JP2658381B2 - Waveguide type wavelength conversion element - Google Patents

Waveguide type wavelength conversion element

Info

Publication number
JP2658381B2
JP2658381B2 JP1105301A JP10530189A JP2658381B2 JP 2658381 B2 JP2658381 B2 JP 2658381B2 JP 1105301 A JP1105301 A JP 1105301A JP 10530189 A JP10530189 A JP 10530189A JP 2658381 B2 JP2658381 B2 JP 2658381B2
Authority
JP
Japan
Prior art keywords
optical waveguide
light
refractive index
waveguide
channel optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1105301A
Other languages
Japanese (ja)
Other versions
JPH02282232A (en
Inventor
義▲徳▼ 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1105301A priority Critical patent/JP2658381B2/en
Publication of JPH02282232A publication Critical patent/JPH02282232A/en
Application granted granted Critical
Publication of JP2658381B2 publication Critical patent/JP2658381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コヒーレントな短波長小型光源の実現を可
能にする波長変換素子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion element capable of realizing a small coherent short wavelength light source.

〔従来の技術〕[Conventional technology]

波長変換素子とくに第2次高調波発生(SHG)素子
は、エキシマレーザなどでは得にくいコヒーレントな短
波長光を得るデバイスとして産業上極めて重要である。
A wavelength conversion element, particularly a second harmonic generation (SHG) element, is extremely important in industry as a device for obtaining coherent short-wavelength light which is difficult to obtain with an excimer laser or the like.

半導体レーザは小型で高出力のコヒーレント光を発振
する光源として各種の光通信機器や光情報機器に使用さ
れている。現在この半導体レーザから得られる光の波長
は0.78μm〜1.55μmの近赤外線領域の波長である。こ
の半導体レーザをディスプレイ等、さらに広く機器に応
用するために、赤色,緑色,青色等、より短波長の光が
求められているが、現在の技術ではこの種の半導体レー
ザをにわかに実現するのは難しい。半導体レーザの出力
程度の低入力パワーでも、効率よく波長変換できる波長
変換素子が実現できると、その効果は甚大である。
2. Description of the Related Art Semiconductor lasers are used in various optical communication devices and optical information devices as light sources that oscillate small, high-output coherent light. Currently, the wavelength of light obtained from this semiconductor laser is a wavelength in the near infrared region of 0.78 μm to 1.55 μm. In order to apply this semiconductor laser to devices such as displays more widely, light of shorter wavelength such as red, green, blue, etc. is required. However, it is difficult to realize this kind of semiconductor laser with current technology. difficult. If a wavelength conversion element capable of efficiently performing wavelength conversion can be realized even with a low input power as low as the output of a semiconductor laser, the effect is remarkable.

近年半導体レーザの製作技術が発達して、従来にも増
して高出力の特性が得られるようになってきた。このた
め、光導波路型のSHG素子を構成すれば、光の回折によ
るエネルギ密度の減少を回避でき、半導体レーザ程度の
光強度でも比較的高い変換効率で波長変換素子を実現で
きる可能性がある。このような例として、ニオブ酸リチ
ウム結晶に光導波路を形成し、この光導波路に近赤外線
を透過し、これから結晶基板中に放射(チェレンコフ輻
射)される第2次高調波を得る方式のSHG素子の発明が
ある(特開昭60−14222,特開昭61−94031)。この方式
のSHG素子は、基本波とSHG波との位相整合条件が自動的
に取れているため、精密な温度調節が必要ないという特
長を持つ反面、SHG出力が基板放射光であるため波面が
特異で、収差のきつい、あたかも「細い眉毛」の様な強
度分布の光が基板の端面から出てくる。このため、この
光をガウス状強度分布の通常の使いやすいビームに変換
するには、この収差を補正する高級なレンズを必要とす
る。SHG出力光も半導体レーザの出射光と同じようにチ
ャンネル導波光であれば、このような不便は生じない。
In recent years, semiconductor laser fabrication techniques have been developed, and higher output characteristics have been obtained than ever before. For this reason, if an optical waveguide type SHG element is configured, a decrease in energy density due to light diffraction can be avoided, and there is a possibility that a wavelength conversion element can be realized with relatively high conversion efficiency even at a light intensity equivalent to that of a semiconductor laser. As such an example, an SHG element of a type in which an optical waveguide is formed in a lithium niobate crystal, near-infrared light is transmitted through the optical waveguide, and a second harmonic radiated (Cherenkov radiation) into a crystal substrate therefrom is obtained. (JP-A-60-14222, JP-A-61-94031). This type of SHG element has the advantage that it does not require precise temperature adjustment because the phase matching condition between the fundamental wave and the SHG wave is automatically set, but the wavefront because the SHG output is substrate emission light Light with an unusual, severe aberration, and an intensity distribution as if "thin eyebrows" emerges from the end face of the substrate. Therefore, converting this light into a normal, easy-to-use beam with a Gaussian intensity distribution requires a sophisticated lens to correct this aberration. Such inconvenience does not occur if the SHG output light is channel guided light as well as the emitted light of the semiconductor laser.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明の目的は、上述の従来の導波型SHG素子の持つ
難点を取り除き、SHG出力光がチャンネル導波光となる
構造の導波路型波長変換素子を提供することにある。
An object of the present invention is to provide a waveguide-type wavelength conversion element having a structure in which the SHG output light becomes channel waveguide light, while eliminating the above-mentioned disadvantages of the conventional waveguide-type SHG element.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、交互に反転した自発分極の周期を表面に沿
って持つzカットニオブ酸リチウム結晶板表面に、前記
自発分極の周期の方向と一致した光伝搬軸をもち、入射
基本波に対して単一モード導波路となる幅及び厚さを有
する第1のチャンネル光導波路を設け、さらに、前記ニ
オブ酸リチウム結晶の表面の上に、低屈折率の誘電体層
と2次高調波に対する屈折率が前記ニオブ酸リチウム結
晶の基本波に対する屈折率と同程度の大きさを有する高
誘電率薄膜とで構成され、前記第1のチャンネル光導波
路に平行して前記基本波から発生した2次高調波を導く
第2のチャンネル光導波路を設け、前記第1のチャンネ
ル光導波路の基本波(周波数ω)にたいする波数β
(ω)と該基本波の第2の高調波にたいする前記第2の
チャンネル光導波路の波数β(2ω)との間でβ
(2ω)−2β(ω)=2π/Λなる関係をほぼ満たす
ように前記交互に反転した自発分極の周期Λを定め、前
記第1のチャンネル光導波路の一端から基本波を注入
し、前記第2のチャンネル光導波路から第2高調波を得
るようにすることによって、出力光に波面収差のない、
しかも、結晶基板によって短い波長のSHG光が吸収され
ることのない、低損失の導波路型波長変換素子が得られ
る。
The present invention provides a z-cut lithium niobate crystal plate surface having a spontaneous polarization cycle alternately reversed along the surface, having a light propagation axis coincident with the direction of the spontaneous polarization cycle, and with respect to the incident fundamental wave. A first channel optical waveguide having a width and a thickness to be a single mode waveguide is provided, and a low refractive index dielectric layer and a refractive index for a second harmonic are formed on the surface of the lithium niobate crystal. A high-dielectric-constant thin film having the same size as the refractive index of the lithium niobate crystal with respect to the fundamental wave, and a second harmonic generated from the fundamental wave in parallel with the first channel optical waveguide. Is provided, and a wave number β with respect to a fundamental wave (frequency ω) of the first channel optical waveguide is provided.
(Ω) and the wave number β (2ω) of the second channel optical waveguide with respect to the second harmonic of the fundamental wave.
(2ω) -2β (ω) = 2π / Λ The cycle of the spontaneously inverted spontaneous polarization is determined so as to substantially satisfy the relationship of 2π / Λ, and a fundamental wave is injected from one end of the first channel optical waveguide. By obtaining the second harmonic from the two-channel optical waveguide, the output light has no wavefront aberration,
In addition, a low-loss waveguide-type wavelength conversion element in which short wavelength SHG light is not absorbed by the crystal substrate can be obtained.

〔実施例〕〔Example〕

以下本発明を実施例に基づき図面を用いて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments with reference to the drawings.

第1図は本発明の一実施例である導波路型波長変換素
子の構造を示す図である。
FIG. 1 is a view showing the structure of a waveguide type wavelength conversion element according to one embodiment of the present invention.

1はニオブ酸リチウム(LiNbO3)結晶基板であり、基
板方位はz板(すなわち、基板に立てた法線はz軸)で
ある。この結晶は、その製法を後述するように、基板表
面に自発分極が反転した領域2が周期を持って形成され
ている。この周期的な反転分極を有するニオブ酸リチウ
ム結晶基板に第1のチャンネル光導波路3がイオン交換
法によって形成されている。該第1のチャンネル光導波
路3の一端面には半導体レーザ9の出力光が入射基本波
として結合される。基本波はチャンネル光導波路3をす
すむにつれ、結晶の持つ2次の非線形光学効果を介して
SHG光を発生する。基本波から変換されたSHG光は、第2
図の導波路構造の断面図、すなわち、第2図(a)が光
進行方向に垂直な断面、第2図(b)が光進行方向に沿
った、それぞれの断面図にしめすように、イオン交換法
によって形成された、前記第1のチャンネル光導波路3
の上に、これに重なって、低損失の誘電体膜7(たとえ
ば,SiO2やAl2O3など)と屈折率が比較的に高い誘電体膜
8(たとえば、Ta2O5やTiO2など)とによって作る装荷
型の第2のチャンネル光導波路4に導かれ、この第2の
チャンネル光導波路4の端面から空気中に放射される。
放射されたSHG光は、円レンズ5によって収差の無い円
形コリメートビーム6に変換される。
Reference numeral 1 denotes a lithium niobate (LiNbO 3 ) crystal substrate, and the substrate orientation is a z-plate (that is, the normal to the substrate is the z-axis). In this crystal, a region 2 where spontaneous polarization is inverted is formed with a period on the surface of the substrate, as will be described later in a method of manufacturing the crystal. The first channel optical waveguide 3 is formed on the lithium niobate crystal substrate having the periodically inverted polarization by an ion exchange method. The output light of the semiconductor laser 9 is coupled to one end face of the first channel optical waveguide 3 as an incident fundamental wave. The fundamental wave travels through the channel optical waveguide 3 through the second-order nonlinear optical effect of the crystal.
Generates SHG light. The SHG light converted from the fundamental wave is the second
As shown in the cross-sectional views of the waveguide structure shown in the drawing, that is, FIG. 2 (a) is a cross section perpendicular to the light traveling direction, and FIG. 2 (b) is a cross sectional view along the light traveling direction. The first channel optical waveguide 3 formed by an exchange method
On top of this, a low-loss dielectric film 7 (eg, SiO 2 or Al 2 O 3 ) and a dielectric film 8 (eg, Ta 2 O 5 or TiO 2 ) having a relatively high refractive index , Etc.), and is guided into the air from the end face of the second channel optical waveguide 4.
The emitted SHG light is converted by the circular lens 5 into a circular collimated beam 6 having no aberration.

上記基本波が、SHG光へ効率よく変換され、このSHG光
が前記基本波と異なる光導波路に導かれるための条件、
すなわち位相整合条件は、周期的な反転分極を仲立ちと
して以下のように満たされている。
The above-mentioned fundamental wave is efficiently converted into SHG light, and conditions for this SHG light to be guided to an optical waveguide different from the fundamental wave,
That is, the phase matching condition is satisfied as follows, with periodic inversion polarization being the middle point.

結晶基板のz方向に平行な電界成分を持つTM波である
基本波光を伝搬させるプロトンイオン(H+)交換法によ
って形成したチャンネル光導波路3は、基本波(例えば
波長0.83μm)にたいしてはほぼ単一モード導波路とな
っており、しかも閉じ込め効果が緩く、基板中への光の
浸み出しの大きい光導波路となるように、その交換の深
さが0.5μm、幅が2〜5μmに設定されている。たと
えば、波長0.83μm基本波に対する導波路の等価屈折率
(ω)は、基板の異常光屈折率2.17に近く、プロトン
イオン交換の効果を受けて、それにより少し大きい2.18
程度に設定されている。
The channel optical waveguide 3 formed by the proton ion (H + ) exchange method for propagating a fundamental wave light, which is a TM wave having an electric field component parallel to the z direction of the crystal substrate, is almost single-wave with respect to the fundamental wave (for example, wavelength 0.83 μm). The exchange depth is set to 0.5 μm and the width is set to 2 to 5 μm so that it is a one-mode waveguide, and furthermore, the confinement effect is loose and the optical waveguide has a large amount of light leaching into the substrate. ing. For example, the equivalent refractive index n (ω) of the waveguide for the 0.83 μm fundamental wave is close to the extraordinary optical refractive index of the substrate, 2.17, and is slightly larger due to the effect of proton ion exchange.
Set to about.

このニオブ酸リチウム結晶基板表面に上に設けた装荷
型のチャンネル光導波路4の、波長0.415μmSHG光に対
する等価屈折率n(2ω)がプロトンイオン交換によっ
て作ったチャンネル光導波路3の基本波にたいする等価
屈折率n(ω)に等しく設定できれば、反転分極周期を
設けなくても効率のよいSHG変換が実現するが(たとえ
ば、数mm以上の長さに渡って位相整合条件を満たすため
には屈折率の違いは、10-5程度以下でなければならな
い)、上記の精度でふたつを一致させることは事実上不
可能である。2つの液の位相定数(β)に差があるた
め、このままでは基本波からSHG光への変換は生じな
い。
The equivalent refractive index n (2ω) of the loaded channel optical waveguide 4 provided on the surface of the lithium niobate crystal substrate for 0.415 μm SHG light has an equivalent refraction to the fundamental wave of the channel optical waveguide 3 formed by proton ion exchange. If the ratio can be set equal to n (ω) , efficient SHG conversion can be achieved without providing a reversal polarization period (for example, in order to satisfy the phase matching condition over a length of several mm or more, the The difference must be less than 10 -5 ), and it is virtually impossible to match the two with the above precision. Since there is a difference in the phase constant (β) between the two liquids, conversion from the fundamental wave to SHG light does not occur as it is.

今、 |β(2ω)−2β(ω)|=2π/Λ すなわち、 |n(2ω)−n(ω)|=0.415/Λ の関係を満たす周期Λμmの非線形光学効果の符号が反
転する周期があれば、効率のよいSHG変換が行われる。
結晶基板に形成された自発分極の反転周期はこの役目を
果たす。SiO2上にTa2O5を装荷させた光導波路でその等
価屈折率を2.18近傍に設定させる事は可能である。
Now, | β (2ω) −2β (ω) | = 2π / 、, that is, a period that satisfies the relationship of | n (2ω) −n (ω) | = 0.415 / Λ. If there is, efficient SHG conversion is performed.
The reversal period of the spontaneous polarization formed on the crystal substrate plays this role. It is possible to set the equivalent refractive index near 2.18 in an optical waveguide in which Ta 2 O 5 is loaded on SiO 2 .

しかしながら、上記の周期が単一であると、光導波路
の厚さや結晶屈折率などにゆらぎや温度変化があると、
光導波路の等価屈折率は変化し、上式が満たされなくな
り、SHG変換は極めて不安定になる。これを避けるため
に、第3図に示すように、自発分極の反転の周期のピッ
チを、光透過方向に徐々に変化させることによって、等
価屈折率の設定のゆらぎや温度変化を吸収して安定なSH
G変換を実現することが出来る。たとえば、反転周期を
4.15μmから415μmまで光透過方向に徐々に変化させ
て設けてあれば、屈折率の違いが0.001〜0.1の間にあれ
ば位相整合条件は満たされる。すなわち、装荷型のチャ
ンネル光導波路4の波長0.415μmでの等価屈折率を2.2
9〜2.08の間になるように設定すればよく、これは上に
述べた高屈折率と低屈折率の誘電体をスパッタリング法
などによって容易に形成することが出来る。
However, if the above period is single, if there is fluctuation or temperature change in the thickness or crystal refractive index of the optical waveguide,
The equivalent refractive index of the optical waveguide changes, the above equation is no longer satisfied, and the SHG conversion becomes extremely unstable. In order to avoid this, as shown in FIG. 3, the pitch of the period of the reversal of the spontaneous polarization is gradually changed in the light transmission direction, thereby absorbing fluctuations in the setting of the equivalent refractive index and changes in temperature, thereby achieving stable operation. Na SH
G conversion can be realized. For example, the inversion cycle
The phase matching condition is satisfied if the difference in refractive index is between 0.001 and 0.1 if the light transmission direction is gradually changed from 4.15 μm to 415 μm. That is, the equivalent refractive index of the loaded channel optical waveguide 4 at a wavelength of 0.415 μm is set to 2.2.
What is necessary is just to set it between 9 and 2.08, and this can easily form the above-mentioned dielectric material having a high refractive index and a low refractive index by a sputtering method or the like.

上記の自発分極の反転の周期は以下のようにして作る
ことが出来る。ニオブ酸リチウム結晶のz板の+c面に
Ti膜の周期パターンを設け、高温(1030〜1150℃)で3
〜5時間、空気中で熱拡散を行なうと、Tiの拡散した部
位だけ分極反転がおこる。この現像は次の論文、「Ti拡
散LiNbO3における分極反転現象を利用した弾性表面波反
射器;日本音響学会講演論文集、第851頁、講演番号3
−2−6、昭和61年10月、著者;中村 僖良、安藤 晴
康、清水 洋」に詳述されている。上記実施例における
自発分極の反転の周期は、この現象を用いることによっ
て容易に形成することが出来る。
The period of the reversal of the spontaneous polarization can be made as follows. On the + c face of the lithium niobate crystal z-plate
Provision of a periodic pattern of Ti film, 3 at high temperature (1030-1150 ℃)
When thermal diffusion is performed in air for 55 hours, polarization reversal occurs only in the portion where Ti is diffused. This development is based on the following paper, "Surface acoustic wave reflector using polarization reversal phenomenon in Ti-diffused LiNbO 3 ; Proceedings of the Acoustical Society of Japan, page 851, p. 3
-2-6, October 1986, authors: P. Nakamura, H. Ando and H. Shimizu. The cycle of inversion of spontaneous polarization in the above embodiment can be easily formed by using this phenomenon.

尚、光導波路の幅,厚さ等を決定する方法は通常用い
られている方法なので説明は省略した。
The method for determining the width, thickness, and the like of the optical waveguide is a commonly used method, and a description thereof is omitted.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によればSHG出力光に波
面収差のない、安定な導波路型波長変換素子が得られ
る。しかも、SHG光を波長0.4μm付近に吸収端を有する
ニオブ酸リチウム結晶中に放射させる公知の方式とは異
なり、短波長の領域においても透過特性の優れるSiO2
主材とするような別なる導波路中を透過させるため、吸
収損失が小さい。また、さらに波長の短い(たとえば0.
78μm)半導体レーザの光をも波長変換させることが可
能である。
As described above, according to the present invention, a stable waveguide-type wavelength conversion element having no wavefront aberration in SHG output light can be obtained. Moreover, unlike the known method in which SHG light is emitted into a lithium niobate crystal having an absorption edge at a wavelength of about 0.4 μm, it is different from a known method in which the main material is SiO 2 having excellent transmission characteristics even in a short wavelength region. Since the light is transmitted through the waveguide, the absorption loss is small. In addition, a shorter wavelength (for example, 0.
(78 μm) The wavelength of the light of the semiconductor laser can be converted.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の導波路型波長変換素子の構
造を説明する斜視図であり、第2図及び第3図は断面図
である。 1……LiNbO3結晶基板、2……分極反転領域、3,4……
チャンネル光導波路。
FIG. 1 is a perspective view for explaining the structure of a waveguide type wavelength conversion element according to one embodiment of the present invention, and FIGS. 2 and 3 are sectional views. 1 ... LiNbO 3 crystal substrate, 2 ... Polarized region, 3,4 ...
Channel optical waveguide.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】交互に反転した自発分極の周期を表面に沿
って持つzカットニオブ酸リチウム結晶板表面に、前記
自発分極の周期の方向と一致した光伝搬軸をもち、入射
基本波に対して単一モード導波路となる幅及び厚さを有
する第1のチャンネル光導波路を有し、さらに、前記ニ
オブ酸リチウム結晶の表面の上に、低屈折率の誘電体層
と2次高調波に対する屈折率が前記ニオブ酸リチウム結
晶の基本波に対する屈折率と同程度の大きさを有する高
誘電率薄膜とで構成され、前記第1のチャンネル光導波
路に平行して形成された2次高調波を導く第2のチャン
ネル光導波路を有することを特徴とする導波路型波長変
換素子。
1. A surface of a z-cut lithium niobate crystal plate having a spontaneous polarization cycle alternately inverted along its surface, having a light propagation axis coincident with the direction of the spontaneous polarization cycle, and A first channel optical waveguide having a width and a thickness to be a single mode waveguide, and a low refractive index dielectric layer and a second harmonic on the surface of the lithium niobate crystal. A high-dielectric-constant thin film having a refractive index substantially equal to the refractive index of the lithium niobate crystal with respect to a fundamental wave, and a second harmonic formed in parallel with the first channel optical waveguide. A waveguide-type wavelength conversion element having a second channel optical waveguide for guiding.
JP1105301A 1989-04-24 1989-04-24 Waveguide type wavelength conversion element Expired - Fee Related JP2658381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1105301A JP2658381B2 (en) 1989-04-24 1989-04-24 Waveguide type wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1105301A JP2658381B2 (en) 1989-04-24 1989-04-24 Waveguide type wavelength conversion element

Publications (2)

Publication Number Publication Date
JPH02282232A JPH02282232A (en) 1990-11-19
JP2658381B2 true JP2658381B2 (en) 1997-09-30

Family

ID=14403872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1105301A Expired - Fee Related JP2658381B2 (en) 1989-04-24 1989-04-24 Waveguide type wavelength conversion element

Country Status (1)

Country Link
JP (1) JP2658381B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296731A (en) * 1991-03-27 1992-10-21 Matsushita Electric Ind Co Ltd Short-wavelength laser beam source
US6711200B1 (en) * 1999-09-07 2004-03-23 California Institute Of Technology Tuneable photonic crystal lasers and a method of fabricating the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676743B2 (en) * 1987-09-25 1997-11-17 日本電気株式会社 Waveguide type wavelength conversion element

Also Published As

Publication number Publication date
JPH02282232A (en) 1990-11-19

Similar Documents

Publication Publication Date Title
JP4545380B2 (en) Optical waveguide device, coherent light source using the same, and optical apparatus provided with the same
US5515471A (en) Frequency doubler and short wave laser source using the same and optical data processing apparatus using the short wave laser source
JP2685969B2 (en) Second harmonic generator
JP3129028B2 (en) Short wavelength laser light source
JP2725302B2 (en) Waveguide type wavelength conversion element
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
US6519077B1 (en) Optical waveguide, optical wavelength conversion device, method for producing the same, short wavelength light generation apparatus using the same, optical information processing apparatus using the same, coherent light generation apparatus using the same, and optical system using the same
JP2658381B2 (en) Waveguide type wavelength conversion element
JP2676743B2 (en) Waveguide type wavelength conversion element
JPH05341344A (en) Wavelength conversion element
JPH01257922A (en) Waveguide type wavelength converting element
JP2666540B2 (en) Waveguide type wavelength conversion element
JP2921208B2 (en) Wavelength conversion element and short wavelength laser light source
JPH0651359A (en) Wavelength conversion element, short wavelength laser device and wavelength variable laser device
JP3052693B2 (en) Optical wavelength conversion element, method of manufacturing the same, short wavelength coherent light generator using optical wavelength conversion element, and method of manufacturing optical wavelength conversion element
JP2906615B2 (en) Waveguide type wavelength conversion element
JPH0331828A (en) Wavelength converting element
JPH02189527A (en) Waveguide type wavelength converting element
JPH0728112A (en) Second harmonic generating light source of waveguide path type
US5018810A (en) Method for producing a second harmonic wave generating device
JP2738155B2 (en) Waveguide type wavelength conversion element
JPH02282233A (en) Waveguide type wavelength converting element
JP2982366B2 (en) Waveguide type wavelength conversion element
JP2004020571A (en) Wavelength transformation device
JPH03197932A (en) Light wavelength converter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees