JPH06194703A - Wavelength converting element - Google Patents

Wavelength converting element

Info

Publication number
JPH06194703A
JPH06194703A JP29945292A JP29945292A JPH06194703A JP H06194703 A JPH06194703 A JP H06194703A JP 29945292 A JP29945292 A JP 29945292A JP 29945292 A JP29945292 A JP 29945292A JP H06194703 A JPH06194703 A JP H06194703A
Authority
JP
Japan
Prior art keywords
wave
wavelength
light
waveguide
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29945292A
Other languages
Japanese (ja)
Other versions
JP2643735B2 (en
Inventor
Yoshinori Ota
義徳 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29945292A priority Critical patent/JP2643735B2/en
Publication of JPH06194703A publication Critical patent/JPH06194703A/en
Application granted granted Critical
Publication of JP2643735B2 publication Critical patent/JP2643735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To stably convert the output beam of a semiconductor laser to secondary higher harmonics at a high efficiency even in the case where the wavelength is fluctuated and the ambient temperature is changed. CONSTITUTION:In a surface of a non-linear optical crystal 1, which is formed of linear grid spontaneous polarization in the depth direction of a substrate so as to be reversed periodically, a wave-guide 3 is formed, of which equivalent refractive index is gradually changed in the beam transmission direction. Even in the case where the wavelength of the basic wave is fluctuated and the refractive index of the crystal is changed by a change of the ambient temperature, the Cerenkov angle, which satisfies the phase aligning condition of the basic wave and the secondary higher harmonics, always coincides with the main direction of the diffraction of the secondary polarization wave to be excited by the basic wave. A wavelength converting element having a stabilized high efficiency is thereby obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コヒーレントな短波長
小型光源の実現を可能にする、半導体レーザ用波長変換
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion element for a semiconductor laser, which makes it possible to realize a coherent short-wavelength compact light source.

【0002】[0002]

【従来の技術】波長変換素子とくに第2次高調波発生
(SHG)素子は、エキシマレーザなどでは得にくいコ
ヒーレントな短波長光を得るデバイスとして産業上極め
て重要である。
2. Description of the Related Art A wavelength conversion element, especially a second harmonic generation (SHG) element, is extremely important industrially as a device for obtaining coherent short-wavelength light which is difficult to obtain with an excimer laser or the like.

【0003】半導体レーザは小型で高出力のコヒーレン
ト光を発振する光源として各種の光通信機器や光情報機
器に使用されている。現在この半導体レーザから得られ
る光の波長は0.63μm〜1.55μmの赤色から近
赤外領域の波長である。この半導体レーザをディスプレ
イ等、さらに広く機器に応用するために、緑色、青色
等、より短波長の光が求められているが、現在の技術で
はこの種の半導体レーザをにわかに実現するのは難し
い。半導体レーザの出力程度でも効率よく波長変換でき
る波長変換素子が実現できるとその効果は甚大である。
Semiconductor lasers are used in various optical communication equipments and optical information equipments as a light source that oscillates a compact and high-power coherent light. Currently, the wavelength of light obtained from this semiconductor laser is in the red to near infrared region of 0.63 μm to 1.55 μm. In order to apply this semiconductor laser to a wider range of devices such as displays, light of shorter wavelengths such as green and blue is required, but it is difficult to realize this kind of semiconductor laser with the current technology. If a wavelength conversion element that can efficiently perform wavelength conversion even at the output of a semiconductor laser can be realized, its effect will be great.

【0004】近年半導体レーザの製作技術が発達して、
従来にも増して高出力の特性が得られるようになってき
た。このため、光導波路型のSHG素子を構成すれば、
光の回折によるエネルギー密度の減少を回避でき、半導
体レーザ程度の光強度でも、比較的高い変換効率で波長
変換素子を実現できる可能性がある。その様な例とし
て、ニオブ酸リチウム結晶に光導波路を形成し、この光
導波路に近赤外光を透過し、これから結晶基板中に放射
(チェレンコフ輻射)される第2次高調波を得る方式の
SHG素子の発明がある(特開昭60−14222号公
報、特開昭61−94031号公報及び特開平2−93
624号公報参照)。この方式のSHG素子は、基本波
とSHG波との位相整合条件が自動的に取れているた
め、精密な温度調節が必要ないという特長を持つ。しか
しながらその反面、以下のような2つの大きな難点があ
る。その第一は、導波光である基本波と放射光であるS
HG光とは電磁界分布が大幅に異なるため、基本波から
SHG光への変換効率が低く、半導体レーザの出力レベ
ル(最大百mW程度)では0.2%程度と実用的ではな
い。
With the recent development of semiconductor laser manufacturing technology,
It has become possible to obtain higher output characteristics than ever before. Therefore, if an optical waveguide type SHG element is constructed,
There is a possibility that the reduction of the energy density due to the diffraction of light can be avoided, and the wavelength conversion element can be realized with a relatively high conversion efficiency even with the light intensity of a semiconductor laser. As an example of such a method, an optical waveguide is formed in a lithium niobate crystal, near-infrared light is transmitted through this optical waveguide, and a second harmonic wave that is radiated into the crystal substrate (Cherenkov radiation) is obtained. There is an invention of the SHG element (JP-A-60-14222, JP-A-61-94031 and JP-A-2-93).
No. 624). The SHG element of this system has a characteristic that a precise temperature control is not necessary because the phase matching condition between the fundamental wave and the SHG wave is automatically obtained. However, on the other hand, there are the following two major drawbacks. The first is the fundamental wave, which is guided light, and S, which is emitted light.
Since the electromagnetic field distribution is significantly different from that of HG light, the conversion efficiency from the fundamental wave to SHG light is low, and the output level of the semiconductor laser (up to about 100 mW) is about 0.2%, which is not practical.

【0005】すなわち導波基本波から放射2次高調波へ
の変換の効率に寄与する因子としては、非線形光学定数
の大小および位相整合がとれていることは勿論である
が、上で述べた基本波とSHG放射光との電磁界分布の
整合がもうひとつ重要である。これを詳しく分析すれ
ば、導波路を伝わる基本波は、非線形光学定数を介し
て、基本波の界分布に対応した分布の、2倍の周波数の
分極波を生成する。この分極波の、回折パターンの主峰
の方向と基本波の位相速度(屈折率)と合致する方向と
が等しい時に、その方向へ分極波が加算的に累積され、
効率の良いSHG光が放射される。
That is, the factors contributing to the efficiency of conversion from the guided fundamental wave to the radiated second harmonic are, of course, the magnitude of the nonlinear optical constant and the phase matching. Matching the electromagnetic field distribution between the wave and the SHG radiation is another important factor. When this is analyzed in detail, the fundamental wave propagating through the waveguide generates a polarized wave having a frequency twice that of the distribution corresponding to the field distribution of the fundamental wave via the nonlinear optical constant. When the direction of the main peak of the diffraction pattern of this polarized wave and the direction matching the phase velocity (refractive index) of the fundamental wave are equal, the polarized wave is cumulatively accumulated in that direction,
Efficient SHG light is emitted.

【0006】上記の従来発明の例では、基本波の波長
0.84μmの場合で、チェレンコフ放射角は16.2
度と報告されている。一方、導波路を導かれている基本
波のモード分布は、直径2μm程度のガウス状の分布と
近似され、発生する2次分極波の分布もこれと等しい。
この分極波の回折パターンはエアリ回折パターンで大ま
かではあるが近似され、導波路進行方向が最大で、基板
深さ斜め方向の角度には急激に強度を低下させる。直径
2μmの分極波のエアリ回折像の最初の強度0となる角
度は7度程度であり、上記のチェレンコフ放射角16.
2度はその外であるため、分極波の強度は極めて小さ
い。上記の従来発明の効率の悪さはこのように概略解釈
できる。
In the above-mentioned conventional example, the Cherenkov radiation angle is 16.2 when the wavelength of the fundamental wave is 0.84 μm.
It is reported that the degree. On the other hand, the mode distribution of the fundamental wave guided through the waveguide is approximated to a Gaussian distribution with a diameter of about 2 μm, and the distribution of the generated secondary polarization wave is also equal to this.
The diffraction pattern of this polarized wave is approximated by an Airy diffraction pattern, although it is roughly approximated to the maximum in the waveguide traveling direction, and the intensity sharply decreases at an angle in the oblique direction of the substrate depth. The angle at which the intensity of the polarized wave having a diameter of 2 μm is 0 at the beginning of the Airy diffraction image is about 7 degrees, and the Cherenkov radiation angle 16.
The intensity of the polarization wave is extremely small because it is outside of 2 degrees. The inefficiency of the conventional invention described above can be roughly interpreted in this way.

【0007】分極波の回折パターンの主峰の方向とチェ
レンコフ放射角とを等しくできれば、効率の高い導波路
型波長変換素子が構成できる。
If the direction of the main peak of the polarized wave diffraction pattern and the Cherenkov radiation angle can be made equal, a highly efficient waveguide type wavelength conversion element can be constructed.

【0008】従来のチェレンコフ放射型波長変換素子の
発明の難点の第2は、周囲温度や基本波である半導体レ
ーザの発振光の波長変動によって、SHG光の放射角の
変動やこれに伴う効率が大きく変動することである。即
ち、光学結晶のほとんどが、青色光の波長近傍に吸収端
を有す。このため、この付近での屈折率の波長変動や温
度変動は大きい。周知の如く、上記の構成でのチェレン
コフ放射角は、基本波導波光の等価屈折率とSHG光波
長での異常光屈折率の比のcosで定まる。SHG光波
長での異常光屈折率が温度や波長で大きく変化し、これ
によりSHGの放射角が変わることにともなってSHG
出力が大きく変動し、実用に不便である。とくにこの効
果は、効率を上げんがために放射角を基板すれすれに浅
くしようとして、導波路の構成を工夫し、基本波に対す
る等価屈折率をSHG光に対する基板の異常光屈折率に
近付けるようにした場合に、とくに影響が強く出る。
The second difficulty of the invention of the conventional Cherenkov radiation type wavelength conversion element is that the variation of the emission angle of the SHG light and the efficiency associated therewith are caused by the ambient temperature and the wavelength variation of the oscillation light of the semiconductor laser which is the fundamental wave. It is a big change. That is, most optical crystals have an absorption edge near the wavelength of blue light. Therefore, the wavelength variation of the refractive index and the temperature variation in this vicinity are large. As is well known, the Cherenkov radiation angle in the above configuration is determined by the ratio cos of the equivalent refractive index of the fundamental wave guided light and the extraordinary refractive index at the SHG light wavelength. The extraordinary refractive index at the SHG light wavelength changes greatly with temperature and wavelength, which changes the emission angle of the SHG, resulting in SHG.
The output fluctuates greatly, which is inconvenient for practical use. In particular, this effect is to try to make the radiation angle shallower than the substrate in order to increase the efficiency, devise the structure of the waveguide, and make the equivalent refractive index for the fundamental wave close to the extraordinary optical refractive index of the substrate for SHG light. If you do, the effect is particularly strong.

【0009】上記の難点から、従来のタイプの波長変換
素子は実用に供されていない。
Due to the above-mentioned problems, the conventional type wavelength conversion element has not been put to practical use.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記の従来
の導波路SHG素子の持つ、変換効率が低く、基本波波
長変動や、周囲温度変化等に伴って生ずる屈折率の変化
によって変換効率が大きく変動するという難点を取り除
き、しかも作製条件が緩いという特長をもつ波長変換素
子を提供することにある。
SUMMARY OF THE INVENTION The present invention has a low conversion efficiency of the above-described conventional waveguide SHG element, and the conversion efficiency is caused by a change in the refractive index caused by a fundamental wavelength variation, ambient temperature change, or the like. It is intended to provide a wavelength conversion element having a feature that the manufacturing conditions are relaxed while eliminating the difficulty that the value fluctuates greatly.

【0011】[0011]

【課題を解決するための手段】自発分極が直線格子状に
周期的に反転して形成されている非線形光学結晶の表面
に、基本波光の透過方向が、前記自発分極反転周期の作
る格子ベクトルに対してほぼ直交し、その等価屈折率が
光透過方向に徐々に変化した光導波路を形成するか、ま
たは、結晶表面に自発分極が直線格子状に周期的に反転
して形成されている非線形光学結晶のその表面に、基本
波光の透過方向が、前記自発分極反転周期の作る格子ベ
クトルに対して直交方向より僅かずれて設けられ、その
等価屈折率が光透過方向に徐々に変化した光導波路を形
成するか、または、結晶表面に自発分極が直線格子状に
周期的に反転して形成されている非線形光学結晶のその
表面に、等価屈折率が一定の光導波路を形成し、前記自
発分極反転周期の作る格子ベクトルの方向と前記光導波
路の光透過方向との成す角度を、前記光導波路の光透過
方向に沿って徐々に変化するように、前記光導波路の軌
跡が曲線状となるように設けるか、また、非線形光学結
晶の表面に曲線格子状に自発分極の周期反転を形成し、
該表面に等価屈折率が一定の直線状の光導波路を設ける
か、の上記3つの何れかの手段によって、高効率で、温
度変化や波長変化等に対して効率が安定な導波型波長変
換素子が得られる。
Means for Solving the Problems On the surface of a non-linear optical crystal in which spontaneous polarization is periodically inverted in a linear lattice shape, the transmission direction of the fundamental wave light is the lattice vector created by the spontaneous polarization inversion period. Non-linear optics that are almost orthogonal to each other and form an optical waveguide whose equivalent refractive index gradually changes in the light transmission direction, or that spontaneous polarization is periodically inverted in a linear lattice pattern on the crystal surface. An optical waveguide is provided on the surface of the crystal in which the transmission direction of the fundamental wave light is slightly deviated from the orthogonal direction with respect to the lattice vector formed by the spontaneous polarization inversion period, and the equivalent refractive index of which gradually changes in the light transmission direction. An optical waveguide having a constant equivalent refractive index is formed on the surface of a nonlinear optical crystal formed by periodically inverting the spontaneous polarization in a linear lattice shape on the surface of the crystal. Periodic Whether the path of the optical waveguide is curved so that the angle formed by the direction of the lattice vector and the light transmitting direction of the optical waveguide gradually changes along the light transmitting direction of the optical waveguide. , In addition, periodic inversion of spontaneous polarization is formed in a curved lattice on the surface of the nonlinear optical crystal,
By providing a linear optical waveguide having a constant equivalent refractive index on the surface, or by any one of the above-mentioned three means, the guided wavelength conversion with high efficiency and stable efficiency against temperature change, wavelength change, etc. The device is obtained.

【0012】[0012]

【実施例】以下本発明を実施例に基づき図面を用いて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments with reference to the drawings.

【0013】(実施例1)図1は本発明の第一の実施例
である導波路型波長変換素子の構造を示す図でああり、
1は有効な2次非線形光学材料であるニオブ酸リチウム
(LiNbO3 )結晶であり、基板方位はzである。こ
の結晶は、既に知られている製法(結晶成長時に結晶引
き上げ方向に自発分域の反転周期を形成する方法)によ
って、基板の深さ方向に層状に自発分極の反転周期2が
形成されている。
(Embodiment 1) FIG. 1 is a diagram showing the structure of a waveguide type wavelength conversion element according to a first embodiment of the present invention.
1 is a lithium niobate (LiNbO 3 ) crystal which is an effective second-order nonlinear optical material, and the substrate orientation is z. In this crystal, the spontaneous polarization inversion period 2 is formed in layers in the depth direction of the substrate by a known method (method of forming the spontaneous domain inversion period in the crystal pulling direction during crystal growth). .

【0014】この結晶基板1の表面には、基本波光を導
波する導波路を形成してある。この実施例では、基本波
波長における屈折率が、基板であるLiNbO3 結晶の
基本波波長の異常光屈折率(ne (ω))より大きい材
料(例えば酸化チタン(TiO2 )を、基板表面にリッ
ジ状に薄く装荷して、チャンネル導波路3としてある。
該チャンネル導波路3に基本波(例えば波長0.83μ
m)である半導体レーザ10の発振光を注入し、TMの
基本波導波モードを注入する。この基本波光は結晶の非
線形光学定数d3 3 を介して2倍の周波数の2次分極波
を励起する。基本波光が伝搬するにつれて、次々と放射
される2次分極波は、基本波と2次高調波との位相が整
合した方向に、干渉して強め合いビーム状になって伝搬
する。従来技術の問題点に述べたように、この2次分極
波の放射パターンと疑似的ではあるが基本波に位相が整
合した2次高調波の伝搬方向、即ちチェレンコフ角が一
致していれば、基本波からSHG光6への変換効率が高
い。
A waveguide for guiding the fundamental wave light is formed on the surface of the crystal substrate 1. In this example, a material (for example, titanium oxide (TiO 2 )) whose refractive index at the fundamental wavelength is larger than the extraordinary light refractive index (n e (ω)) at the fundamental wavelength of the substrate LiNbO 3 crystal is used as the substrate surface. Then, the channel waveguide 3 is thinly loaded in a ridge shape.
A fundamental wave (for example, a wavelength of 0.83 μm) is introduced into the channel waveguide 3.
m), the oscillation light of the semiconductor laser 10 is injected, and the TM fundamental wave guided mode is injected. This fundamental wave light excites a secondary polarization wave having a frequency doubled via the nonlinear optical constant d 3 3 of the crystal. As the fundamental wave light propagates, the secondary polarized waves radiated one after another interfere with each other in the direction in which the phases of the fundamental wave and the second harmonic wave are matched to each other and propagate in the form of a strengthening beam. As described in the problems of the prior art, if the radiation pattern of the secondary polarized wave is pseudo, but the propagation direction of the secondary higher harmonic whose phase is matched with the fundamental wave, that is, the Cherenkov angle is the same, The conversion efficiency from the fundamental wave to the SHG light 6 is high.

【0015】本実施例では、結晶基板は深さ方向に予め
自発分極が反転した周期層を形成している。図2に示す
ように、自発分極が反転した層の間では2次分極波の位
相は180度反転する。各層から発した分極波(図2の
5)の合成波面の進行方向θB は周期場におけるブラッ
グ角となり、SinθB =λ(2ω)/(Λa ・n(2
ω))で与えられる。ここで、λ(2ω)およびn(2
ω)は2次高調波の空気中での波長並びにそこでの屈折
率、Λa は自発分極反転周期である。一方、チェレンコ
フ角θC はCosθC =N(ω)/n(2ω)で与えら
れる。ここで、N(ω)は基本波導波モード(図2の
4)の等価屈折率である。θB =θC となるように、自
発分極反転周期Λa と基本波導波モード等価屈折率N
(ω)を設定すれば、基本波からSHG光への高い変換
効率が実現する。
In this embodiment, the crystal substrate has a periodic layer in which the spontaneous polarization is inverted in advance in the depth direction. As shown in FIG. 2, the phase of the secondary polarization wave is inverted by 180 degrees between the layers in which the spontaneous polarization is inverted. The traveling direction θ B of the composite wave front of the polarization wave (5 in FIG. 2) emitted from each layer becomes the Bragg angle in the periodic field, and Sin θ B = λ (2ω) / (Λ a · n (2
ω)) is given. Where λ (2ω) and n (2
ω) is the wavelength of the second harmonic in air and the refractive index there, and Λ a is the spontaneous polarization inversion period. On the other hand, Cherenkov angle theta C is given by Cosθ C = N (ω) / n (2ω). Here, N (ω) is the equivalent refractive index of the fundamental wave guided mode (4 in FIG. 2). Spontaneous polarization inversion period Λ a and fundamental wave guided mode equivalent refractive index N such that θ B = θ C.
By setting (ω), high conversion efficiency from the fundamental wave to SHG light is realized.

【0016】例えば、文献等で確認されている自発分極
反転周期Λa を3μmとした場合、上記の波長に対しブ
ラッグ角θB は3.43度程度となる。この角度と等し
いチェレンコフ角θC を与える条件は、N(ω)=0.
998n(2ω)となり、リッジ導波路を形成するTi
2 のリッジ部の高さは〜300nm程度と設定すれば
よいことになる。これらは容易に実現できる。
For example, when the spontaneous polarization inversion period Λ a confirmed in the literature is set to 3 μm, the Bragg angle θ B becomes about 3.43 degrees with respect to the above wavelength. The condition for giving the Cherenkov angle θ C equal to this angle is N (ω) = 0.
998n (2ω) and Ti forming a ridge waveguide
The height of the ridge portion of O 2 should be set to about 300 nm. These can be easily realized.

【0017】さらに、前述の課題で述べたように、半導
体レーザは、その発振波長がロット間で異なり、また温
度によって3オングストローム/度程度の波長変動を生
ずる。これら波長の個差や温度変動を吸収する効果を波
長変換素子が具備していなければ、コストの面で工業的
に成り立たない。本実施例ではこのような効果を下記の
ように具現化してある。
Further, as described in the above-mentioned subject, the oscillation wavelength of the semiconductor laser differs between lots, and the wavelength varies by about 3 angstrom / degree depending on the temperature. Unless the wavelength conversion element has the effect of absorbing these wavelength differences and temperature fluctuations, the cost cannot be industrially established. In this embodiment, such effects are embodied as follows.

【0018】市販の半導体レーザの発振波長のばらつき
に関する出荷使用は±10nm程度と規定されている。
基本波波長が0.83μmから0.01μm変動した場
合、ブラッグ角も変動する。この角度が再びチェレンコ
フ角となるためには基本波の等価屈折率N(ω)は2.
317から2.297の範囲をカバーして設定されてい
ればよい。
The shipping use regarding the variation of the oscillation wavelength of a commercially available semiconductor laser is regulated to about ± 10 nm.
When the fundamental wave wavelength varies from 0.83 μm to 0.01 μm, the Bragg angle also varies. In order for this angle to become the Cherenkov angle again, the equivalent refractive index N (ω) of the fundamental wave is 2.
It may be set so as to cover the range of 317 to 2.297.

【0019】即ち、図1に示すように基本波を導波する
リッジ型導波路のリッジ部の幅を光透過方向に一様では
なく、等価屈折率が徐々に変化するように、楔状に設け
てある。リッジ部の幅が狭くなるほど透過屈折率は小さ
くなるので、波長や材料屈折率が変化しても、自発分極
の反転周期による2次分極波が干渉して強められる方向
(ブラッグ角)と、位相整合条件(チェレンコフ角)と
が一致する等価屈折率をあたえるリッジ部幅の導波路部
位で波長変換が強くおこる。常に2つの角度が一致する
という条件が満たされる。このため、安定した波長変換
が実現される。
That is, as shown in FIG. 1, the width of the ridge portion of the ridge type waveguide for guiding the fundamental wave is not uniform in the light transmitting direction, but is provided in a wedge shape so that the equivalent refractive index gradually changes. There is. Since the transmission refractive index becomes smaller as the width of the ridge portion becomes narrower, even if the wavelength or the material refractive index changes, the direction (Bragg angle) in which the secondary polarization wave due to the inversion period of the spontaneous polarization interferes and is strengthened, and the phase Wavelength conversion strongly occurs at the waveguide portion of the ridge width that gives an equivalent refractive index that matches the matching condition (Cherenkov angle). The condition that the two angles always match is satisfied. Therefore, stable wavelength conversion is realized.

【0020】(実施例2)図3は本発明の第二の実施例
である導波路型波長変換素子の構造を示す図であり、1
は有効な2次非線形光学材料であるニオブ酸リチウム
(LiNbO3 )結晶であり、基板方位はy板であり、
基板表面はzx面にとってある。この結晶は、実施例1
と同じように、既に知らされている製法によって、基板
の主面z方向に沿って層状に自発分極の反転周期2が形
成されている。この結晶基板1の表面には、基本波光を
x方向から僅かに角度を振った方向に導波する導波路3
を形成してある。導波路の形成方法は、実施例1と同じ
としてある。すなわち、基本波波長における屈折率が、
基板であるLiNbO3 結晶の基本波波長の異常光屈折
率(ne (ω))より大きい材料(例えば酸化チタン
(TiO2 ))を、基板表面にリッジ状に薄く装荷し
て、チャンネル導波路3としてある。該チャンネル導波
路3に基本波(例えば波長0.83μm)である半導体
レーザの発振光11を注入し、TEの基本波導波モード
を起す。
(Embodiment 2) FIG. 3 is a view showing the structure of a waveguide type wavelength conversion device according to a second embodiment of the present invention.
Is an effective second-order nonlinear optical material, lithium niobate (LiNbO 3 ) crystal, and the substrate orientation is the y-plate,
The substrate surface is on the zx plane. This crystal is from Example 1.
Similarly to the above, the spontaneous polarization reversal period 2 is formed in layers in the z direction of the principal surface of the substrate by the known method. On the surface of the crystal substrate 1, a waveguide 3 for guiding the fundamental wave light in a direction slightly swung from the x direction.
Has been formed. The method of forming the waveguide is the same as that of the first embodiment. That is, the refractive index at the fundamental wavelength is
A material (for example, titanium oxide (TiO 2 )) larger than the extraordinary refractive index (n e (ω)) of the fundamental wavelength of LiNbO 3 crystal, which is the substrate, is thinly loaded in a ridge shape on the substrate surface to form a channel waveguide. There are three. Oscillation light 11 of a semiconductor laser having a fundamental wave (for example, a wavelength of 0.83 μm) is injected into the channel waveguide 3 to generate a TE fundamental wave guided mode.

【0021】この実施例の動作原理は、自発分極反転層
周期と導波路形成面との方位の関係が、実施例1の場合
とは90度異なるが、ほぼ類似する。しかしながら、全
くの類似構成ではない。すなわち、自発分極反転周期の
格子ベクトルΚa と基本波ベクトルΚ(ω)とが、実施
例1のように正に直交していると、条件を満たす2次高
調波ベクトルΚ(2ω)は、導波路の両側に存在し、S
HG光は両側に分散して出力するため、効率悪く利用し
にくい。これを避け、導波路の片側にSHG光が放射さ
れるように、本実施例では、基本波光導波路の光透過方
向をx軸よりずらして設定してある。波数ベクトル間の
整合関係を表したのが図4(a)である。基本波の波数
ベクトルはx軸よりθ(ω)傾いて入射する。この図で
は、基本波等価屈折率(N(ω))が2次高調波の屈折
率(ne (2ω))より小さい場合を示す。2つの基本
波ベクトルΚ(ω)と、2次高調波ベクトルΚ(2ω)
1つとが自発分極反転周期ベクトルΚa を介して三角形
を形成したとき、SHG光が効率よく生成される。すな
わち、整合条件は、次式のようになる。
The operating principle of this embodiment is substantially similar to that of the first embodiment, although the relationship between the spontaneous polarization inversion layer period and the azimuth of the waveguide forming surface differs by 90 degrees from that of the first embodiment. However, it is not a completely similar structure. That is, when the lattice vector K a of the spontaneous polarization inversion period and the fundamental wave vector K (ω) are orthogonal to each other as in the first embodiment, the second harmonic vector K (2ω) satisfying the condition is Exists on both sides of the waveguide, S
Since the HG light is dispersed and output on both sides, it is inefficient and difficult to use. In this embodiment, the light transmission direction of the fundamental wave optical waveguide is shifted from the x axis so that the SHG light is emitted to one side of the waveguide while avoiding this. FIG. 4A shows the matching relationship between wave number vectors. The wave number vector of the fundamental wave is incident with an inclination of θ (ω) from the x-axis. This figure shows a case where the fundamental wave equivalent refractive index (N (ω)) is smaller than the refractive index (n e (2ω)) of the second harmonic. Two fundamental wave vector K (ω) and second harmonic vector K (2ω)
When one and the other form a triangle via the spontaneous polarization inversion period vector K a , SHG light is efficiently generated. That is, the matching condition is expressed by the following equation.

【0022】Κ(2ω)Sinθ(2ω)=2Κ(ω)
Sinθ(ω)+Κa Κ(2ω)Cosθ(2ω)=2Κ(ω)Cosθ
(ω) 基本波の波数ベクトルはx軸よりθ(ω)傾いているた
め、逆方向に向くΚaによっては、閉じた三角形を形成
することはない。即ち、整合条件は満たされず、条件を
満たす方向のみにSHG光は効率よく放射される。図4
(b)のように、基本波のベクトルを傾けずにx軸方向
に取った場合は、整合条件を満たす2次高調波ベクトル
(2ω)の方向は、x軸を挟んで対称に2方向に存在
し、2次高調はのパワーは分散され、効率が上がらな
い。
K (2ω) Sin θ (2ω) = 2K (ω)
Sinθ (ω) + K a K (2ω) Cosθ (2ω) = 2K (ω) Cosθ
(Ω) Since the wave number vector of the fundamental wave is inclined by θ (ω) with respect to the x-axis, a closed triangle is not formed depending on K a facing in the opposite direction. That is, the matching condition is not satisfied, and the SHG light is efficiently emitted only in the direction satisfying the condition. Figure 4
As shown in (b), when the vector of the fundamental wave is taken in the x-axis direction without being tilted, the direction of the second-order harmonic vector (2ω) satisfying the matching condition is symmetrical in two directions with the x-axis interposed. The second harmonic is present and the power of the second harmonic is distributed and the efficiency is not increased.

【0023】さらに、第一の実施例と同様、基本波等価
屈折率を光透過方向に分散して配するように、導波路構
造を作ってあるため、波長変動、屈折率変動にも耐えら
れる構造としてある。例えば設計例として、自発分極反
転格子のピッチΛa を5μmとし、基本波導波路方向と
自発分極反転格子ベクトルΚa となす角度を60度と設
定し、基本波等価屈折を2.257から2.277の範
囲をカバーするように設定すれば、基本波波長の0.8
3±0.01μmの範囲でこの素子は動作する。
Further, as in the first embodiment, since the waveguide structure is formed so as to disperse the fundamental wave equivalent refractive index in the light transmitting direction, it can withstand the wavelength fluctuation and the refractive index fluctuation. It is as a structure. For example, as a design example, the pitch Λ a of the spontaneous polarization inversion grating is set to 5 μm, the angle between the fundamental wave waveguide direction and the spontaneous polarization inversion grating vector K a is set to 60 degrees, and the fundamental wave equivalent refraction is from 2.257 to 2.25. If set so as to cover the range of 277, 0.8 of the fundamental wavelength will be
This device operates in the range of 3 ± 0.01 μm.

【0024】この実施例は、第1の実施例がSHG光を
基板内部に放射させるために、或程度基板の厚さを通常
以上必要なのに較べ、基板水平面内の放射であるため、
基板の厚さを特に要しない特長を持つ。
In this embodiment, since the SHG light is radiated into the substrate in the first embodiment, and the thickness of the substrate is required to be larger than usual to some extent, the radiation is in the horizontal plane of the substrate.
It has the feature that the thickness of the substrate is not required.

【0025】上記第一、第二の実施例では、自発分極反
転周期を育成時に形成しておいた結晶から基板を切り出
して用いる場合を述べたが、勿論、現在よく用いられて
いる、単分域化した結晶から基板成形した後、プロセス
によって反転分域を任意の形に形成する方法で得た基板
を用いてもよい。上記の実施例の説明ではy板を使用す
ることを述べたが、この場合には、z板を用い、基本
波、SHG光ともに基板に垂直な電界成分を持つ偏向
(TM波)を利用することになる。
In the above first and second embodiments, the case where the substrate is cut out from the crystal formed at the time of growing the spontaneous polarization inversion period and used is described. A substrate obtained by a method of forming an inversion domain into an arbitrary shape by a process after forming the substrate from the crystallized crystal may be used. Although the y-plate is used in the description of the above embodiment, in this case, the z-plate is used and both the fundamental wave and the SHG light utilize the deflection (TM wave) having an electric field component perpendicular to the substrate. It will be.

【0026】(実施例3)図5は本発明の第三の実施例
である導波路型波長変換素子の構造を示す図であり、1
は第一、第二の実施例と同様、有効な2次非線形光学材
料であるニオブ酸リチウム(LiNbO3 )結晶であ
り、基板方位はz板であり、基板表面はzx面にとって
ある。この結晶は、既に知られている製法によって、基
板の主面に曲線ストライプ状に自発分極の反転周期2が
形成されている。この結晶基板1の表面には、基本波光
を導波する直線のリッジ導波路が形成してある。導波路
の形成方法は、実施例1及び2と同じとしてある。
(Embodiment 3) FIG. 5 is a view showing the structure of a waveguide type wavelength conversion device according to a third embodiment of the present invention.
Like in the first and second embodiments, is a lithium niobate (LiNbO 3 ) crystal which is an effective second-order nonlinear optical material, the substrate orientation is the z plate, and the substrate surface is in the zx plane. In this crystal, the inversion period 2 of the spontaneous polarization is formed in a curved stripe shape on the main surface of the substrate by a known method. On the surface of the crystal substrate 1, a straight ridge waveguide for guiding the fundamental wave light is formed. The method of forming the waveguide is the same as in the first and second embodiments.

【0027】この導波路に半導体レーザの発振光10を
注入し、TMの基板波導波モード4を励起する。基本波
から2次高調波6へ変換される。この実施例では、波長
変動や屈折率変動に対する素子の余裕度(冗長性)をも
たせる構造として、前述第二、第三の実施例のように基
本波モードの等価屈折率の大きさ(すなわち、波数ベク
トルΚ(ω)の長さ)を、光透過方向に分散させるので
はなく、自発分極反転格子ベクトルΚa の基本波波数ベ
クトルΚ(ω)となす角度を分散させている。即ち、リ
ッジ型導波路3の幅は光透過方向に一定とし、自発分極
の格子の方向に角度をもたせ、大きさが一定な自発分極
反転格子ベクトルΚa に対する、基本波の波数ベクトル
Κ(ω)の角度を分散させている。これによって、波長
や屈折率が変動しても、Κ(ω)、Κ(2ω)及びΚa
のベクトルが閉じた三角形を形成する導波路の曲部近傍
で、効率高い波長変換が行なわれる。
The oscillation light 10 of the semiconductor laser is injected into this waveguide to excite the TM substrate wave guided mode 4. The fundamental wave is converted into the second harmonic wave 6. In this embodiment, as a structure for providing a margin (redundancy) of the element with respect to wavelength fluctuation and refractive index fluctuation, the magnitude of the equivalent refractive index of the fundamental wave mode (that is, The length of the wave number vector K (ω) is not dispersed in the light transmission direction, but the angle formed between the spontaneous polarization inversion lattice vector K a and the fundamental wave number vector K (ω) is dispersed. That is, the width of the ridge waveguide 3 is constant in the light transmitting direction, remembering angle in the direction of the grating of the spontaneous polarization, on the size constant spontaneous polarization inversion grating vector kappa a, the wave vector of the fundamental wave kappa (omega ) Angle is dispersed. As a result, even if the wavelength or the refractive index changes, K (ω), K (2ω) and K a
A highly efficient wavelength conversion is performed in the vicinity of the curved portion of the waveguide forming the triangle whose vector is closed.

【0028】例えば、自発分極反転格子をピッチΛa
5μm、半径60mm程度の同心円状に構成すると、基
本波波長の0.83±0.01μmの範囲でこの素子は
変換効率の変動を来す事なく動作する。
For example, the spontaneous polarization reversal grating has a pitch Λ a =
When it is configured in a concentric circle shape with a radius of about 5 μm and a radius of about 60 mm, this device operates within the range of 0.83 ± 0.01 μm of the fundamental wave wavelength without fluctuation in conversion efficiency.

【0029】(実施例4)実施例3では自発分極の格子
の方向に角度をもたせ、波長変動や屈折率変動に対する
素子の余裕度(冗長性)を付与する構造とした。相補的
な構成として、第4図に示すように、自発分極反転周期
は直線形状に形成し、基本波導波路の軌跡に曲率を持た
せる事も可能であるため。容易に類推できるように、実
施例3と同じ効果を実現できる。
(Embodiment 4) In Embodiment 3, an angle is formed in the direction of the lattice of spontaneous polarization to provide a margin (redundancy) of the element with respect to wavelength fluctuation and refractive index fluctuation. As a complementary structure, as shown in FIG. 4, the spontaneous polarization inversion period can be formed in a linear shape so that the locus of the fundamental wave waveguide has a curvature. The same effect as that of the third embodiment can be realized so that it can be easily inferred.

【0030】以上の実施例では、非線形光学結晶とし
て、ニオブ酸リチウム結晶を用いて説明したが、この結
晶と同様に非線形光学効果が大きく、自発分極を空間的
に反転させうる結晶としてタンタル酸リチウム結晶やK
TP(KTiOPO4 )結晶などが知らされており、こ
れらを用いることも勿論可能である。また、有機非線形
材料では、LB膜のように、分子の配向を周期的に反転
させうる事が知らされている。このような、材料と成膜
方法を用いても、本発明の効果を実現することが出来
る。
In the above embodiments, a lithium niobate crystal was used as the nonlinear optical crystal. However, similar to this crystal, the nonlinear optical effect is large and lithium tantalate is a crystal capable of spatially reversing the spontaneous polarization. Crystals and K
TP (KTiOPO 4 ) crystals and the like are known, and it is of course possible to use these. It has been known that the organic non-linear material can periodically reverse the orientation of molecules like the LB film. The effects of the present invention can be realized even by using such materials and film forming methods.

【0031】また、基本波導波路を形成する材料や、形
成方法は、すでに集積光学技術において、有用性が明ら
かになっている数多くの手法を用いることが出来る。
As the material for forming the fundamental wave waveguide and the method for forming the same, many methods which have already proved useful in the integrated optical technology can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の構造を示す斜視図であ
る。
FIG. 1 is a perspective view showing a structure of a first embodiment of the present invention.

【図2】本発明の第一の実施例の構造を示す断面図であ
る。
FIG. 2 is a sectional view showing the structure of the first embodiment of the present invention.

【図3】本発明の第二の実施例の構造を示す斜視図であ
る。
FIG. 3 is a perspective view showing a structure of a second embodiment of the present invention.

【図4】波数ベクトルの整合条件を示す図である。FIG. 4 is a diagram showing matching conditions of wave number vectors.

【図5】本発明の第三の実施例の構造を示す斜視図であ
る。
FIG. 5 is a perspective view showing the structure of a third embodiment of the present invention.

【図6】本発明の第四の実施例の構造を示す上面図であ
る。
FIG. 6 is a top view showing the structure of the fourth exemplary embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 LiNbO3 結晶 2 自発分極反転周期 3 リッジ型光導波路 4 基本波モード 5 2次分極波 6 SHG光 10 半導体レーザ 11 発振光(基本波) 31 リッジ型導波路リッジ部1 LiNbO 3 crystal 2 spontaneous polarization inversion period 3 ridge type optical waveguide 4 fundamental wave mode 5 second order polarization wave 6 SHG light 10 semiconductor laser 11 oscillation light (fundamental wave) 31 ridge type waveguide ridge section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 自発分極が基板深さ方向に周期的に反転
して形成されている非線形光学結晶の表面に、基本波光
の等価屈折率が光透過方向に徐々に変化した導波路を形
成したことを特徴とする波長変換素子。
1. A waveguide in which the equivalent refractive index of fundamental wave light gradually changes in the light transmission direction is formed on the surface of a nonlinear optical crystal in which spontaneous polarization is periodically inverted in the substrate depth direction. A wavelength conversion element characterized by the above.
【請求項2】 自発分極が基板表面に沿って周期的に反
転して形成されている非線形光学結晶の表面に、基本波
光の透過方向が、前記自発分極反転周期の作る格子ベク
トルに対してほぼ直角に近いが有限な角度を有し、その
等価屈折率が光透過方向に徐々に変化した導波路を形成
したことを特徴とする波長変換素子。
2. The surface of a nonlinear optical crystal in which spontaneous polarization is periodically inverted along the surface of a substrate, the transmission direction of the fundamental wave light is almost equal to the lattice vector formed by the spontaneous polarization inversion period. A wavelength conversion element characterized by forming a waveguide having a finite angle which is close to a right angle and whose equivalent refractive index is gradually changed in the light transmitting direction.
【請求項3】 自発分極が基板表面に沿って周期的に反
転して形成されている非線形光学結晶の表面に光導波路
が形成され、前記自発分極反転周期の作る格子ベクトル
の方向と前記光導波路の光透過方向との成す相対角度
が、前記光導波路の光透過方向に沿って徐々に変化して
いることを特徴とする波長変換素子。
3. An optical waveguide is formed on the surface of a nonlinear optical crystal in which spontaneous polarization is periodically inverted along the surface of a substrate, and the direction of a lattice vector formed by the spontaneous polarization inversion period and the optical waveguide. The wavelength conversion element is characterized in that the relative angle formed with the light transmission direction of (1) gradually changes along the light transmission direction of the optical waveguide.
JP29945292A 1992-11-10 1992-11-10 Wavelength conversion element Expired - Fee Related JP2643735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29945292A JP2643735B2 (en) 1992-11-10 1992-11-10 Wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29945292A JP2643735B2 (en) 1992-11-10 1992-11-10 Wavelength conversion element

Publications (2)

Publication Number Publication Date
JPH06194703A true JPH06194703A (en) 1994-07-15
JP2643735B2 JP2643735B2 (en) 1997-08-20

Family

ID=17872762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29945292A Expired - Fee Related JP2643735B2 (en) 1992-11-10 1992-11-10 Wavelength conversion element

Country Status (1)

Country Link
JP (1) JP2643735B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002099008A (en) * 2000-09-26 2002-04-05 Japan Science & Technology Corp Asymmetric polarizability distribution periodically arranged secondary harmonic generating device
JP2002350915A (en) * 2001-05-30 2002-12-04 Ngk Insulators Ltd Wavelength transformation element, optical waveguide device for wavelength transformation, harmonic component generating device and method for manufacturing wavelength transformation element
JP2018040980A (en) * 2016-09-08 2018-03-15 浜松ホトニクス株式会社 Wavelength conversion element and wavelength conversion optical pulse waveform shaping device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002099008A (en) * 2000-09-26 2002-04-05 Japan Science & Technology Corp Asymmetric polarizability distribution periodically arranged secondary harmonic generating device
JP2002350915A (en) * 2001-05-30 2002-12-04 Ngk Insulators Ltd Wavelength transformation element, optical waveguide device for wavelength transformation, harmonic component generating device and method for manufacturing wavelength transformation element
JP2018040980A (en) * 2016-09-08 2018-03-15 浜松ホトニクス株式会社 Wavelength conversion element and wavelength conversion optical pulse waveform shaping device

Also Published As

Publication number Publication date
JP2643735B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
US5640405A (en) Multi quasi phase matched interactions in a non-linear crystal
JP2721436B2 (en) Second harmonic generator
JPH05333395A (en) Optical wavelength conversion device
US5504616A (en) Wavelength conversion device
JP2685969B2 (en) Second harmonic generator
JP2693582B2 (en) Wavelength conversion element
JP2647190B2 (en) Optical wavelength converter
EP1180717B1 (en) Optical harmonic generator
JP2643735B2 (en) Wavelength conversion element
JPH06110095A (en) Method and device for generating millimeter wave and submillimeter wave
JPH05341344A (en) Wavelength conversion element
JPH0651359A (en) Wavelength conversion element, short wavelength laser device and wavelength variable laser device
JP2982366B2 (en) Waveguide type wavelength conversion element
JPH06265951A (en) Optical wavelength converter
JPH07202309A (en) Short wavelength laser light source
JP2658381B2 (en) Waveguide type wavelength conversion element
JP3322708B2 (en) Optical harmonic generator
JPH0593931A (en) Wavelength conversion element and short wavelength laser beam source
US20090028195A1 (en) System and method for frequency conversion of coherent light
JP3447078B2 (en) Optical wavelength conversion element
JP2666540B2 (en) Waveguide type wavelength conversion element
TWI225948B (en) Single-fanout cascaded grating quasi-phase-matched nonlinear optical crystal and wavelength conversion and tunable laser system using the same
De Micheli Second Harmonic Generation in “Cerenkov Configuration”
JP2822807B2 (en) Wavelength conversion element
JPH0331828A (en) Wavelength converting element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees