JP2676743B2 - Waveguide type wavelength conversion element - Google Patents

Waveguide type wavelength conversion element

Info

Publication number
JP2676743B2
JP2676743B2 JP62241319A JP24131987A JP2676743B2 JP 2676743 B2 JP2676743 B2 JP 2676743B2 JP 62241319 A JP62241319 A JP 62241319A JP 24131987 A JP24131987 A JP 24131987A JP 2676743 B2 JP2676743 B2 JP 2676743B2
Authority
JP
Japan
Prior art keywords
waveguide
light
channel
fundamental wave
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62241319A
Other languages
Japanese (ja)
Other versions
JPS6482022A (en
Inventor
義徳 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62241319A priority Critical patent/JP2676743B2/en
Publication of JPS6482022A publication Critical patent/JPS6482022A/en
Application granted granted Critical
Publication of JP2676743B2 publication Critical patent/JP2676743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コヒーレントな短波長小型光源の実現を可
能にする半導体レーザ用波長変換素子に関する。 (従来の技術とその問題点) 波長変換素子とくに第2次高調波発生(SHG)素子
は、エキシマレーザなどでは得にくいコヒーレントな短
波長光を得るデバイスとして産業上極めて重要である。 半導体レーザは小型で高出力のコヒーレント光を発振
する光源として各種の光通信機器や光情報機器に使用さ
れている。現在この半導体レーザから得られる光の波長
は0.78μm〜1.55μmの近赤外領域の波長である。この
半導体レーザをデイスプレイ等、さらに広く機器に応用
するために、赤色、緑色、青色等、より短波長の光が求
められているが、現在の技術ではこの種の半導体レーザ
をにわかに実現するのは難しい。そこで、半導体レーザ
の出力程度でも効率よく波長変換できる波長変換素子が
実現できるとその効果は甚大である。 近年半導体レーザの製作技術が発達して、従来にも増
して高出力の特性が得られるようになつてきた。そこ
で、光導波路型のSHG素子を構成すれば、光の回折によ
るエネルギ密度の減少を回避でき、半導体レーザ程度の
光強度でも、比較的変換効率の高い波長変換素子を実現
できる可能性がある。その様な例として、ニオブ酸リチ
ウム結晶に光導波路を形成し、この光導波路に近赤外光
を透過し、これから結晶基板中に放射(チエレンコフ輻
射)される第2次高調波を得る方式のSHG素子がある
(特開昭60−14222号、特開昭61−94031号)。この方式
のSHG素子は、基本波とSHG波との位相整合条件が自動的
に取れているから、精密な温度調節が必要でないという
特徴を持つ反面、SHG出力が基板放射光であるから波面
が特異で、収差のきつい、あたかも「細い眉毛」の様な
強度分布の光が基板の端面から出てくる。このため、こ
の光をガウス状強度分布の通常の使いやすいビームに変
換するには、この収差を補正する高級なレンズを必要と
する。SHG出力光も半導体レーザの出射光と同じように
チヤンネル導波光であれば、このような不便は生じな
い。 そこで、本発明の目的は、上述の従来の導波型SHG素
子の持つ難点を取り除き、SHG出力光がチヤンネル導波
光となる構造の導波路型波長変換素子を提供することに
ある。 (問題点を解決するための手段) 本発明によれば、C板ニオブ酸リチウム結晶面上に互
いに重なり合って形成されいてる第一及び第二の2本の
チャンネル光導波路からなり、前記第一のチャネル導波
路は基本波光に対して単一モードの光導波路であり、前
記第二のチャンネル導波路は第2高調波光に対して単一
モードの光導波路で、かつ、基本波光に対してはカット
オフとなる構造を有し、前記第一のチャネル光導波路の
基本波の周波数をω、前記基本波に対する第一チャンネ
ル光導波路の波数をβ(ω)、前記基本波の第2高調波
の波数をβ(2ω)とすると、β(2ω)−2β(ω)
=2π/Λなる関係をほぼ満たすように、前記第一及び
第二のチャネル光導波路の光透過方向に屈折率変化の周
期Λを設けたことによって、SHG出力光に波面収差のな
い導波路型波長変換素子が得られる。 (実施例) 以下に本発明の実施例を図面を参照して詳細に説明す
る。 第1図は本発明の一実施例である導波路型波長変換素
子の構造を示す斜視図、第2図は第1図実施例の縦断面
図である。1はLiNbO3結晶基板であり、基板方位はz板
(すなわち、基板に立てた法線はz軸)である。本実施
例は、結晶基板1上の同一場所に形成された2本の光導
波路2,3と、これらの導波路上に設けられ、導波光等価
屈折率の周期変化を与える誘電体4とで構成されてい
る。 上記光導波路2,3は以下のような構造をしている。入
射光であり結晶基板1のC面に垂直な電界成分を持つTM
波である基本波5を保持する光導波路2は、通常よく使
われる方法である金属チタン(Ti)を熱拡散して形成さ
れており、その厚さは、例えば基本波として波長0.83μ
m半導体レーザ光を使用した場合、3μm程度に設けて
あり、単一モード導波路となつている。基本波のSHG光
であり、基本波と同じ編波の導波光TM波を保持し、出射
光6として放射する導波路3は、導波路2と重なつて形
成されており、安息香酸やピロ燐酸等によるプロトン
(H+)交換によつてその厚さ0.43μm程度に設定してあ
る。この導波路は、0.83μmの基本波に対するSHG光で
ある波長0.415μmの光に対しては、単一モード導波路
となつており、基本波の0.83μm光に対しては、ほぼカ
ツトオフ状態である。 基本波が伝搬するTi拡散導波路2の波長0.83μm基本
波に対する等価屈折率n(ω)は2.177であり、SHG光が
伝搬すべきH+交換導波路3の波長0.415μmSHG光に対す
る等価屈折率n(2ω)は2.387である。このため、2
つの波の位相定数(β)に差があるためにこのままでは
基本波からSHG光への変換は生じない。 今、 β(2ω)−2β(ω)=2π/Λ すなわち、n(2ω)−n(ω)=0.415/Λの関係を満
たす周期Λμmの屈折率の変化の周期があれば、効率の
よいSHG変換が行われる。結晶基板上の同一場所に形成
された2本の光導波路2,3の導波路上に設けた誘電体4
は、この役割を果たす。上記の等価屈折率の値の場合、
この周期Λは、2μm程度となり、通常のリングラフイ
ー技術を用いて容易に形成することができる。 第3図は第1図実施例の一変形例を示す縦断面図であ
る。導波路の厚さや結晶屈折率などにゆらぎや温度変化
があると、導波路の等価屈折率は変化し、上式が満たさ
れなくなり、SHG変換は極めて不安定になる。これを避
けるために、第3図に示したように、導波路上に設けた
誘電体の周期を、光透過方向に徐々に変化させることに
よつて、透過屈折率のゆらぎや温度変化を吸収して安定
なSHG変換を実現することができる。 (発明の効果) 以上に説明したように、本発明によればSHG出力光に
波面収差のない、安定な導波路型波長変換素子が得られ
る。
TECHNICAL FIELD The present invention relates to a wavelength conversion element for a semiconductor laser, which enables realization of a coherent short-wavelength small-sized light source. (Conventional technology and its problems) A wavelength conversion element, especially a second harmonic generation (SHG) element, is extremely important industrially as a device for obtaining coherent short-wavelength light that is difficult to obtain with an excimer laser or the like. 2. Description of the Related Art Semiconductor lasers are used in various optical communication devices and optical information devices as light sources that oscillate small, high-output coherent light. Currently, the wavelength of light obtained from this semiconductor laser is a wavelength in the near infrared region of 0.78 μm to 1.55 μm. In order to apply this semiconductor laser to a wider range of devices such as displays, light of shorter wavelengths such as red, green, and blue is required, but with the current technology, this kind of semiconductor laser is suddenly realized. difficult. Therefore, if a wavelength conversion element that can efficiently perform wavelength conversion even with an output of a semiconductor laser can be realized, its effect will be great. In recent years, semiconductor laser manufacturing techniques have been developed, and higher output characteristics have been obtained than ever before. Therefore, by constructing an optical waveguide type SHG element, it is possible to avoid a decrease in energy density due to diffraction of light, and it is possible to realize a wavelength conversion element having a relatively high conversion efficiency even with the light intensity of a semiconductor laser. As such an example, a method of forming an optical waveguide in a lithium niobate crystal, transmitting near-infrared light through the optical waveguide, and obtaining a second harmonic emitted from the crystal substrate to the crystal substrate (Chierenkov radiation) There are SHG elements (JP-A-60-14222, JP-A-61-94031). This type of SHG element has the characteristic that precise temperature adjustment is not required because the phase matching condition between the fundamental wave and the SHG wave is automatically taken, while the SHG output is substrate radiated light, so the wavefront is Light with a peculiar, tight aberration, and an intensity distribution like "thin eyebrows" emerges from the end face of the substrate. Therefore, converting this light into a normal, easy-to-use beam with a Gaussian intensity distribution requires a sophisticated lens to correct this aberration. Such inconvenience does not occur if the SHG output light is channel guided light as is the case with the light emitted from the semiconductor laser. Therefore, an object of the present invention is to eliminate the drawbacks of the above-described conventional waveguide type SHG element, and to provide a waveguide type wavelength conversion element having a structure in which SHG output light becomes channel waveguide light. (Means for Solving the Problems) According to the present invention, the first and second two-channel optical waveguides are formed on the C plate lithium niobate crystal plane so as to overlap each other. The channel waveguide is a single-mode optical waveguide for the fundamental wave light, the second channel waveguide is a single-mode optical waveguide for the second harmonic light, and cut for the fundamental wave light. And a frequency of the fundamental wave of the first channel optical waveguide is ω, a wave number of the first channel optical waveguide with respect to the fundamental wave is β (ω), and a second harmonic wave number of the fundamental wave. Is β (2ω), β (2ω) -2β (ω)
= 2π / Λ, the refractive index change period Λ is provided in the light transmission direction of the first and second channel optical waveguides so that the SHG output light is a waveguide type without wavefront aberration. A wavelength conversion element is obtained. (Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing the structure of a waveguide type wavelength conversion element according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of the embodiment shown in FIG. 1 is a LiNbO 3 crystal substrate, and the substrate orientation is a z-plate (that is, the normal line standing on the substrate is the z-axis). In the present embodiment, two optical waveguides 2 and 3 formed at the same place on the crystal substrate 1 and a dielectric 4 provided on these waveguides and giving a periodic change of the guided light equivalent refractive index are used. It is configured. The optical waveguides 2 and 3 have the following structure. TM which is incident light and has an electric field component perpendicular to the C-plane of the crystal substrate 1
The optical waveguide 2 that holds the fundamental wave 5, which is a wave, is formed by thermally diffusing metallic titanium (Ti), which is a commonly used method, and its thickness is, for example, 0.83 μm as a fundamental wave.
When the m semiconductor laser light is used, it is provided to have a thickness of about 3 μm and serves as a single mode waveguide. The waveguide 3 which is the SHG light of the fundamental wave, holds the guided light TM wave of the same knitting wave as the fundamental wave, and emits it as the emitted light 6 is formed by being overlapped with the waveguide 2. The thickness is set to about 0.43 μm by the exchange of protons (H + ) with phosphoric acid or the like. This waveguide is a single-mode waveguide for 0.45 μm wavelength light, which is SHG light for 0.83 μm fundamental wave, and is in a cut-off state for 0.83 μm fundamental wave light. is there. The equivalent refractive index n (ω) for the fundamental wave propagating in the Ti diffusion waveguide 2 having a wavelength of 0.83 μm is 2.177, and the equivalent refractive index for the H + exchange waveguide 3 wavelength of 0.415 μm SHG light in which the SHG light should propagate. n (2ω) is 2.387. Therefore, 2
Since there is a difference in the phase constant (β) of the two waves, the conversion from the fundamental wave to SHG light does not occur in this state. Now, β (2ω) −2β (ω) = 2π / Λ, that is, if there is a period of change of the refractive index of the period Λμm that satisfies the relationship of n (2ω) −n (ω) = 0.415 / Λ, it is efficient. SHG conversion is performed. Dielectric 4 provided on the waveguides of two optical waveguides 2 and 3 formed at the same place on the crystal substrate
Plays this role. For the equivalent refractive index values above,
This period Λ is about 2 μm, and can be easily formed by using a normal Linguelie technique. FIG. 3 is a vertical sectional view showing a modification of the embodiment shown in FIG. If the waveguide thickness or crystal refractive index fluctuates or changes with temperature, the equivalent refractive index of the waveguide changes, the above equation is not satisfied, and the SHG conversion becomes extremely unstable. In order to avoid this, as shown in FIG. 3, by gradually changing the period of the dielectric provided on the waveguide in the light transmitting direction, fluctuations in the transmission refractive index and temperature changes are absorbed. It is possible to realize stable SHG conversion. (Effect of the Invention) As described above, according to the present invention, it is possible to obtain a stable waveguide type wavelength conversion element in which SHG output light has no wavefront aberration.

【図面の簡単な説明】 第1図は本発明の一実施例の導波路型波長変換素子の構
造を示す斜視図、第2図は第1図実施例の縦断面図、第
3図は第1図実施例の変形例を示す縦断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing the structure of a waveguide type wavelength conversion element according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view of the embodiment shown in FIG. 1, and FIG. FIG. 1 is a vertical sectional view showing a modified example of the embodiment of FIG. 1.

Claims (1)

(57)【特許請求の範囲】 1.C板ニオブ酸リチウム結晶面上に互いに重なり合っ
て形成されいてる第一及び第二の2本のチャンネル光導
波路からなり、前記第一のチャネル導波路は基本波光に
対して単一モードの光導波路であり、前記第二のチャン
ネル導波路は第2高調波光に対して単一モードの光導波
路で、かつ、基本波光に対してはカットオフとなる構造
を有し、前記第一のチャネル光導波路の基本波の周波数
をω、前記基本波に対する第一チャンネル光導波路の波
数をβ(ω)、前記基本波の第2高調波の波数をβ(2
ω)とすると、β(2ω)−2β(ω)=2π/Λなる
関係をほぼ満たすように、前記第一及び第二のチャネル
光導波路の光透過方向に屈折率変化の周期Λを設けたこ
とを特徴とする導波路型波長変換素子。 2.前記第一のチャネル導波路は金属チタンの熱拡散に
より形成された光導波路であり、前記第二のチャンネル
導波路はプロトン交換によって形成された光導波路であ
ることを特徴とする特許請求の範囲の第1項に記載の導
波路型波長変換素子。
(57) [Claims] The C-plate is composed of two first and second channel optical waveguides formed on the crystal plane of lithium niobate so as to overlap each other, and the first channel waveguide is a single-mode optical waveguide for the fundamental wave light. The second channel waveguide is a single-mode optical waveguide for the second harmonic light and has a structure that is cut off for the fundamental wave light. The frequency of the fundamental wave is ω, the wave number of the first channel optical waveguide with respect to the fundamental wave is β (ω), and the wave number of the second harmonic of the fundamental wave is β (2
ω), the period Λ of the refractive index change is provided in the light transmission directions of the first and second channel optical waveguides so that the relationship of β (2ω) -2β (ω) = 2π / Λ is substantially satisfied. A waveguide type wavelength conversion element characterized by the above. 2. The first channel waveguide is an optical waveguide formed by thermal diffusion of metallic titanium, and the second channel waveguide is an optical waveguide formed by proton exchange. The waveguide type wavelength conversion element according to item 1.
JP62241319A 1987-09-25 1987-09-25 Waveguide type wavelength conversion element Expired - Lifetime JP2676743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62241319A JP2676743B2 (en) 1987-09-25 1987-09-25 Waveguide type wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62241319A JP2676743B2 (en) 1987-09-25 1987-09-25 Waveguide type wavelength conversion element

Publications (2)

Publication Number Publication Date
JPS6482022A JPS6482022A (en) 1989-03-28
JP2676743B2 true JP2676743B2 (en) 1997-11-17

Family

ID=17072523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62241319A Expired - Lifetime JP2676743B2 (en) 1987-09-25 1987-09-25 Waveguide type wavelength conversion element

Country Status (1)

Country Link
JP (1) JP2676743B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281243A (en) * 1989-04-21 1990-11-16 Nec Corp Wavelength converting element and production thereof
JP2658381B2 (en) * 1989-04-24 1997-09-30 日本電気株式会社 Waveguide type wavelength conversion element
JP2693842B2 (en) * 1989-12-26 1997-12-24 シャープ株式会社 Optical wavelength converter
JP2666540B2 (en) * 1990-08-17 1997-10-22 日本電気株式会社 Waveguide type wavelength conversion element
JP2685969B2 (en) * 1990-08-29 1997-12-08 沖電気工業株式会社 Second harmonic generator
JP2718259B2 (en) * 1990-11-06 1998-02-25 松下電器産業株式会社 Short wavelength laser light source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2385114A1 (en) * 1977-03-23 1978-10-20 Thomson Csf THIN-LAYER NON-LINEAR OPTICAL DEVICE AND ITS MANUFACTURING PROCESS
JPS6014222A (en) * 1983-07-06 1985-01-24 Matsushita Electric Ind Co Ltd Optical wavelength converting element
JPS61290426A (en) * 1985-06-18 1986-12-20 Sharp Corp Higher harmonic generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Leit.Vol.21 No.4(1972)pp.140−141

Also Published As

Publication number Publication date
JPS6482022A (en) 1989-03-28

Similar Documents

Publication Publication Date Title
US5640405A (en) Multi quasi phase matched interactions in a non-linear crystal
EP0485187A2 (en) Second harmonic generator using a laser as a fundamental wave source
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
JP3129028B2 (en) Short wavelength laser light source
JP2676743B2 (en) Waveguide type wavelength conversion element
KR0174775B1 (en) Lasing system with wavelength=conversion waveguide
JPH0523410B2 (en)
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
JP2725302B2 (en) Waveguide type wavelength conversion element
JP2658381B2 (en) Waveguide type wavelength conversion element
JPH01257922A (en) Waveguide type wavelength converting element
JP3111786B2 (en) Short wavelength laser light source
JP2666540B2 (en) Waveguide type wavelength conversion element
JP7100906B2 (en) Method for manufacturing optical resonators and light modulators
JP2738155B2 (en) Waveguide type wavelength conversion element
JPH02189527A (en) Waveguide type wavelength converting element
JP2688102B2 (en) Optical wavelength converter
JPH0223323A (en) Waveguide type wavelength converting element
JPH02282233A (en) Waveguide type wavelength converting element
JPH01238630A (en) Waveguide type wavelength transducing element
JPH06194703A (en) Wavelength converting element
JP2982366B2 (en) Waveguide type wavelength conversion element
JP2004020571A (en) Wavelength transformation device
JPH0331828A (en) Wavelength converting element
JPH03197932A (en) Light wavelength converter