JPS61227672A - Overvoltage suppressing control circuit of ac/dc converter - Google Patents

Overvoltage suppressing control circuit of ac/dc converter

Info

Publication number
JPS61227672A
JPS61227672A JP60067045A JP6704585A JPS61227672A JP S61227672 A JPS61227672 A JP S61227672A JP 60067045 A JP60067045 A JP 60067045A JP 6704585 A JP6704585 A JP 6704585A JP S61227672 A JPS61227672 A JP S61227672A
Authority
JP
Japan
Prior art keywords
control circuit
overvoltage
voltage
control
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60067045A
Other languages
Japanese (ja)
Other versions
JPH0667210B2 (en
Inventor
Takami Sakai
堺 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60067045A priority Critical patent/JPH0667210B2/en
Publication of JPS61227672A publication Critical patent/JPS61227672A/en
Publication of JPH0667210B2 publication Critical patent/JPH0667210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To prevent the operation of an AC overvoltage relay by advancing the control advancing angle of an inverter when an AC overvoltage exceeds the prescribed value, thereby suppressing the AC overvoltage. CONSTITUTION:The voltage of an AC bus detected by an instrument transformer is fed to the maximum value selector 14B, and a larger voltage value is selected and added in negative polarity to an adder 15B. When the voltage value of the bus exceeds the prescribed value, the output voltage of the adder 15B becomes negative, and is fed to a controller 17B. The output of the controller 17B is selected by the minimum value selector 10B, fed through a control voltage limiter to a phase controller, and the control advancing angle of the inverter is advanced by the output. The control system is constructed so that the advancing operation of the control advancing angle is fast and the reverse operating is slow.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、交直変換装置が接続された交流系統において
、特に弱小交流系統において、交流過電圧が発生したと
き、その交流過電圧を抑制する為の交直変換装置の過電
圧抑制制御回路に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an AC/DC converter for suppressing AC overvoltage when it occurs in an AC system to which an AC/DC converter is connected, particularly in a weak AC system. The present invention relates to an overvoltage suppression control circuit for a converter.

〔発明の技術背景とその問題点〕[Technical background of the invention and its problems]

第3図は、直流送電設備の概略構成図を示し、交流母線
1人、IBは変換用変圧器J A e J Bを介して
、例えば複数個のサイリスタの直並列接続からなる変換
器JA、JRに接続され、各サイリスタの点弧位相を制
御することにより交流を直流に又は直流を交流に変換す
る。4A。
FIG. 3 shows a schematic configuration diagram of a DC power transmission facility, in which one AC bus is connected, and IB is a converter JA consisting of a series-parallel connection of a plurality of thyristors, for example, via a conversion transformer JA e JB, It is connected to JR and converts alternating current to direct current or direct current to alternating current by controlling the firing phase of each thyristor. 4A.

4Bは平滑リアクトル、5は直流送電i路、6に、6B
は計器用変圧器(P、丁)2人、rBは計器用変流器(
C,T)を示す。
4B is a smoothing reactor, 5 is a DC power transmission path, and 6 is a 6B
is a potential transformer (P, D) for two people, rB is a potential current transformer (
C, T).

このような主回路構成における制御装置は定電流制御回
路(ACR) 8 A 、 l B及び定余裕角制御回
路(CJCR) IIム、913等で構成される。
The control device in such a main circuit configuration is composed of constant current control circuits (ACR) 8A, 1B, constant margin angle control circuit (CJCR) II, 913, and the like.

尚、上記定電流制御回路8に、8B、定余裕角制御回路
9h、9Bの他に直流電圧を一定に制御する為の定電圧
制御回路(ムVR)等を付加する場合もある。
In addition to the constant current control circuit 8B and the constant margin angle control circuits 9h and 9B, a constant voltage control circuit (VR) for controlling the DC voltage to a constant level may be added.

定電流制御回路8に、8B、定余裕角制御回路Ik、9
Bによりて演算された値は制御電圧(go)として最小
値選択回路(LVG ) z o A 。
Constant current control circuit 8, 8B, constant margin angle control circuit Ik, 9
The value calculated by B is used as the control voltage (go) by the minimum value selection circuit (LVG) zoA.

10Bに入力され、この最小値選択回路ZoA。10B and this minimum value selection circuit ZoA.

10Bは各種制御の中で制御角を最も進める制御系を自
動的に選択するものであシ、ここで選択された制御電圧
は、制御電圧リミッタ回路Z Z A e Z J B
 (ECL )によってリミ、りがかけられ1位相制御
回路12A、12Bに入力される。この位相制御回路1
2に、12Bは制御電圧に対応し九点弧位相を決定して
サイリスタに点弧ノ4ルスな出力する◎このようにして
構成された交直変換装置では、周知のごとく電流マージ
ン(Δ工)の切替によツ一方が順変換装置として定電流
制御によシ運転され、他方が定余裕角制御によ〕運転さ
れる。
10B is for automatically selecting the control system that advances the control angle the most among various controls, and the control voltage selected here is the control voltage limiter circuit Z Z A e Z J B
(ECL) is applied and input to the 1-phase control circuits 12A and 12B. This phase control circuit 1
2, 12B determines the nine firing phases corresponding to the control voltage and outputs the firing phase to the thyristor. In the AC/DC converter configured in this way, as is well known, the current margin (Δ By switching, one is operated as a forward conversion device by constant current control, and the other is operated by constant margin angle control.

さて、以下の説明では説明の便宜上第3図において、変
換器3Aを順変換器、変換器−を逆変換器とする。
Now, in the following description, for convenience of explanation, in FIG. 3, the converter 3A is assumed to be a forward converter, and the converter 3A is assumed to be an inverse converter.

第3図において1.交流母線IBに何らかの理由によシ
過電圧が発生したとする。例えば、交流母線IBに接続
される交流系統において負荷がし中断され九り、或いは
、落雷等による交流系統事故が発生して、成る回線が切
離されたルする場合である。もし、このとき、上記過電
圧値が大をくて、継続する際には、当然のことながら、
交流過電圧継電器によりて交直変換設備を保護しなけれ
ばならない、即ちすみやかに交直変換装置を停止して、
第3図には1図示されていないが交流フィルタや7ヤン
ト中ヤ/4シタを切離す必要がある。上記発生過電圧値
は、特に上記交流系統が弱小交流系統の場合には、相対
的に大きく、又過電圧発生頻度も多い。これは、一般的
に交流電圧の変化分は、無効電力の変化分と交流系統の
りアクタンス分の積にほぼ等しく、弱小交流系統とはそ
の交流系統のりアクタンス分が大きいと云うことを意味
しているからである。
In Figure 3, 1. Assume that an overvoltage occurs on the AC bus line IB for some reason. For example, if the load is interrupted in the AC system connected to the AC bus line IB, or if an AC system accident occurs due to lightning or the like, and the circuit is disconnected. At this time, if the above-mentioned overvoltage value becomes large and continues, of course,
The AC/DC converter equipment must be protected by an AC overvoltage relay, that is, the AC/DC converter equipment must be stopped immediately.
Although not shown in FIG. 3, it is necessary to separate the AC filter and the 7-Yant/Y/4 filter. The generated overvoltage value is relatively large, especially when the AC system is a weak AC system, and the overvoltage occurs frequently. This means that the change in AC voltage is generally approximately equal to the product of the change in reactive power and the actance of the AC system, and a weak AC system means that the actance of the AC system is large. Because there is.

従りて、交直変換装置が弱小交流系統に接続された場合
、従来の制御方式のみでは、頻繁に交流過電圧の為に交
直変換設備を停止しなければならないと云う不具合があ
った。
Therefore, when an AC/DC converter is connected to a weak AC system, using only the conventional control method, there is a problem in that the AC/DC converter equipment must be frequently stopped due to AC overvoltage.

〔発明の目的〕[Purpose of the invention]

従って、本発明は、上記不具合を除去する為になされた
ものであって、交流過電圧が発生し喪とき、交直変換装
置の制御によって、その交流過電圧を抑制して、交流過
電圧継電器の動作を防止して、ひいては交直変換装置の
稼動率を向上させる為の交直変換装置の過電圧抑制制御
回路を提供しようとするものである。
Therefore, the present invention has been made to eliminate the above-mentioned problems, and when an AC overvoltage occurs, the AC overvoltage is suppressed by controlling the AC/DC converter, thereby preventing the operation of the AC overvoltage relay. Therefore, it is an object of the present invention to provide an overvoltage suppression control circuit for an AC/DC converter to improve the operating rate of the AC/DC converter.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成する為に、交流過° 電圧が
所定値を越えたときに逆変換装置(以下、INVと略記
する。)の制御進み角(以下、βと略記する。)を進め
る方向に動作する制御回路を新たに設け、この制御回路
はβを進める方向には速く、逆の方向には遅く動作せし
めるようにするものである。
In order to achieve the above object, the present invention adjusts the control advance angle (hereinafter abbreviated as β) of the inverter (hereinafter abbreviated as INV) when the AC overvoltage exceeds a predetermined value. A new control circuit that operates in the advancing direction is provided, and this control circuit operates quickly in the direction in which β is advanced and slowly in the opposite direction.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の主要部のみの一実施例を示すブロッ
ク図である。第1図において、第3図と同一機能のもの
は、同一符号を記し説明な省略する。又、これまで制御
進み角(β)を用いて説明を行なってきたが、今後は説
明の便宜上制御遅れ角をαと略記し、αで説明する。尚
、制御遅れ角をα、制御進′み角をβとすれば、αとβ
の間に次の関係式が成立することは周知の事実であるの
で、この式についても説明を省略する。
FIG. 1 is a block diagram showing an embodiment of only the main parts of the present invention. In FIG. 1, the same functions as those in FIG. 3 are denoted by the same reference numerals, and explanations thereof will be omitted. Furthermore, although the explanation has been made using the control advance angle (β), from now on, for convenience of explanation, the control delay angle will be abbreviated as α, and the explanation will be made using α. Furthermore, if the control delay angle is α and the control lead angle is β, then α and β
Since it is a well-known fact that the following relational expression holds true between the two, the explanation of this expression will also be omitted.

α+/=180゜ 第1図において、第3図の計器用変圧器(P、T)6に
、6Bで検出された検出信号は、最大値選択回路14B
に送られ、両者の内で大きな方の交流電圧値が選択され
て負極性で加算器15Bに加算される。加算器15Bの
もう一方の入力信号は、設定器16Bの設定値でアシ、
例えばこの設定器16Bは1.2puの交流過電圧値相
当の電圧に設定されている。従りて、第3図における交
流母線IA又はIBの電圧値が−11,2puを越える
と加算器15Bの出力電圧は負極性となシ制御回路77
Bに送られる。この制御回路J7Bは、フィードバック
制御系を構成しておシ、一種の交流電圧一定制御回路と
云える。制御回路77Bの出力電圧は、加算器18B、
そしてこの加算器18Bには更に設定器19Bの設定値
が加算され、この設定値は例えばα=180゜に相当す
る電圧に設定されている。
α+/=180° In FIG. 1, the detection signal detected at 6B is transmitted to the potential transformer (P, T) 6 of FIG. 3 by the maximum value selection circuit 14B.
The larger AC voltage value of the two is selected and added to the adder 15B with negative polarity. The other input signal of the adder 15B is set by the set value of the setter 16B.
For example, this setting device 16B is set to a voltage equivalent to an AC overvoltage value of 1.2 pu. Therefore, when the voltage value of AC bus line IA or IB in FIG. 3 exceeds -11.2 pu, the output voltage of adder 15B becomes negative polarity.
Sent to B. This control circuit J7B constitutes a feedback control system and can be said to be a kind of AC voltage constant control circuit. The output voltage of the control circuit 77B is output from the adder 18B,
Further, the set value of the setter 19B is added to this adder 18B, and this set value is set to a voltage corresponding to α=180°, for example.

従りて、もし交流母線ZA、IBの交流電圧値が1.2
pu以下ならば制御回路17Bの出力電圧は正極性であ
るから、加算器111Bの出力電圧はα;180°に相
当する電圧と制御回路77Bの出力電圧が同極性で加算
されて、α〉180゜に相当する電圧となる為に、この
場合には制御回路77Bは実質的には動作していないこ
とと同じである。
Therefore, if the AC voltage value of AC buses ZA and IB is 1.2
If it is less than pu, the output voltage of the control circuit 17B has positive polarity, so the output voltage of the adder 111B is the voltage corresponding to α;180° and the output voltage of the control circuit 77B are added with the same polarity, so that α>180 In this case, the control circuit 77B is essentially not operating.

しかるに、もし交流母線IA、IBの交流電圧値が1.
2pu以上になると、制御回路27Bの出力電圧は負極
性となるので、最終的に加算器18Bの出力電圧はαく
180°となシ、この値が最終的に最小値選択回路10
Bに送られ、変換器はこの制御回路77Bによって運転
されることになる。
However, if the AC voltage value of AC buses IA and IB is 1.
When it becomes 2pu or more, the output voltage of the control circuit 27B becomes negative polarity, so the output voltage of the adder 18B is finally α - 180°, and this value is finally the minimum value selection circuit 10.
B, and the converter will be operated by this control circuit 77B.

又、第2図は、制御回路11Bの具体的な回路を示す実
施例であ)、20B、21Bは反転増巾器、22B〜J
OBは抵抗器、29B。
Further, FIG. 2 shows an embodiment showing a specific circuit of the control circuit 11B), 20B and 21B are inverting amplifiers, and 22B to J
OB is a resistor, 29B.

30Bはキヤ/#シタを示す。30B indicates Kya/#Sita.

以下、説明の便宜上、抵抗器をR、キャノ4シタをCで
略記する。第2図において、周知のごとく、反転増巾器
20Bのダインは飢ル422、−次遅れ時定数はR24
XC29である。反転増巾器JMBは本実施例では、信
号の極性を反転するためにだけ用いられている。従りて
、この回路のダインは1と想定している。
Hereinafter, for convenience of explanation, the resistor will be abbreviated as R and the capacitor as C. In FIG. 2, as is well known, the dyne of the inverting amplifier 20B is star 422, and the second lag time constant is R24.
It is XC29. The inverting amplifier JMB is used in this embodiment only to invert the polarity of the signal. Therefore, the dyne of this circuit is assumed to be 1.

次に前述構成から成る本発明の詳細な説明する。Next, the present invention having the above configuration will be explained in detail.

先ず定常状態、即ち交流過電圧が発生していない場合、
或いは発生していても1,2pu以下の場合について説
明すると、このときは前述したごとく、加算器111B
の出力電圧線α= 180’に相当する電圧となってお
り、定余裕角制御回路9Bの出力電圧は1例えばα= 
150’((180’)に相当する電圧であり、又今!
式について考えているので1周知のごとく、定電流制御
回路8Bの出力電圧はα〉180°に相当する電圧にな
りているので、最終的に最小値選択回路10BKよって
、定余裕角制御回路9Bの出力電圧が選択されてINV
はα;150°で運転されている・この状態で、例えば
交流母線IBにおいて交流過電圧が観測され、その値が
1.2puを越えたと仮定すると、先に説明したごとく
加算器15Bの出力電圧が負極性となシ、従って加算器
18Bの出力電圧はα;180°に相当する電圧以下と
なって、この値が最終的に最小値選択回路10Bによっ
て選択される。
First, in a steady state, that is, when no AC overvoltage occurs,
Or, even if it is generated, it is less than 1 or 2 pu. In this case, as mentioned above, the adder 111B
The voltage corresponds to the output voltage line α = 180', and the output voltage of the constant margin angle control circuit 9B is 1, for example α =
The voltage is equivalent to 150'((180'), and now!
As we are thinking about the formula, as is well known, the output voltage of the constant current control circuit 8B is a voltage corresponding to α>180°, so the minimum value selection circuit 10BK finally selects the constant margin angle control circuit 9B. The output voltage of INV is selected
is operated at α; 150°. In this state, for example, if an AC overvoltage is observed at the AC bus IB and its value exceeds 1.2 pu, the output voltage of the adder 15B will be Therefore, the output voltage of the adder 18B becomes a voltage corresponding to α;180° or less, and this value is finally selected by the minimum value selection circuit 10B.

変換装置は、一種の遅れ無効分を消費する装置であシ、
その力率は で表わされるので、α=90°のときが、回φ;0でも
っとも無効電力を消費する運転となる。従って。
The conversion device is a type of device that consumes delay ineffectiveness,
Since the power factor is expressed by , when α=90°, the operation that consumes the most reactive power is when the rotation φ is 0. Therefore.

αが150°から小さな値に変化することで一交流系統
から大きな無効電力を強制的に取る。即ち・交流母線I
Bの交流過電圧を抑制することになる。
By changing α from 150° to a small value, a large amount of reactive power is forcibly taken from the single AC system. That is, AC bus I
This will suppress the AC overvoltage of B.

このとき、発生交流過電圧を急速に抑制する為には、制
御回路17Bは高速、高rインの定数をもりた関数が望
ましいが、上記制御回路をもし高速高ゲインにすれば、
弱小交流系統の為に電力動揺の発生など別な問題を引き
起す。特に交流過電圧が1.2pu以上で上記制御回路
77Bが高速に動作して交流過電圧1.2pu以下に抑
制し大場合、上記制御回路77Bは高速に不動作となる
ので、再び交流過電圧が発生する恐れがあシ、一種のハ
ンチング現象が発生する恐れがある。しかし、本発明で
は、制御回路J7Bを第2図のごとく構成しているので
その恐れはない。即ち1反転増巾器ROBを高速、高ゲ
インにしておいても、R25とC30とにより大きな遅
れ時定数をもたせておけば、反転増巾器20Bの入力電
圧が負極性(発生交流過電圧は1.2pu以下)になり
ても、反転増巾器21Bの出力電圧は、ただちには負極
性にはならず、ゆりく〕と出力電圧を減少させるからで
ある。
At this time, in order to rapidly suppress the generated AC overvoltage, it is desirable that the control circuit 17B is a function with a high speed and high r-in constant. However, if the control circuit is made to have a high speed and a high gain,
The weak AC system causes other problems such as power fluctuations. In particular, when the AC overvoltage is 1.2 pu or more, the control circuit 77B operates at high speed to suppress the AC overvoltage to 1.2 pu or less, and when the AC overvoltage is large, the control circuit 77B quickly becomes inactive, causing AC overvoltage to occur again. There is a risk that a kind of hunting phenomenon may occur. However, in the present invention, since the control circuit J7B is configured as shown in FIG. 2, there is no such fear. In other words, even if the 1-inverting amplifier ROB is set to high speed and high gain, if R25 and C30 have a large delay time constant, the input voltage of the 1-inverting amplifier 20B will be negative polarity (the generated AC overvoltage will be 1 .2 pu), the output voltage of the inverting amplifier 21B does not immediately become negative, but gradually decreases.

本実施例によれば、交流過電圧が発生し、それが所定の
レベルを越えたときにINVのβを進める方向に動作さ
せる制御回路を設け、且つとの制御回路は、βを進める
方向に動作する場合には高速に、逆の方向に動作する場
合には低速で行なわれるように構成することで、交流過
電圧を抑制することができるとともに、他の新たな問題
を回避することができると云う利点をもつO 〔発明の効果〕 以上説明したごとく、本発明は、特に交直変換装置が弱
小交流系統に接続されたシステムの場合に特に有効で、
交流過電圧を効果的に抑制することくよル、交直変換装
置の稼動率を向上させ、又付設機器の過電圧耐量に関す
る経済設計が行なえると云う著しい効果を有する。
According to this embodiment, a control circuit is provided that operates in a direction to advance β of INV when an AC overvoltage occurs and exceeds a predetermined level, and the control circuit operates in a direction to advance β. By configuring it so that it operates at high speed when moving in the opposite direction, and at low speed when moving in the opposite direction, AC overvoltage can be suppressed and other new problems can be avoided. [Effects of the Invention] As explained above, the present invention is particularly effective in the case of a system in which an AC/DC converter is connected to a weak AC system.
Effectively suppressing AC overvoltage has the remarkable effect of improving the operating rate of the AC/DC converter and enabling economical design regarding the overvoltage withstand capacity of attached equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の要部を示すブロック図。 第2図は、η1図の一部詳細構成図、第3図は直流送電
設備の構成図を示す。 8B・・・定電流制御回路、9B・・・定電流制御回路
、1073・・・最小値選択回路、14B・・・最大値
選択回路、16B、19B川設定器、77B・・・制御
回路、15 B 、 1 # B−・・加算器、20B
。 21B・・・反転増幅器、22B〜28f3・・・抵抗
器、29 B j 30 B−’37f”7す。 出願人代理人  弁理士 鈴 江 武 童画1図 I!2図 *3  m !りρ
FIG. 1 is a block diagram showing the main parts of the present invention. FIG. 2 shows a partial detailed configuration diagram of the η1 diagram, and FIG. 3 shows a configuration diagram of the DC power transmission equipment. 8B... Constant current control circuit, 9B... Constant current control circuit, 1073... Minimum value selection circuit, 14B... Maximum value selection circuit, 16B, 19B river setting device, 77B... Control circuit, 15 B, 1 # B--Adder, 20B
. 21B... Inverting amplifier, 22B-28f3... Resistor, 29 B j 30 B-'37f"7. Applicant's agent Patent attorney Takeshi Suzue Child's picture 1 figure I! 2 figure *3 m!ri ρ

Claims (1)

【特許請求の範囲】[Claims] 少くとも、定電流制御系と定余裕角制御系を備えた交直
変換システムにおいて、交直変換装置の接続される交流
系統電圧を検出し、その検出値が所定値を越えたとき、
逆変換装置の制御進み角を進める方向に動作する過電圧
抑制制御回路を設けると共に、上記過電圧抑制制御回路
は、制御進み角を進める方向には高速に動作し、逆向方
には低速で動作することを特徴とする交直変換装置の過
電圧抑制制御回路。
At least in an AC/DC conversion system equipped with a constant current control system and a constant margin angle control system, when the AC system voltage to which the AC/DC converter is connected is detected and the detected value exceeds a predetermined value,
An overvoltage suppression control circuit is provided that operates in a direction to advance the control advance angle of the inverter, and the overvoltage suppression control circuit operates at high speed in the direction of advancing the control advance angle and at low speed in the opposite direction. An overvoltage suppression control circuit for an AC/DC converter device.
JP60067045A 1985-03-30 1985-03-30 Overvoltage suppression control circuit for AC / DC converter Expired - Lifetime JPH0667210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60067045A JPH0667210B2 (en) 1985-03-30 1985-03-30 Overvoltage suppression control circuit for AC / DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60067045A JPH0667210B2 (en) 1985-03-30 1985-03-30 Overvoltage suppression control circuit for AC / DC converter

Publications (2)

Publication Number Publication Date
JPS61227672A true JPS61227672A (en) 1986-10-09
JPH0667210B2 JPH0667210B2 (en) 1994-08-24

Family

ID=13333478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60067045A Expired - Lifetime JPH0667210B2 (en) 1985-03-30 1985-03-30 Overvoltage suppression control circuit for AC / DC converter

Country Status (1)

Country Link
JP (1) JPH0667210B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038239B2 (en) 2002-04-09 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US7256421B2 (en) 2002-05-17 2007-08-14 Semiconductor Energy Laboratory, Co., Ltd. Display device having a structure for preventing the deterioration of a light emitting device

Also Published As

Publication number Publication date
JPH0667210B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US4959602A (en) Ac motor drive with improved voltage-source inverter
JPS5812577A (en) Controlling method for inverter
JPS61157232A (en) Transient-time control method of alternating current and direct current converter
JPS61227672A (en) Overvoltage suppressing control circuit of ac/dc converter
US4680691A (en) Method and system for preventing an excessive voltage build-up in a power converter system
JPS6132915B2 (en)
JPS61227671A (en) Overvoltage suppressing control system of ac/dc converter
JPS58107083A (en) Driving regenerative converting power supply device
JPS6279182A (en) Controller for elevator
JPH0353872B2 (en)
JPS58136270A (en) Optimum switching method for anti-parallel thyristor converter
JPS6249812B2 (en)
JPS60156277A (en) Controlling method for preventing continuous commutation failure
JPH1023763A (en) Controller for externally excited reverse inverter
JPS62254628A (en) Power controller of dc interlinkage equipment
JPS61236327A (en) Control system for ac-dc converter
JPS5816316A (en) Controlling system of reactive electric power
JPH0348750B2 (en)
JPS61258677A (en) Controlling method for voltage type inverter
JPS61170241A (en) System stabilizer
JPS5812578A (en) Inverter device
JPS5816315A (en) Controlling system of reactive electric power
JPS60241716A (en) Operation control system of multiterminal transmission system
JPH0638403A (en) Controlling method for uninterruptible power supply device
JPS64908B2 (en)