, 7), the heating element (2) generates heat, and the top surface of the crystal -9- (1) is heated. Heat is conducted as shown by the arrow JJ, within the surface of the sea urchin crystal (1), and -1 of the crystal (1)
The heat is then diffused into the air via the RUIJ heating fins (3). In addition, an upward temperature gradient J occurs within the crystal (1) (Due to this lfj degree gradient), a refractive index gradient occurs within the crystal (1). Crystal number 1): A beam of light △ from the center of crystal 1) to the 1-bottom surface of crystal number 1! ? -J, the light beam l\ is deflected upward, in this example downward, due to the gradient of the l1ii JJi rate. The deflected and output q·1 light beam is indicated by B.

この光偏向器では、光ビーl\が結晶(1)内の幅中央
部を伝搬しているのに対し、発熱体(2)に光/lした
熱は結晶〈1)内の全部分に(まば均一に熱It、 ’
r9されているので、熱二Iネルギの無駄が多く、冗ビ
ーl\の偏向角が比較的小さいという問題がある。
In this optical deflector, the light beam l\ propagates in the center of the width within the crystal (1), while the heat emitted by the light/l to the heating element (2) is distributed throughout the entire part of the crystal (1). (It heats up evenly,'
9, there is a problem that a lot of heat energy is wasted and the deflection angle of the red beam is relatively small.

発明の概昔 この発明(i、熱1ンル1゛を有効に利用(さ、しlこ
がって比◆☆的低電力C比軸的釣人くL偏向角が得られ
る光偏向器を捉flu iJることをII的ど1する。
About the invention This invention (i. Effective use of 1 liter of heat) was developed to develop an optical deflector that can obtain a relatively low power C ratio axial angle L deflection angle. Flu iJ and so on.

この発明に」、る光偏向器1、(、iムA1見(、−」
、−> < II+11114tが変化りる光学材料の
少イエクと6−表面1に、光学材料を加熱;t /jは
冷7JI IJるl、めの熱素子が設(Jられている光
偏向:るにおいて、1記光学+A Flの1記表面で・
あ〜)で光学+A tl内の光ビームの(ム歴部分にλ
I l、i5 Jる表面部分と1記熱系rの梵熱よlご
は吸熱面全体どの間に、熱(I、路を形成りる伝熱部口
が設置JられCいることを11J徴とJる。
In accordance with this invention, the optical deflector 1 (, im A1 (, -)
, ->< II + 11114t is a change in the optical material and 6 - on the surface 1, the optical material is heated; In the above, on the surface of 1. optical + A Fl,
λ in the (mu history part) of the light beam in the optical + A tl
I, i5 The heat transfer part forming the heat path is installed between the surface part of the heat absorption surface and the heat absorption surface. Sign and J.

慇1α光学効宋をし−)光学月利の代表的’f bの−
3− としU 11、ガラス、Ti Q2 、 l−i N 
boa、r) 17 Tなどがある。光学4A r+1
を加熱または冷j4しJるための熱水rとしては、Iこ
とえばNi−0「゛、i−iなどの発熱体、ペルヂ丁累
了がある。
慇1α Optical Effect Song Dynasty -) Representative 'fb' of Optical Monthly -
3- Toshi U 11, glass, Ti Q2, l-i N
boa, r) 17 T, etc. Optics 4A r+1
As hot water for heating or cooling, there are heating elements such as Ni-0 and I-i, and pers.

熱系Yの弁熱まlcは吸熱面の人ぎさは通富、熱素子が
設置Jられる光学4N IIの表面の大きざと同じかま
たはぞれ1メ1−の人きさであることが多い。
The size of the heat absorbing surface of the valve heat of the thermal system Y is often the same as the size of the surface of the optical 4N II on which the thermal element is installed, or the size of each 1 meter 1-. .

この発明にJ、る光偏向器では、光学材料の光学(41
1内の光ビームの伝搬部分に対応する表面部分と1記熱
累了の発熱または吸熱面全体との間に、熱伝路を形成J
伝熱部材が設(」られているから、光学材料の表面にお
1〕る光学材itl内の光ビームの伝搬部分に対応Mる
表面部分が伝熱部材を介し″(加熱、したは冷IJ1さ
れる。しlこがって、熱は光学材11内の光ビームの伝
搬部分に集中的tこIr、 i%される。このため、光
学IA別の表面−4− 仝休が熱系r1.: J、つてハ11熱まIこはi’+
i IJIされる場合に較べて光学(1月内の光じ−1
いの(1,搬部分に比較的太さくr、 f品庶勾配が形
成され、この温1μ勾配に」、って比較的太さイr I
++l lli率勾F11! /)< tilらねるの
ぐ、比較的太さへ偏向角が1qられる。このことtよま
た、熱素子への供給電流を小さくしてb比す☆釣人き/
r Ili向角がjItられることを愚昧し、イ1(電
力の光偏向器が実現4る。
In the optical deflector according to this invention, optical materials (41
A heat transfer path is formed between the surface portion corresponding to the propagation portion of the light beam in 1 and the entire heat generating or endothermic surface of 1.
Since the heat transfer member is provided, the surface portion M corresponding to the propagation portion of the light beam in the optical material itl on the surface of the optical material is heated or cooled via the heat transfer member. Therefore, the heat is concentrated in the propagation part of the light beam in the optical material 11. Therefore, the heat is System r1.: J, Tsuteha 11 Netsuma I Koha i'+
i Compared to the case of IJI, optical (light within January -1
Ino (1, relatively thick r, f product gradient is formed in the conveyance part, and this temperature 1 μ gradient is relatively thick r I
++l lli rate gradient F11! /) < til the deflection angle is increased by 1q to make it relatively thick. From this point, we can also reduce the current supplied to the thermal element and compare it to b.
It is assumed that r Ili direction angle is jIt, and I1 (power optical deflector is realized).

熱素子の発熱よたは1νに熱面が光学+A IIの表面
にJ31Jる光学材わ1内の尤じ−11の1〕1搬部5
)に対応Jる表面部分J、すし人さい場合に(ま、この
発明にJ、る光偏向器では熱系−rの発熱、1、/Jt
、L吸熱面全体に発生した加熱、L /Jμ冷JJI用
熱[ネルへ゛を、光学材i+:+の表面にJ’; +)
る光学材1’l内の光ビームの伝搬部分を加熱まIごは
iθIJIりる1ネル1゛どして有効に利用でさる。
The heating surface of the thermal element is 1ν, and the thermal surface is J31J on the surface of the optical +A II.
) corresponding to the surface portion J, when the sushi person is (well, in this invention J, in the optical deflector, the heat generation of the thermal system -r, 1, /Jt
, L Heating generated on the entire endothermic surface, L /Jμ Heat for cold JJI [J' to the surface of the optical material i+:+]
The propagation portion of the light beam within the optical material 1'l can be heated and effectively utilized by iθIJI channel 1.

−(1− 実施例の説明 第1図および第2図は、この発明の第1実施例を示しC
いる。二Δブ酸すヂウムの直jj体の結晶(1)の上面
および下面に放熱フィン(3)おJ:び発熱体(2)が
銅製の熱流絞り用伝熱部材(4)を介してそれぞれ設り
られている。下側の伝熱部+J(/l)は、その横断面
が矩形でかつ上方にいり(マど横断面の人ぎさが小さく
なる6面体に形成されている。この伝熱部+J(/1)
の上面は、その長さが結晶(1)の良さとほぼ等しく、
その幅が光ビームへの径より少し人ぎな長ざ(この長さ
は結晶(1)の幅よりも小さい)に形成されている。そ
して、伝熱部材(4)の上面が結晶(1)の下面の幅中
央部に固定されている。発熱体〈2)はこの伝熱部vU
(/I)の下面全体に形成されている。発熱体(2〉は
lことえばNiCr゛を伝熱部材(71)の1・面に真
空蒸着JることにJ、り形成される。
-(1- Description of Embodiment Figures 1 and 2 show a first embodiment of the present invention.
There is. Radiation fins (3) and heating elements (2) are attached to the upper and lower surfaces of a rectangular crystal (1) of di-Δsodium butyl oxide through copper heat flow restricting heat transfer members (4), respectively. It is set up. The lower heat transfer section +J (/l) has a rectangular cross section and is formed into a hexahedron that extends upward (the cross section of the center is less crowded. This heat transfer section +J (/1 )
The length of the upper surface of is almost equal to the length of crystal (1),
Its width is slightly longer than the diameter of the light beam (this length is smaller than the width of the crystal (1)). The upper surface of the heat transfer member (4) is fixed to the width center portion of the lower surface of the crystal (1). The heating element (2) is this heat transfer part vU
(/I) is formed on the entire lower surface. The heating element (2) is formed by vacuum-depositing NiCr on the first surface of the heat transfer member (71).

−に側の熱流絞り川伝熱部+A (4)は、1記l・側
の伝熱部材(/I)を1−十反対にしlこ形状ぐあり、
ぞの下面が結晶(1)の幅中央部に固定されている。イ
してこの伝熱部材(/I)の1面金体【こ放熱フィン(
3)が設(Jられ(いる3゜発熱体く2)に電流が流さ
れると発熱(4,(2)が発熱Jる。この熱(,1矢印
C示IIJ、うに、l・側の熱流絞り用伝熱部+A(/
I)を伝尊し【結晶(1)の下面の幅中央部に伝えられ
る3、結晶(1)の下面の幅中央部に伝えられた熱は、
結晶(1)内部の幅中央部を仏尊し、結晶(1)の1面
の幅中央部から1−側の熱流絞り用伝熱部材(/1)に
伝導してb’l熱ツイン(3)を介して空気中に/+9
敗される。このJ、′)に発熱体(2)−/− で発生した熱が、1・側の伝熱部材(4)によって結晶
(1)上面の幅中央部に伝えられ、上側の伝熱部材(7
I)ににって結晶(1)上面の幅中央部から放熱されや
づくなっているので、発熱体(2)に発生した熱が結晶
(1)内の幅中央部に集中的に伝導される。このたV)
、結晶(1)内部の幅中央部分に比較的大きな温度勾配
が形成され、この温度勾配によって比較的大きな屈折率
勾配が形成される。
- The heat flow constrictor heat transfer part +A on the side (4) is a rectangular shape with the heat transfer member (/I) on the side 1-1 opposite to 1-10,
The lower surface of the groove is fixed to the center of the width of the crystal (1). One side metal body of this heat transfer member (/I) [this heat dissipation fin (
3) is set up (3° heating element 2), heat is generated (4, (2) is heated. Heat transfer part +A for heat flow restriction (/
The heat transferred to the center of the width of the lower surface of crystal (1) is transmitted to the center of the width of the lower surface of crystal (1).
The center width of the crystal (1) is placed inside the crystal (1) and conducts from the center of the width of one side of the crystal (1) to the heat flow restriction heat transfer member (/1) on the 1- side to form a b'l thermal twin (3 ) into the air via /+9
be defeated. The heat generated by the heating element (2) -/- in this J,') is transmitted to the center of the width of the upper surface of the crystal (1) by the heat transfer member (4) on the 1 side, and 7
I), the heat is radiated from the center of the width of the top surface of the crystal (1), so the heat generated in the heating element (2) is conducted intensively to the center of the width of the crystal (1). Ru. KonataV)
, a relatively large temperature gradient is formed at the center width inside the crystal (1), and this temperature gradient forms a relatively large refractive index gradient.

したがって結晶(1)の端面の幅中央部から光ビームA
を伝尊部祠(4)の結晶(1)に固定されている面に平
行に入(ト)さけると、光ビームは上記屈折率勾配によ
って結晶(1)内を伝wJツる過程で下向きに比較的大
きく偏向され、他方の端面から8で示t J:うに出用
される。光ビームが比較的大きく偏向さるということは
、 9− 一 〇 − 発熱体(2)へのIt給雷電流小さクシ(シ比較釣人ぎ
41−面角が冑られるということを組味し、低電力の光
偏向器が実現りる。
Therefore, the light beam A from the center of the width of the end face of the crystal (1)
When the light beam enters parallel to the plane fixed to the crystal (1) of the shrine (4), the light beam will be directed downward as it travels through the crystal (1) due to the refractive index gradient. It is deflected relatively largely and is exposed at 8 from the other end surface. The relatively large deflection of the light beam means that the lightning current to the heating element (2) is small, taking into account that the plane angle is increased. A power optical deflector is realized.

第3図および第4図(、【この発明の第2実施+Klを
示している。この光偏向器においCb、第1実施例と同
様に結晶(1)の11・面に熱流絞り用伝熱部材(/l
)がイれぞれ設()られ(いる3゜熱流絞り川伝熱部+
4</I)の形4)<は第1実施例の熱流絞り用伝熱部
材(4)の形状と(,1ば同じであるが、側面の1一端
部ど1・Q誓“シ部とが翰rjl +(++ (・はな
く鉛直面に形成されているj:、(が第1実施例のbの
ど異4f−)χいる。、1側の熱流絞り用伝熱部材(4
)の平面おJ、σ十l1111の熱流較V〕用tz+熱
部vU(/l)の平面には、ペルー1f索了に))がそ
れぞれ設()られている。
Figures 3 and 4 (showing the second embodiment of the present invention + Kl. In this optical deflector, Cb is used for heat flow restriction on the 11-face of the crystal (1) as in the first embodiment. Parts (/l
) are respectively installed (3° heat flow restricting river heat transfer part +
The shape 4) of 4</I) is the same as the shape of the heat transfer member (4) for heat flow restriction of the first embodiment (, 1), but the 1 end of the side surface and the + (++ (J is formed on the vertical surface instead of ・), (difference between b and throat in the first embodiment is 4f-)
) is provided on the plane of the heat flow comparison V of σ1111 tz + heat section vU (/l), respectively.

ベルブl累了(艷))はJ、く知られ(いるJ、゛う一
*n − に一対の伝熱板(6)間に冑秤の伝力形のTカ体(7)
が少なくどし1組設(Jられ、かつこれらの1’ 4体
(7)が伝熱1fj(6)に固定されlこ接続414(
図小路)にJ、−、)(P形とN形とが交ljになるJ
、うに直列に接続されている60′Cある。゛I′力休
(体)に直流電流を流り−と一対の伝熱板〈(3)のう
Iう一方の伝熱板(6)に熱の介/l、1出1j(f:
伝熱数(6)に熱の吸+15!が起こる。
Bellburi's completion (艷) is J, well-known (J, ゛1*n -), and there is a T body (7) in the shape of a power transmission between a pair of heat exchanger plates (6).
are assembled into at least one assembly (J), and these 1'4 bodies (7) are fixed to the heat transfer 1fj (6) and connected 414 (
J, -, ) (J where P type and N type intersect lj
, 60'C are connected in series.゛A direct current is passed through the power supply (body) and a pair of heat exchanger plates (3) and the other heat exchanger plate (6) receives heat through /l, 1output 1j (f:
Heat absorption +15 to heat transfer number (6)! happens.

電流の向きを逆にすると、熱の発41の起こる伝熱板(
6) 、t、熱のltl>収が起こる伝熱板(6)とが
逆に4〔る。(ム熱扱(6)の外面が発熱吸熱面て゛あ
る。各ベルf+素了(5)(ま、−/’rの1人熱根(
6)の光熱吸熱面が1−側の熱流絞り用伝熱部4.4 
(4)の1面s1″たはド側の熱流絞り川伝熱部+4 
(4)の土面に密着した状態(゛各熱流較り用)バ熱部
+4(4)に固定されている。各ベルヂr is −1
” (!−1) ノll!!jJノfieAOz (E
: ) r/)qpalN2Pla面には、敢然111
&熱フィン(3)が、IJられ(いる。
When the direction of the current is reversed, the heat exchanger plate (
6) , t, the heat exchanger plate (6) where heat ltl>contraction occurs is oppositely 4[. (The outer surface of the heat-generating surface (6) is the heat-generating and endothermic surface.Each bell f + elemental heat (5) (well, -/'r's one heat root (
6) The heat transfer part 4.4 for heat flow restriction whose light heat absorption surface is on the 1- side
(4) 1 side s1'' or side heat flow constrictor heat transfer part +4
It is fixed to the heat section +4 (4) in close contact with the soil surface (for each heat flow comparison). Each verdir is -1
” (!-1) Noll!!jJノfieAOz (E
: ) r/) 111 is boldly displayed on the qpalN2Pla side.
&Thermal fin (3) is injected.

1・側のペルf 1県1″(5))の熱流較番′)■(
J、熱部44(4)側の(ム熱根((i > l二発熱
を起こさ1!るJ、うに電に1(図示略)からこのベル
ブ1素r(5))に電流を流し、1側のベルf+A、r
の熱流絞り川伝熱部祠(4)側の伝熱+lx (6) 
lこ吸熱を起こさu6J、うに電i<+ <図小路)か
らこのペル11索f(5)に電流を流りど、1・側のベ
ルブl素i”(5)にJ、)(1・側の熱流絞り用(I
、熱部拐(/I)がI+11熱され、これによ−)て結
晶〈1)の[讐面の幅中央部が))1)熱される。」1
こ1側のベルブI索r(5)に」、−1i l側の熱流
絞り用伝熱部材(4)が冷IJIされ、これに」、−ン
て結晶(1)の1面の幅中央部/)〜7?77.IIさ
Flる。し−11− たが−〕で、熱は結晶(1)内の幅中央部分に集中的に
す、’tQされるので、結晶(1)内の幅中央部分に比
較的大さな温度勾配が発(1し、この温1良勾配にJ、
−)(比較的大きな屈Ih率勾配が形成される。このた
め結晶(1)の端面の幅中央部から入04された光ビー
l\△は、結晶(1)内を伝11r3 Jる過程で手向
きに比較的大きく偏向され、他方の端面から[31ぐ示
すJ、うに出用される。
1 side Pel f 1 prefecture 1'' (5)) heat flow comparison number')■(
J, current is passed from the heat source 1 (not shown) to this bell 1 element r (5) on the heating part 44 (4) side ((i > l2 heat generation 1!) , 1 side bell f+A, r
Heat flow on the heat transfer part shrine (4) side + lx (6)
1 causes heat absorption u6J, and when a current flows from the uniden i・For side heat flow restriction (I
, the heated part (/I) is heated by I+11, and thereby the central part of the width of the opposite side of the crystal (1) is heated. ”1
The heat transfer member (4) for restricting the heat flow on the side is cold-injected to the bell belt I rope (5) on this side, and the center of the width of one side of the crystal (1) is placed on this side. Part/)~7?77. II. Since the heat is concentrated at the center of the width of the crystal (1), there is a relatively large temperature gradient in the center of the width of the crystal (1). is emitted (1, and this temperature is J,
-) (A relatively large Ih index gradient is formed. Therefore, the light beam l\△ entering from the center of the width of the end face of the crystal (1) travels through the crystal (1) through the process of It is deflected relatively largely toward the hand, and is exposed from the other end surface to the direction shown by J.

この光−内器では、各ペルヂl素子に流される電流の向
さを逆にづることによっでl−向きにし偏向することが
できるという利点がある。l−向きに偏向されIこ出q
1光ビームを132で承り−6
This optical internal device has the advantage that it can be deflected in the l-direction by reversing the direction of the current flowing through each perdil element. Deflected in the l-direction, I comes out q
1 light beam accepted at 132-6

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の第1実施例をi1シ、
第1図は側面図、第2図は正面図、第3図おJ、び第4
図はこの発明の第2実施例を示−19− 一 12 − し、第33図((側面図、第4図(ま11面14、第5
)図お五〇第6図’L !!IA石にJ、−)(bli
 lli ’?’が変化りろ光学4/It’lを利用し
〆ご光偏向器の11シ1を小し、第5図は側面図、第(
1図1.1 d面図(あろ1゜(1)・・渇]へ光学読
)9体結晶、(?)・・発熱体、(4)・・・熱流絞り
川伝熱Ra+ 44、〈;))・・ベルf+素了5、 以 1 14− 第1図 \ 第2因
FIGS. 1 and 2 show a first embodiment of the present invention,
Figure 1 is a side view, Figure 2 is a front view, Figures 3 and 4 are
The figures show a second embodiment of the present invention.
) Figure 50 Figure 6 'L! ! IA stone J, -) (bli
lli'? ' is changed by using the optics 4/It'l.
1 Figure 1.1 d-plane view (optical reading to Aro 1゜(1)...dirty) 9-body crystal, (?)...heating element, (4)...heat flow aperture river heat transfer Ra+ 44,〈 ;))... Bell f + Soryo 5, so 1 14- Figure 1\ 2nd cause

Claims (1)

【特許請求の範囲】[Claims] 温度によって屈折率が変化Jる光学材料の少なくとも一
表面上に、光学材料を加熱または冷ノl するための熱
素子が設(プられている光偏向器において、上記光学材
料の上記表面であって光学月別内の光ビームの伝搬部分
に対応する表面部分と上記熱素子の発熱または吸熱面全
体どの間に、熱伝路を形成Jる伝熱部材が設置)られて
いることを特徴とする光偏向器。
In an optical deflector, a thermal element for heating or cooling the optical material is provided on at least one surface of the optical material whose refractive index changes with temperature. A heat transfer member that forms a heat transfer path is installed between the surface portion corresponding to the propagation portion of the light beam within the optical moon and the entire heat generating or heat absorbing surface of the thermal element. light deflector.
JP11280684A 1984-05-31 1984-05-31 Optical deflector Pending JPS60256123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11280684A JPS60256123A (en) 1984-05-31 1984-05-31 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11280684A JPS60256123A (en) 1984-05-31 1984-05-31 Optical deflector

Publications (1)

Publication Number Publication Date
JPS60256123A true JPS60256123A (en) 1985-12-17

Family

ID=14595994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11280684A Pending JPS60256123A (en) 1984-05-31 1984-05-31 Optical deflector

Country Status (1)

Country Link
JP (1) JPS60256123A (en)

Similar Documents

Publication Publication Date Title
US4253739A (en) Thermally compensated mirror
US4064868A (en) Solar heat collector
Patidar et al. Solar convective furnace for metals processing
Dey et al. Thermal and exergy analysis of Pin-finned heatsinks for nanofluid cooled high concentrated photovoltaic thermal (HCPV/T) hybrid systems
JPS60256123A (en) Optical deflector
Sodha et al. Analysis of a non-porous double-flow solar air heater
US4287881A (en) Solar energy absorber for use with a linear optical concentrating system
EP0047633A3 (en) Area heating or cooling device
DE2900875C2 (en) Solar collector
JPS60242434A (en) Optical deflector
JPS5840A (en) Heat exchanger
O'hara et al. Stability of the solid-liquid interface of semi-transparent materials
JPH01297139A (en) Apparatus for heating gas stream
JPS57187594A (en) Plate type heat exchanger
JPS60247627A (en) Optical deflector
US4129120A (en) Heating and ventilation system
JPS60242432A (en) Optical deflector
ES475158A1 (en) Fluid laser flow channel liner
JPS60242431A (en) Optical deflector
CN110244497A (en) A kind of spatial light modulator device of transmission-type tolerance high power laser light
CN205790009U (en) A kind of solar electrical energy generation water heating plate
Rabl Optical and thermal properties of compound parabolic concentrators
JPS60247626A (en) Optical deflector
JPS52152242A (en) Thermal element for typing
JPS60247625A (en) Optical deflector