JPH01238630A - Waveguide type wavelength transducing element - Google Patents

Waveguide type wavelength transducing element

Info

Publication number
JPH01238630A
JPH01238630A JP6646188A JP6646188A JPH01238630A JP H01238630 A JPH01238630 A JP H01238630A JP 6646188 A JP6646188 A JP 6646188A JP 6646188 A JP6646188 A JP 6646188A JP H01238630 A JPH01238630 A JP H01238630A
Authority
JP
Japan
Prior art keywords
waveguide
light
plane
side wall
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6646188A
Other languages
Japanese (ja)
Inventor
Yoshinori Ota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6646188A priority Critical patent/JPH01238630A/en
Publication of JPH01238630A publication Critical patent/JPH01238630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the waveguide type wavelength transducing element of the structure with which secondary higher harmonics are obtd. from the plane waveguide by providing a side wall onto the crystal plane of lithium niobate in the direction nearly orthogonal with the Z-axis thereof and providing a channel optical waveguide and the plane waveguide along the side wall. CONSTITUTION:A substrate 1 is the crystal plate of LiNbO3 and the side wall 2 progressing in the direction nearly orthogonal with the Z-axis is provided on this crystal plane. The channel light guide 3 is formed on the crystal plane along the side wall 2. The plane waveguide 4 is provided in combination on the same crystal plane on which the channel optical waveguide 3 is formed. The wave front propagation direction is rotated in the plane waveguide 4 when a basic wave of 0.83mum wavelength is injected to the channel optical waveguide 3 by using semiconductor laser 10 light as the basic wave. This light is then radiated from the crystal end face as the SHG light 6 of 0.415mum which is the secondary higher harmonics at about 16-17 deg. angle from the Y-axis by having the spreading angle one-dimensionally in the perpendicular direction of the waveguide and is transduced to a circularly collimated beam 8 by a cylindrical lens 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コヒーレントな短波長小型光源の実現を可能
にする波長変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wavelength conversion element that makes it possible to realize a coherent short wavelength compact light source.

〔従来の技術〕[Conventional technology]

波長変換素子とくに第2次高調波発生(SHG)素子は
、エキシマレーザなどでは得にくいコヒーレントな短波
長光を得るデバイスとして産業上極めて重要である。
Wavelength conversion elements, especially second harmonic generation (SHG) elements, are extremely important in industry as devices that obtain coherent short wavelength light that is difficult to obtain with excimer lasers or the like.

半導体レーザは小型で高出力のコヒーレントレーザ光源
として各種の光通信機器や光情報機器に使用されている
。現在この半導体レーザから得られる光の波長は0.7
8μm〜1.55μmの近赤外領域の波長である。この
半導体レーザをデイスプレィ等、さらに広く各穐機器に
応用するために、赤色、緑色、青色等、より短波長の光
が求められているが、現在の技術ではこの種の半導体レ
ーザをにわかに実現するのは難しい。半導体レーザの出
力程度でも効率よく波長変換できる波長変換素子が実現
できるとその効果は甚大である。
Semiconductor lasers are used as compact, high-power coherent laser light sources in various optical communication devices and optical information devices. Currently, the wavelength of light obtained from this semiconductor laser is 0.7
The wavelength is in the near-infrared region of 8 μm to 1.55 μm. In order to apply this semiconductor laser to a wider variety of devices such as displays, there is a need for light with shorter wavelengths such as red, green, and blue, but with current technology it is not possible to quickly realize this type of semiconductor laser. It's difficult. If a wavelength conversion element capable of efficiently converting wavelength even with the output of a semiconductor laser could be realized, the effect would be enormous.

近年半導体レーザの製作技術が発達して、従来にも増し
て高出力の特性が得られるようになってきた。このなめ
、光導波路型のSHG素子を構成すれば、光の回折によ
るエネルギ密度の減少を回避でき、半導体レーザ程度の
光強度でも比較的高い変換効率で波長変換素子を実現で
きる可能性がある。このような例として、ニオブ酸リチ
ウム結晶に光導波路を形成し、この光導波路に近赤外光
を透過し、これから結晶基板中に放射(チェレンコフ輻
射)される第2次高調波を得る方式のSHG素子の発明
がある(特開昭60−14222、特開昭6l−940
31)。この方式のSHG素子は、基本波とSHG波と
の位相整合条件が自動的に取れているため、精密な温度
調節が必要ないという特長を持つ、反面SHG出力が基
板放射光であるため波面が特異で、収差のきつい、あた
かも「細い眉毛」の様な強度分布の光が基板の端面から
出てくる。このため、この光をガウス状強度分布の通常
の使い易いビームに変換するには、この収差を補正する
高級なレンズを必要とする。
In recent years, semiconductor laser manufacturing technology has developed, and it has become possible to obtain higher output characteristics than ever before. For this reason, by configuring an optical waveguide type SHG element, it is possible to avoid a decrease in energy density due to light diffraction, and it is possible to realize a wavelength conversion element with relatively high conversion efficiency even with a light intensity comparable to that of a semiconductor laser. An example of this is a method in which an optical waveguide is formed in a lithium niobate crystal, near-infrared light is transmitted through the optical waveguide, and the second harmonic is radiated (Cherenkov radiation) into the crystal substrate. There is an invention of SHG element (Japanese Patent Laid-Open No. 60-14222, Japanese Patent Laid-Open No. 61-940)
31). This type of SHG element has the advantage that it does not require precise temperature control because the phase matching condition between the fundamental wave and the SHG wave is automatically established.On the other hand, since the SHG output is substrate radiation, the wavefront is Light with a unique, severe aberration, and an intensity distribution similar to that of "thin eyebrows" emerges from the edge of the substrate. Therefore, converting this light into a normal, easy-to-use beam with a Gaussian intensity distribution requires a high-grade lens that corrects this aberration.

SHG出力光も半導体レーザの出射光と同じようにチャ
ンネル導波光であれば、または、少なくとも1次元方向
には導波された平面導波光であれば、円レンズないしは
円筒レンズを用いて容易に平行ビームに変換することが
でき、このような不便は生じない。
If the SHG output light is channel waveguided light like the output light of a semiconductor laser, or if it is plane waveguided light guided in at least one dimension, it can be easily parallelized using a circular or cylindrical lens. It can be converted into a beam, and such inconvenience does not occur.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上述の従来の導波型SHG素子の持つ難点を
取り除き、SHG出力光が平面導波光となる構造の導波
路型波長変換素子を提供することにある。
An object of the present invention is to provide a waveguide type wavelength conversion element having a structure in which the SHG output light becomes planar waveguide light by eliminating the drawbacks of the above-mentioned conventional waveguide type SHG element.

〔課題を解決するための手段〕[Means to solve the problem]

X板またはY板ニオブ酸リチウム結晶面上のZ軸にほぼ
直交する方向に進む側壁を設け、該側壁に沿って前記ニ
オブ酸リチウム結晶面上に形成されたチャンネル光導波
路と、該チャンネル光導波路を形成した同一の結晶面上
に形成された平面導波路からなり、前記チャンネル光導
波路に基本波(周波数ω)を注入し、前記平面導波路か
ら前記基本波の第2高調波を得るように前記チャンネル
、平面の各光導波路を設けることによって、SHG出力
光に波面収差のない導波路型波長変換素子が得られる。
A channel optical waveguide provided with a side wall extending in a direction substantially perpendicular to the Z axis on an X-plate or Y-plate lithium niobate crystal plane, and formed on the lithium niobate crystal plane along the side wall, and the channel optical waveguide. A fundamental wave (frequency ω) is injected into the channel optical waveguide, and a second harmonic of the fundamental wave is obtained from the planar waveguide. By providing the channel and planar optical waveguides, a waveguide type wavelength conversion element in which the SHG output light has no wavefront aberration can be obtained.

〔実施例〕〔Example〕

以下本発明を実施例に基づき図面を用いて詳細に説明す
る。
The present invention will be described in detail below based on embodiments and with reference to the drawings.

図は本発明の一実施例である導波路型波長変換素子の構
造を示す図である。1はLiNbO3結晶板であり、基
板方位はX板(すなわち、基板に立てた法線はX軸)で
ある。この結晶面上に、Z軸にほぼ直交する方向に進む
側壁2を設け、この側壁に沿って、ニオブ酸リチウム結
晶面上にチャンネル光導波路3が形成されている。そし
て、このチャンネル光導波路3を形成した同一の結晶面
上に、平面導波路4が併せて設けられている。
The figure is a diagram showing the structure of a waveguide type wavelength conversion element which is an embodiment of the present invention. 1 is a LiNbO3 crystal plate, and the substrate orientation is the X plate (that is, the normal line to the substrate is the X axis). A side wall 2 extending in a direction substantially perpendicular to the Z-axis is provided on this crystal plane, and a channel optical waveguide 3 is formed on the lithium niobate crystal plane along this side wall. A planar waveguide 4 is also provided on the same crystal plane on which the channel optical waveguide 3 is formed.

上記2つの光導波路は以下のような構造をしている。入
射光であり結晶基板1のX面に、Z軸に平行な電界成分
を持つTE波の基本波5を保持するチャンネル光導波路
3は、通常よく使われる方法である安息香酸やピロ燐酸
等に加熱浸漬するプロトン(H+)交換によって形成さ
れており、その厚さは、例えば基本波として波長0.8
3μm半導体レーザ(10)光を使用した場合に単一モ
ード導波路となるように設定しである。この基本波から
非線形光学定数d3sを介してSMC光が放射される。
The above two optical waveguides have the following structures. The channel optical waveguide 3 that holds the fundamental wave 5 of the TE wave, which is incident light and has an electric field component parallel to the Z axis, on the X plane of the crystal substrate 1, is formed by using benzoic acid, pyrophosphoric acid, etc., which is a commonly used method. It is formed by proton (H+) exchange during heating and immersion, and its thickness is, for example, at a wavelength of 0.8 as the fundamental wave.
It is set so that it becomes a single mode waveguide when a 3 μm semiconductor laser (10) light is used. SMC light is emitted from this fundamental wave via a nonlinear optical constant d3s.

このSMC光は、基本波と同じ偏波の導波光TE波であ
り、このSMC光を出射光6の平面導波光として出射さ
せる平面導波路4は、チャンネル光導波路3と同一の結
晶面上に形成されており、上記のプロトン(H+)交換
やTi熱拡散法によって設けられている。この平面導波
路は、0.83μmの基本波の2次高調波である波長0
.415μmの光に対しては、単一モード導波路となっ
ており、基本波の0.83μm光に対しては、はぼカッ
トオフとなるようにその厚さを設定しである。
This SMC light is a guided light TE wave with the same polarization as the fundamental wave, and the planar waveguide 4 that outputs this SMC light as the planar waveguide light of the output light 6 is on the same crystal plane as the channel optical waveguide 3. It is formed by the above-mentioned proton (H+) exchange or Ti thermal diffusion method. This planar waveguide has a wavelength of 0, which is the second harmonic of the fundamental wave of 0.83 μm.
.. For light of 415 μm, it is a single mode waveguide, and for light of 0.83 μm, which is the fundamental wave, its thickness is set so as to provide a rough cutoff.

基本波とSMC光との位相整合は次のように実現してい
る。基本波が伝搬するH+交換チャンネル光導波路3の
波長0.83μm基本波に対する等偏屈折率n(V′l
は2.34程度であり、波長0.415 μm5HG光
に対する平面導波i4の基本波と同一方向く即ちY方向
)に伝搬するTE波に対する等偏屈折率ntotall
は2,32程度である。このため、2つの波の位相定数
に差があるため同一伝搬方向ては基本波からSHG光へ
の変換は生しない。波面伝搬方向かY方向からZ方向に
回転すると、等偏屈折率は増大する。Y軸から16〜1
7度程度振れると、平面導波路4のTE波に対する等偏
屈折率nf21Ll)は、前述のチャンネル光導波路3
をY方向に伝搬する基本波に対する等偏屈折率と等しく
なる。この方向にSHG光6が放射される。この条件は
、2の側壁か無く、−様に平面構造であったならば、Y
軸を挟んで+Z、−7両方向に存在し、SHG光への変
換効率は半減するが、本実施例のように、側壁2を設け
であるため、一方向へ効率よく変換が達成される。
Phase matching between the fundamental wave and the SMC light is realized as follows. The equipolarized refractive index n(V'l
is about 2.34, and the equipolarized refractive index ntoll for the TE wave propagating in the same direction as the fundamental wave of the planar waveguide i4 for the wavelength 0.415 μm 5HG light (ie, the Y direction)
is about 2.32. Therefore, since there is a difference in the phase constants of the two waves, conversion from the fundamental wave to SHG light does not occur in the same propagation direction. When the wavefront propagation direction is rotated from the Y direction to the Z direction, the equipolar refractive index increases. 16-1 from Y axis
When deflected by about 7 degrees, the equipolarized refractive index nf21Ll) of the planar waveguide 4 for the TE wave becomes the same as that of the channel optical waveguide 3 described above.
is equal to the equipolarized refractive index for the fundamental wave propagating in the Y direction. SHG light 6 is emitted in this direction. This condition is that if there is no side wall of 2 and the planar structure is like -, then Y
The light exists in both +Z and -7 directions across the axis, and the conversion efficiency to SHG light is halved, but since the side wall 2 is provided as in this embodiment, conversion is efficiently achieved in one direction.

Y軸から16〜17度程度の角度で変換された平面導波
SHG光6は、導波路垂直方向に1次元的に広がり角度
を持って結晶端面から放射され、円筒レンズ7によって
、円形コリメートビーム8に変換される。図に於ける結
晶のY面が平行に形成されていたならば、円形コリメー
トSHG光8は、Y軸から8度程度振れた方向に進行す
るか、ここでもし、実装上の都合で、Y軸と平行に進行
させない場合には、SHG光6が出射する端面を数度の
角度の斜めの端面9を形成しておけばよい。
The planar waveguide SHG light 6 converted at an angle of about 16 to 17 degrees from the Y axis is emitted from the crystal end face with a one-dimensional spread angle in the direction perpendicular to the waveguide, and is converted into a circular collimated beam by the cylindrical lens 7. Converted to 8. If the Y-plane of the crystal in the figure were formed parallel, the circularly collimated SHG light 8 would travel in a direction deviated by about 8 degrees from the Y-axis, or if the Y-plane was If the SHG light 6 does not travel parallel to the axis, the end face from which the SHG light 6 is emitted may be formed as an oblique end face 9 with an angle of several degrees.

平面導波路4が、イオン交換法やTi熱拡散法等の単一
プロセスで形成されていて、結晶端面から放射されるS
 HG光の導波路垂直方向への強度分布に非対称か生じ
、円筒レンズ7で交換されたコリメート光8が、ガウス
状円形ビームから形状が隔たる場合には、平面導波路4
を埋め込み構造にして、放射光強度分布を対称化するこ
とも可能である。これは、上記の製造プロセスの後、マ
クネシウム等の屈折率を低下させる原子を熱拡散法等で
、追拡散させるという公知の技術を用いることで実現さ
れる。
The planar waveguide 4 is formed by a single process such as an ion exchange method or a Ti thermal diffusion method, and the S emitted from the crystal end face is
If the intensity distribution of the HG light in the direction perpendicular to the waveguide is asymmetrical and the collimated light 8 exchanged by the cylindrical lens 7 differs in shape from the Gaussian circular beam, the planar waveguide 4
It is also possible to make the emitted light intensity distribution symmetrical by making it a buried structure. This is achieved by using a known technique of additionally diffusing atoms that lower the refractive index, such as magnesium, by thermal diffusion or the like after the above manufacturing process.

〔発明の効果〕〔Effect of the invention〕

以上説明のように、本発明によれはSHG出力光に波面
収差のない、安定な導波路型波長変換素子が得られる。
As described above, according to the present invention, a stable waveguide type wavelength conversion element in which the SHG output light has no wavefront aberration can be obtained.

また、本発明の第2の特長は、前述の従来例と異なって
X板ないしはY板を用いており、Z板を用いていないた
めに、半導体レーザを直接導波路端面に接続でき、Z板
の場合のように半波長板を介したり、半導体レーザを9
0度傾けたりする必要がなく、実装上極めて好都合であ
る。
The second feature of the present invention is that, unlike the conventional example described above, an X plate or a Y plate is used, and a Z plate is not used. As in the case of
There is no need to tilt it by 0 degrees, which is extremely convenient in terms of implementation.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の導波路型波長変換素子の構造を
説明する斜視図である。 1・・LiNbO3結晶基板、2・・側壁、3・・・チ
ャンネル光導波路、4・・・平面導波路。 代理人 弁理士  内 原  晋
The figure is a perspective view illustrating the structure of a waveguide type wavelength conversion element according to an embodiment of the present invention. 1...LiNbO3 crystal substrate, 2...side wall, 3...channel optical waveguide, 4...plane waveguide. Agent Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims]  X板またはY板ニオブ酸リチウム結晶面上のZ軸にほ
ぼ直交する方向に進む側壁を設け、該側壁に沿つて前記
ニオブ酸リチウム結晶面上に形成されたチャンネル光導
波路と、該チャンネル光導波路を形成した同一の結晶面
上に形成された平面導波路からなり、前記チャンネル光
導波路に基本波(周波数ω)を注入し、前記平面導波路
から前記基本波の第2高調波を得るように前記チャンネ
ル、平面の両光導波路を設けたことを特徴とする導波路
型波長変換素子。
A channel optical waveguide provided with a side wall extending in a direction substantially perpendicular to the Z axis on an X-plate or Y-plate lithium niobate crystal plane, and formed on the lithium niobate crystal plane along the side wall, and the channel optical waveguide. A fundamental wave (frequency ω) is injected into the channel optical waveguide, and a second harmonic of the fundamental wave is obtained from the planar waveguide. A waveguide-type wavelength conversion element characterized in that it is provided with both the channel and planar optical waveguides.
JP6646188A 1988-03-18 1988-03-18 Waveguide type wavelength transducing element Pending JPH01238630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6646188A JPH01238630A (en) 1988-03-18 1988-03-18 Waveguide type wavelength transducing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6646188A JPH01238630A (en) 1988-03-18 1988-03-18 Waveguide type wavelength transducing element

Publications (1)

Publication Number Publication Date
JPH01238630A true JPH01238630A (en) 1989-09-22

Family

ID=13316436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6646188A Pending JPH01238630A (en) 1988-03-18 1988-03-18 Waveguide type wavelength transducing element

Country Status (1)

Country Link
JP (1) JPH01238630A (en)

Similar Documents

Publication Publication Date Title
US5504616A (en) Wavelength conversion device
US5515471A (en) Frequency doubler and short wave laser source using the same and optical data processing apparatus using the short wave laser source
US4925263A (en) Proton-exchanged waveguides for sum-frequency generation
JP3129028B2 (en) Short wavelength laser light source
JPH02254427A (en) Optical wavelength converter
JP2725302B2 (en) Waveguide type wavelength conversion element
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
JP2676743B2 (en) Waveguide type wavelength conversion element
JPH01257922A (en) Waveguide type wavelength converting element
JPH01238630A (en) Waveguide type wavelength transducing element
JP2658381B2 (en) Waveguide type wavelength conversion element
JP3147412B2 (en) Incident taper optical waveguide and wavelength conversion element using the same
JPH02189527A (en) Waveguide type wavelength converting element
JPH02282233A (en) Waveguide type wavelength converting element
JP2666540B2 (en) Waveguide type wavelength conversion element
JPH05232538A (en) Wavelength converting element and its production
JPH0223323A (en) Waveguide type wavelength converting element
JP3052693B2 (en) Optical wavelength conversion element, method of manufacturing the same, short wavelength coherent light generator using optical wavelength conversion element, and method of manufacturing optical wavelength conversion element
JP2688102B2 (en) Optical wavelength converter
JP2738155B2 (en) Waveguide type wavelength conversion element
JPH03132628A (en) Wavelength converting element
JPH02189528A (en) Waveguide type wavelength converting element
JP2982366B2 (en) Waveguide type wavelength conversion element
JPH03197932A (en) Light wavelength converter
JPH06194703A (en) Wavelength converting element