JPS60241716A - Operation control system of multiterminal transmission system - Google Patents

Operation control system of multiterminal transmission system

Info

Publication number
JPS60241716A
JPS60241716A JP59092885A JP9288584A JPS60241716A JP S60241716 A JPS60241716 A JP S60241716A JP 59092885 A JP59092885 A JP 59092885A JP 9288584 A JP9288584 A JP 9288584A JP S60241716 A JPS60241716 A JP S60241716A
Authority
JP
Japan
Prior art keywords
voltage
converter
terminal
setting value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59092885A
Other languages
Japanese (ja)
Other versions
JPH0213531B2 (en
Inventor
進 堀内
清 後藤
小西 博雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP59092885A priority Critical patent/JPS60241716A/en
Publication of JPS60241716A publication Critical patent/JPS60241716A/en
Publication of JPH0213531B2 publication Critical patent/JPH0213531B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は直流多端子送電系統の運転制御方式に係シ、特
に事故時に安定運転を行うに好適な直流多端子送電系統
の運転制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an operation control method for a DC multi-terminal power transmission system, and particularly to an operation control method for a DC multi-terminal power transmission system suitable for stable operation in the event of an accident.

〔従来技術〕[Prior art]

3つ以上の変換器が直流送電線(送電線は長さOでも良
い)に並列に接続された並列直流多端子送電系統を安定
に運転するためには、多端子送電系統の1変換所(器)
で直流系統の電圧決定を行わせ、残シは電流決定を行わ
せるのがよい。このための具体的な方法として2端子送
電の場合と同様な考えで、順変換器の電流設定値の和と
逆変換器の電流設定値の和との間に電流マージンをもた
せる運転制御方式が考えられているが、この関係を常に
満足させるために高速の通信装置が必要となる欠点があ
る。この対策として、変換器に前もって余裕をもたせて
おき、異常時にその余裕金くいつぶすことによって常に
安定運転を行わせる運転制御方式が考えられている。し
かし、この運転制御方式においても、直流多端子送電系
統の電圧設定値をうまく選び、系統の電圧決定を行わせ
ないと安定な運転は行えない。
In order to stably operate a parallel DC multi-terminal power transmission system in which three or more converters are connected in parallel to a DC transmission line (the length of the transmission line may be O), one converter station of the multi-terminal power transmission system ( vessel)
It is better to have the DC system voltage determined at 1, and the current determined at the remaining locations. A specific method for this purpose is an operation control method that provides a current margin between the sum of the current settings of the forward converter and the sum of the current settings of the inverse converter, based on the same idea as in the case of two-terminal power transmission. However, the drawback is that a high-speed communication device is required to always satisfy this relationship. As a countermeasure to this problem, an operation control method is being considered in which the converter is provided with a margin in advance and the margin is used up in the event of an abnormality to ensure stable operation at all times. However, even with this operation control method, stable operation cannot be achieved unless the voltage setting value of the DC multi-terminal power transmission system is carefully selected and the voltage of the system is determined.

たとえば、第1図に示すような順変換器が2つ(几EC
I、 RFe5)逆変換器が2) (InVl、 Cv
2)直流リアクトルDCLf、介して線路DLに並列に
接続されて構成される4端子送電系統を考え、各各の変
換器の実電流値11にいま仮シに、ReC1の’i =
10’O(A) 、 Re C2のfz =50 (A
) 、InvlのIg=50(A)、Inv2の14=
100 (A) とする。
For example, there are two forward converters (EC
I, RFe5) The inverter is 2) (InVl, Cv
2) Considering a 4-terminal power transmission system configured with a DC reactor DCLf connected in parallel to the line DL, let's assume that the actual current value 11 of each converter is 'i = 'i of ReC1.
10'O(A), fz of Re C2 = 50 (A
), Ig of Invl = 50 (A), Inv2 = 14
100 (A).

このときの定常運転時の動作は第2図(a)の各変換器
の電圧(Vd) −’WL流(Ia)特性上の100点
となる。
The operation during steady operation at this time corresponds to 100 points on the voltage (Vd)-'WL flow (Ia) characteristic of each converter shown in FIG. 2(a).

図中、Is Is Is I4は各変換器の電流設定値
で (11+Iz) (Is+l4)=ΔIdの関係がある
。但し、ΔId:電流マージン。また、各変換器を流れ
る電流間には i1+1.==i、−1−i4 1+ :jz :j3:j4=100:50:50:1
00の関係がある。又、各変換器の電圧設定値にはEl
=B4>R2>R3 の関係がある。
In the figure, Is Is Is I4 is the current setting value of each converter, and there is a relationship of (11+Iz) (Is+l4)=ΔId. However, ΔId: current margin. Moreover, the current flowing through each converter is i1+1. ==i, -1-i4 1+ :jz :j3:j4=100:50:50:1
There are 00 relationships. Also, the voltage setting value of each converter has El.
There is a relationship of =B4>R2>R3.

尚、第1図においてT、は変圧器、ACは交流系統、C
0N0は中央制御装置、C0N1〜C0N4 は各端子
制御装置であシ、C0N0とC0NI〜C0N4の間は
通信装置C0M0〜C0M4により結ばれている。この
ような状態からInVlが故障により緊急に停止すると
、通信系COMが正常な場合は、Invlの停止によっ
てFL6C1又はReC2の電流を減らして安定運転が
行えるように電流設定値の調整を行う。しかし、通信系
が異常(例えばマイクロ波を使用しているときのフェー
ディング等)のときは、電流設定値の調整が行えず、こ
のため、R6C2には電流が流れず、更にReclの′
11t流とInv2の電流設定値が等しいために前述し
た電流マージンが無くなり、安定な運転が行えない、こ
のことを第2図(b)に示す。
In addition, in Figure 1, T is a transformer, AC is an alternating current system, and C
0N0 is a central control device, C0N1 to C0N4 are terminal control devices, and C0N0 and C0NI to C0N4 are connected by communication devices C0M0 to C0M4. When InVl suddenly stops due to a failure in such a state, if the communication system COM is normal, the current setting value is adjusted so that stable operation can be achieved by reducing the current of FL6C1 or ReC2 by stopping Invl. However, when there is an abnormality in the communication system (for example, fading when using microwaves), the current setting value cannot be adjusted, so no current flows through R6C2, and
Since the 11t current and the current setting value of Inv2 are equal, the above-mentioned current margin is lost, and stable operation cannot be performed. This is shown in FIG. 2(b).

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した不都合を除くために、多端子送
電系統の電圧決定をうまく選ぶことによって、異常時に
も安定な運転が行える制御方式を提供することにある。
SUMMARY OF THE INVENTION In order to eliminate the above-mentioned disadvantages, it is an object of the present invention to provide a control system that allows stable operation even in abnormal situations by appropriately selecting voltage determination for a multi-terminal power transmission system.

〔発明の概要〕[Summary of the invention]

上述した不都合は多端子系統の各変換所(器)の電圧設
定値の与え方が適切でないために生じることが明らかと
なったため本発明では、送電々力の最も大きい順変換器
又は受電々力の最も小さい逆変換器によって多端子系統
の電圧決定を行なうこととした。
It has become clear that the above-mentioned inconvenience occurs because the voltage setting value of each converter in a multi-terminal system is not properly given. Therefore, in the present invention, the forward converter with the largest power transmission power or the power receiving power We decided to determine the voltage of the multi-terminal system using the smallest inverter.

〔発明の実施例〕[Embodiments of the invention]

まず、夫々の端子で多端子系統の電圧決定を行なったと
きの運転状態について説明する。
First, the operating state when the voltage of the multi-terminal system is determined at each terminal will be explained.

第3図は、Beclの電圧設定値E1をRe1C2O設
定値E!より低く設定したときの健全状態(第3図(a
))と、InVlが緊急に停止した時(同図(b))を
示しておりいずれの場合にも安定な動作点@o1 ml
もしくは10#が得られる。
FIG. 3 shows the Becl voltage setting value E1 as Re1C2O setting value E! Healthy state when set lower (Figure 3 (a)
)) and when InVl suddenly stops ((b) in the same figure), and in both cases, the stable operating point @o1 ml
Or you can get 10#.

同様に第4図(旬はReC2に電圧決定を行わせている
場合の定常状態における各変換器の動作点″0#を示す
。このような状態からInVlが事故により緊急停止し
ても第4図(b)に示すように安定な動作点は得られず
、運転は行えない。しかし第4図(C)に示すように、
B、ec2に電圧の決定を行わせずに、l(、eclに
電圧決定を行わせれば1nVlが停止しても安定な動作
点60″かえられ、運転が行えることになる。さらに第
5図(ωはInV2に電圧決定を行わせた場合の運転状
態を示すが、この状態からInV2が緊急停止すると第
5図(b)に示すように安定な運転は行えず、この場合
は第3図(a)または第4図(C)で説明した運転状態
とするのが対策となる。即ち、逆変換器の緊急停止時に
は、順変換器の送電々力の大きい変換器の電圧設定値を
低くしておくのが、逆変換器緊急停止時に、次に多端子
系統の電圧決定変換器に選ばれるのが、電圧設定値の低
いものから順に選ばれるので、前述の電流マージンを十
分大きく確保するために好ましい。また、逆変換器の1
つに電圧決定を行わせる場合には受電々力の小さいもの
に電圧決定を行わせるのが、同様に逆変換器緊急停止時
に電流マージンを確保する上で得策となる。このため、
変換器の電流を常時見ておき、送電々力の最も大きい順
変換器ま九は受電々力の最も小さい逆変換器に優・先さ
せて系統の電圧決定を行わせるようにした。また、変換
器の電圧設定値は、送電々力の大きいものは小さいもの
よシ、他方、受電々力の小さいものは大きいものより低
くして異常時に電圧決定変換所に自動的に選ばれやすく
なるようにした。
Similarly, Fig. 4 shows the operating point "0#" of each converter in a steady state when ReC2 is used to determine the voltage. As shown in Figure 4(B), a stable operating point cannot be obtained and operation cannot be performed.However, as shown in Figure 4(C),
B, if you let l(, ecl determine the voltage without ec2 determining the voltage), even if 1nVl stops, the stable operating point will be changed to 60'', allowing operation.Furthermore, Fig. 5 (ω indicates the operating state when InV2 is made to determine the voltage, but if InV2 makes an emergency stop from this state, stable operation cannot be performed as shown in Fig. 5 (b), and in this case, Fig. 3 A countermeasure is to set the operating state as explained in (a) or Fig. 4 (C).In other words, in the case of an emergency stop of the reverse converter, the voltage setting value of the converter with a large power transmission power of the forward converter is lowered. The important thing to keep in mind is that in the event of an emergency stop of the inverter, the next voltage-determining converter in the multi-terminal system will be selected in order from the one with the lowest voltage setting value, so ensure that the aforementioned current margin is sufficiently large. Also, one of the inverters
Similarly, in order to ensure a current margin in the event of an emergency stop of the inverter, it is a good idea to have one with a small receiving power determine the voltage. For this reason,
The current of the converter is constantly monitored, and the forward converter with the highest power transmission power is given priority over the reverse converter with the lowest power reception power to determine the voltage of the system. In addition, the voltage setting value of the converter should be set lower for converters with large power transmission power than those with small power, and on the other hand, set lower than those with low power reception power so that the voltage setting value of the converter is more likely to be automatically selected by the converter station to determine the voltage in the event of an abnormality. I made it so.

本発明の一実施例を第6図〜第8図に示す。第6図は第
1図に示した中央制御装置C0N0の処理内容の1つで
ある多端子系統の電圧決定を行わせる変換器を選択する
処理ソフトである。まず、系統の電圧決定を順変換器1
(ecで行わせるときはYES、逆変換器で行わせると
きはNoの分岐を判定する。これはオペレータから任意
に与えられるものである。次に順変換器または逆変換器
の電流設定値のうちで、順変換器なら電流設定値の大き
い変換器、逆変換器なら電流設定値の小さい変換器を選
択し、次に選択された変換器に通信装置を介して電圧マ
ージン印加指令を出す。この処理によシ系統の電圧決定
変換器を指令する処理は終る。
An embodiment of the present invention is shown in FIGS. 6 to 8. FIG. 6 shows processing software for selecting a converter for determining the voltage of a multi-terminal system, which is one of the processing contents of the central control unit C0N0 shown in FIG. First, the system voltage is determined by forward converter 1.
(Determine YES if the EC is to be used, and NO if the inverse converter is to be used. This is given arbitrarily by the operator. Next, the current setting value of the forward converter or inverse converter is determined. Among these, a converter with a large current setting value is selected if it is a forward converter, and a converter with a small current setting value is selected if it is an inverse converter, and then a voltage margin application command is issued to the selected converter via the communication device. This process completes the process of commanding the voltage determining converters of the system.

中央制御装置はこの他に、各端子に変換電力の指令、順
・逆変換運転の指令、系統の起動・停止等の指令を作シ
、通信装置を介して各端子制御装置に指令する。従って
上述の各変換所の電流設定値は中央制御装置では既知で
あシ、上述の処理は問題なく行える。t#1、上述の中
で電流設定値の代わりに変換電力設定値を使って最大値
又は最小値の変換器を選択しても良い。この場合、電流
設定値は変換電力値を直流電圧で割った値であシ、直流
電圧は送電線の損失を無視すれば各端子において等しく
なるので電流設定値シ変換電力設定値と考えて良い。
In addition, the central control device issues commands to each terminal, such as conversion power commands, forward/reverse conversion operation commands, and system start/stop commands, and sends commands to each terminal control device via the communication device. Therefore, the current setting value of each converter station described above is known in the central control unit, and the above-mentioned processing can be performed without any problem. t#1, in the above, the converted power setting value may be used instead of the current setting value to select the converter with the maximum value or the minimum value. In this case, the current setting value is the value obtained by dividing the converted power value by the DC voltage, and since the DC voltage is equal at each terminal if the loss of the transmission line is ignored, the current setting value can be considered as the converted power setting value. .

第7図は変換器の電圧ffd)−電流(Ia)4?性を
示しており、Ilは電流設定値(中央制御装置より与え
られる)、E+’は電圧設定値で前もって設定された値
、Δニーは電流マージン、ΔE1は電圧マージンでいず
れも前もって設定された値で、電流または電圧設定値に
加算するか否かが、中央制御装置から指令され、電圧マ
ージンΔ砺印加指令が有シの場合は印加した変換所の電
圧設定値が多端子系統の変換器のうちで最も低い電圧設
定値となり、系統の電圧を決定することになる。
Figure 7 shows converter voltage ffd) - current (Ia) 4? Il is the current setting value (given by the central controller), E+' is the voltage setting value, which is a preset value, Δknee is the current margin, and ΔE1 is the voltage margin, which are all set in advance. Whether or not to add the current or voltage setting value to the current or voltage setting value is commanded from the central controller, and if the voltage margin ΔT application command is enabled, the voltage setting value of the applied converter station is added to the multi-terminal system converter. This is the lowest voltage setting value among them and determines the voltage of the grid.

第8図に具体的な各端子制御装置C0NIの制御回路の
ブロック線図を示す。C0M1は端子の通信装置、SW
I、 SW2は中央制御装置からの指令によりオンオフ
するスイッチ、SUMl、80M2は図示の極性で加算
を行う加算器、尚、IIは電流設定値、ΔIaは電流マ
ージン、liは変換器を流れる電流、E、′は電圧設定
値、eIは変換器の直流線路電圧、ΔE1は電圧マージ
ンで、各設定値の関係は第7図に示している。また、I
Iは中央制御装置から送られてくる指令値で、ΔL、Δ
E l rEI′は前もって設定された既知量である。
FIG. 8 shows a block diagram of a specific control circuit of each terminal control device C0NI. C0M1 is the terminal communication device, SW
I, SW2 are switches that are turned on and off according to commands from the central control device, SUMl, 80M2 are adders that add with the polarity shown in the figure, II is the current setting value, ΔIa is the current margin, li is the current flowing through the converter, E,' are the voltage setting values, eI is the DC line voltage of the converter, and ΔE1 is the voltage margin, and the relationship between each setting value is shown in FIG. Also, I
I is the command value sent from the central controller, ΔL, Δ
E l rEI' is a known quantity set in advance.

M什1゜AMP2は各々電流偏差及び電圧偏差を増幅す
る増幅器、LVは増幅器AMP1、またはAMP2の出
力のうち、出力値の小さい値を選択する電圧選択回路、
APは自動パルス移相器で入力電圧が小さいとき制御遅
れ角αが進み、大きいとき逆にき逆に遅れる特性をもっ
たパルスを出力する自動パルス移相器、GAはゲートア
ンプ回路で、この制御回路と変換器(サイリスタ三相ブ
リッジで構成)を組み合わせることにより第7図に示し
た電圧−電流特性をもった変換器とすることができる。
M1 AMP2 is an amplifier that amplifies the current deviation and voltage deviation, respectively; LV is a voltage selection circuit that selects a smaller output value from among the outputs of the amplifier AMP1 or AMP2;
GA is a gate amplifier circuit; By combining the control circuit and the converter (consisting of a three-phase thyristor bridge), a converter having the voltage-current characteristics shown in FIG. 7 can be obtained.

電圧マージン、電流マージンを加えないときの変換器の
電圧−電流特性は第7図中の実線のようになシ、定常運
転時の動作点は順変換器運転のとき01点、逆変換器運
転のとき02点となる。変換器が電圧決定をするときは
、この電圧設定値に電圧マージンが加わシ、特性は一点
鎖線で示したようになる。このとき順変換器運転時は電
流設定値がII十Δ■−に、逆変換器運転時はL−Δ工
、4に設定される。動作点は電圧決定を行わない場合と
同様Os 、02点となる。
The voltage-current characteristic of the converter when no voltage margin or current margin is added is as shown by the solid line in Figure 7.The operating point during steady operation is 01 point when the converter is operating in a forward direction, and the operating point is 01 when the converter is operating in a reverse direction. 02 points when . When the converter determines the voltage, a voltage margin is added to this voltage setting value, and the characteristics are as shown by the dashed line. At this time, when the forward converter is operating, the current setting value is set to II+Δ■-, and when the reverse converter is operating, the current setting value is set to L-Δcm, 4. The operating point is the Os, 02 point, which is the same as in the case where voltage determination is not performed.

第6図から第8図の実施例に↓シ、前述した電圧決定の
変換器を送電々力の最本大きな変換器または受電々力の
最も小さい変換器に行わせることができることは明らか
であり、第3図、第4図で示したように異常時の安定運
転が行える。
From the embodiments shown in FIGS. 6 to 8, it is clear that the voltage determination described above can be performed by the converter with the largest power transmission power or the converter with the smallest power reception power. , as shown in FIGS. 3 and 4, stable operation can be achieved in the event of an abnormality.

前述の実施例では系統の電圧決定変換所の電圧設定値の
与え方の方法について説明し九が、電圧決定端子以外の
電流指定を行う変換器の電圧設定値も変換電力に応じて
変えておくと、電圧決定変換器が誤って緊急停止した場
合に、も、次の変換電力の大きな変換器が電圧決定端子
に選ばれることになるので好ましい。この際、順変換器
は逆変換器よりも優先させるようにするのが、異常時に
電圧マージンを確保する上で良い、このための中央制御
装置の電圧決定順位を決める処理ソフトを第9図に示す
。まず、順変換器のうちの変換電力の大きなものから順
に変換器の順位づけ、続いて逆変換器のうちの変換電力
の小さいものから順に変換器の順位づけを行う。この場
合、各端子の電圧設定値を中央制御装置から与えるよう
にするのがよい。これは電圧設定値を各端子で前もって
設定しておき、電圧マージンの値を通信装置を介して各
端子に送るよりも同じアナログ量を送るならば電圧設定
値を送った方がトラプルが少なくて済み、各端子制御装
置を簡単となるからである。このときの各端子の制御回
路のブロック線図を第1O図に示し、上述した様に、電
圧設定値B、/は電流設定値I+と同様、中央制御装置
から送られてくることになり、前述の実施例で述べたよ
うな電圧マージンの考えはこの場合不必要となる。その
他のブロックは第8図と1−j様であり、帆明は省略す
る。
In the above-mentioned embodiment, the method of giving the voltage setting value of the voltage determining converter station of the grid is explained, and in the ninth example, the voltage setting value of the converter that specifies the current other than the voltage determining terminal is also changed according to the converted power. Even if the voltage determining converter erroneously makes an emergency stop, the next converter with a larger converted power will be selected as the voltage determining terminal, which is preferable. At this time, it is best to give priority to the forward converter over the inverse converter in order to secure a voltage margin in the event of an abnormality.The processing software that determines the voltage determination order of the central control unit for this purpose is shown in Figure 9. show. First, the converters are ranked in descending order of the converted power among the forward converters, and then the converters are ranked in the descending order of the converted power among the inverse converters. In this case, it is preferable that the voltage setting values for each terminal be given from the central controller. This is because if the voltage setting value is set in advance at each terminal, and the voltage margin value is sent to each terminal via the communication device, if the same analog amount is sent, sending the voltage setting value will cause fewer troubles. This is because each terminal control device can be easily configured. A block diagram of the control circuit for each terminal at this time is shown in Fig. 1O, and as mentioned above, the voltage setting values B and / are sent from the central controller as well as the current setting values I+. In this case, consideration of voltage margins as described in the previous embodiments is unnecessary. The other blocks are as shown in Fig. 8 and 1-j, and the illustrations are omitted.

この運転制御方式によっても、電圧決定端子が変換電力
に応じて選ばれ、それに応じて、その他の変換器の電圧
設定値が決定されることになるので、電圧決定端子が緊
急停止しても、次の電圧決定端子が自動的に選ばれるこ
とになり安定運転が行える。
With this operation control method, the voltage determining terminal is selected according to the converted power, and the voltage setting values of other converters are determined accordingly, so even if the voltage determining terminal stops in an emergency, The next voltage determining terminal is automatically selected, allowing stable operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象とする多端子送電系統図、第2図
〜第5図は第1図の変換器の電圧−電流特性図、第6図
は本発明の中央制御装置で行う電圧決定端子を選ぶ処理
70−、第7図は変換器の電圧電R,特性図、第8図は
各端子制御装置の7W制御回路のブロック図、第9図は
本発明の他の実施例による中央制御装置で行う電圧決定
端子及び各端子2pf制御装置の制御回路の10ツク凶
でりる。 ACI〜AC4・・・変流系統、Tr・・・変圧器、F
LeC1〜几eC2・lil変換所(器)、Inv1〜
InV2・・・逆変換器(器)、DCL・・・直流リア
クトル、DL・・・直流送電線、C0N0・・・中央制
御装置、C0NI〜C0N4・・・各端子制御装置、C
0N0〜C0M4・・・通信装置、SUw1〜8UW2
・・・加算器、AMPI〜AMP2・・・増巾器、Lv
・・・底圧選択回路、AP・・・自動パルス移相器、G
A・・・ゲートアンプ、8W1〜SW2・・・スイッチ
。 代理人 弁理士 高橋明夫 C0N0 r、otIU 活2図 <b) 鵠3刀 ((1) (b) 高4図 (C) 活50 (b) め7(2]
Fig. 1 is a multi-terminal power transmission system diagram that is the subject of the present invention, Figs. 2 to 5 are voltage-current characteristic diagrams of the converter in Fig. 1, and Fig. 6 is a voltage-current characteristic diagram of the converter of the present invention. Process 70- for selecting a determined terminal, FIG. 7 is a voltage/voltage R characteristic diagram of a converter, FIG. 8 is a block diagram of a 7W control circuit of each terminal control device, and FIG. 9 is a diagram according to another embodiment of the present invention. There are 10 problems in the control circuit of the voltage determining terminal and each terminal 2pf control device performed by the central control device. ACI~AC4...Current transformation system, Tr...Transformer, F
LeC1~几eC2・lil conversion station (vessel), Inv1~
InV2...Inverter (device), DCL...DC reactor, DL...DC transmission line, C0N0...Central control device, C0NI to C0N4...Each terminal control device, C
0N0~C0M4... Communication device, SUw1~8UW2
...Adder, AMPI~AMP2...Amplifier, Lv
...Bottom pressure selection circuit, AP...Automatic pulse phase shifter, G
A...Gate amplifier, 8W1~SW2...Switch. Agent Patent Attorney Akio Takahashi C0N0 r, otIU Katsu 2 Zu <b) Goe 3 Swords ((1) (b) High School 4 Zu (C) Katsu 50 (b) Me 7 (2)

Claims (1)

【特許請求の範囲】[Claims] 1.3つ以上の変換器が直流送電線に並列に接続された
直流多端子送電系統において、送電々力の最も大きい順
変換器、または受電々力の最も小さい逆変換器のいずれ
かで多端子系統の電圧決定を行うことを特徴とする直流
多端子送電系統の運転制御方式。 2、特許請求の範囲第1項記載の直流多端子送電系統に
おいて、複数台の順変換器のうち、送電々力の液も大き
いものの直流電圧の設定値を他の順変換器のそれよシも
低くすることを特徴とする多端子送電系統の運転制御方
式。 3、特許請求の範囲第1項記載の直流多端子送電系統に
おいて、複数台の逆変換器のうち、受電々力の最も小さ
いものの直流電圧の設定値を他の逆変換器のそれよシも
低くすることを特徴とする多端子送電系統の運転制御方
式。
1. In a DC multi-terminal power transmission system in which three or more converters are connected in parallel to a DC transmission line, either the forward converter with the largest transmitting power or the inverse converter with the smallest receiving power An operation control method for a DC multi-terminal power transmission system characterized by determining the voltage of the terminal system. 2. In the DC multi-terminal power transmission system according to claim 1, among the plurality of forward converters, the setting value of the DC voltage of one having a large power transmission power is set to be different from that of the other forward converters. This is an operation control method for multi-terminal power transmission systems that is characterized by lowering the power consumption. 3. In the DC multi-terminal power transmission system as set forth in claim 1, the setting value of the DC voltage of the one with the smallest receiving power among the plurality of inverters is set higher than that of the other inverters. An operation control method for multi-terminal power transmission systems that is characterized by lowering the power consumption.
JP59092885A 1984-05-11 1984-05-11 Operation control system of multiterminal transmission system Granted JPS60241716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59092885A JPS60241716A (en) 1984-05-11 1984-05-11 Operation control system of multiterminal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59092885A JPS60241716A (en) 1984-05-11 1984-05-11 Operation control system of multiterminal transmission system

Publications (2)

Publication Number Publication Date
JPS60241716A true JPS60241716A (en) 1985-11-30
JPH0213531B2 JPH0213531B2 (en) 1990-04-04

Family

ID=14066907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59092885A Granted JPS60241716A (en) 1984-05-11 1984-05-11 Operation control system of multiterminal transmission system

Country Status (1)

Country Link
JP (1) JPS60241716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503936A (en) * 1998-02-13 2002-02-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus and method for performing controlled parallel operation of a DC voltage converter, for example a DC voltage converter in a multi-voltage power supply of a vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676545A (en) * 1979-11-26 1981-06-24 Hitachi Ltd Scanning electron microscope or the like
JPS56138934A (en) * 1980-03-31 1981-10-29 Nec Corp Testing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676545A (en) * 1979-11-26 1981-06-24 Hitachi Ltd Scanning electron microscope or the like
JPS56138934A (en) * 1980-03-31 1981-10-29 Nec Corp Testing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503936A (en) * 1998-02-13 2002-02-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus and method for performing controlled parallel operation of a DC voltage converter, for example a DC voltage converter in a multi-voltage power supply of a vehicle

Also Published As

Publication number Publication date
JPH0213531B2 (en) 1990-04-04

Similar Documents

Publication Publication Date Title
EP0618668B1 (en) Power inverting apparatus
US4263517A (en) Control method and system for an high voltage direct current system
GB1493495A (en) Method of operating a direct-current transmission system
GB1452698A (en) Direct current power transmission system
JPS6358022B2 (en)
JPH0254012B2 (en)
JPS60241716A (en) Operation control system of multiterminal transmission system
US4107771A (en) Circuit for shutting down an inverter
GB2002974A (en) Direct current power transmission system
JPS6132915B2 (en)
JP2909820B2 (en) Load starting method using AC uninterruptible power supply
JPS5967877A (en) Inverter current limiting method
JPS61102344A (en) Operating method of regenerative inverter
JPH01136503A (en) Controller for ac electric vehicle
JPH09117056A (en) Self-excited dc transmission controller
JPS61227672A (en) Overvoltage suppressing control circuit of ac/dc converter
US20120127763A1 (en) Electric power supply system comprising power modules coupled in parallel
JPS6026497A (en) Overvoltage protecting circuit of dc bus type inverter
JPS5896320A (en) Thyristor type voltage regulator
SU706911A1 (en) Dc-to-ac converter
JPH0213533B2 (en)
JPS61285097A (en) Controller of ac elevator
JPS592530A (en) Control system for converter
JPH0326020B2 (en)
JPH01286777A (en) Protection device for AC/DC converter equipment