JPH0326020B2 - - Google Patents

Info

Publication number
JPH0326020B2
JPH0326020B2 JP57005721A JP572182A JPH0326020B2 JP H0326020 B2 JPH0326020 B2 JP H0326020B2 JP 57005721 A JP57005721 A JP 57005721A JP 572182 A JP572182 A JP 572182A JP H0326020 B2 JPH0326020 B2 JP H0326020B2
Authority
JP
Japan
Prior art keywords
converter
voltage
control
current
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57005721A
Other languages
Japanese (ja)
Other versions
JPS58123323A (en
Inventor
Buichi Sakurai
Kyoshi Goto
Shoichi Irokawa
Takami Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP57005721A priority Critical patent/JPS58123323A/en
Publication of JPS58123323A publication Critical patent/JPS58123323A/en
Publication of JPH0326020B2 publication Critical patent/JPH0326020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は直流送電系統の変換器起動方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for starting a converter in a DC power transmission system.

発明の技術的背景 第1図は本発明が適用しうる並列4端子直流送
電系統図であり、1〜4は交直変換器、5〜8は
直流リアクトル、9〜12は直流線路、13〜2
0は直流しや断器又は直流断路器等の開閉器であ
る。
Technical Background of the Invention Fig. 1 is a parallel four-terminal DC power transmission system diagram to which the present invention can be applied, in which 1 to 4 are AC/DC converters, 5 to 8 are DC reactors, 9 to 12 are DC lines, 13 to 2
0 is a switch such as a DC disconnector or a DC disconnector.

このような構成において、変換器1,2が順変
換器、変換器3が逆変換器として既に運転中、変
換器4を逆変換器として起動する場合の方式とし
ては、例えば、開閉器19,20を投入した後、
変換器の直流線路側電圧をEdlとした時、逆変換
器出力電圧EdiがEdlから所定のバイアス電圧ΔEd
を差し引いた値となるように制御角を計算してゲ
ートパルスをオンさせ追加起動する方法が提案さ
れている。
In such a configuration, when converters 1 and 2 are already in operation as forward converters and converter 3 is already in operation as an inverse converter, converter 4 is started as an inverse converter. For example, the switch 19, After inserting 20,
When the voltage on the DC line side of the converter is E dl , the inverse converter output voltage E di changes from E dl to the predetermined bias voltage ΔE d
A method has been proposed in which the control angle is calculated so as to be the value obtained by subtracting the value, and the gate pulse is turned on to perform additional activation.

背景技術の問題点 これは、系統側の電圧Edlよりも高い出力電圧
Ediを出すような制御角で逆変換器を起動すると、
起動直後は電流が遮断し、変換器にストレスがか
かり、これを防ぐためと思われる。しかし、最近
の変換器は多少の時間、電流が断続してもまつた
く問題がなく、このような情勢に即した、より系
統に与える擾乱の少ない起動方法が要望されてい
る。
Problems with the background technology This is because the output voltage is higher than the voltage E dl on the grid side.
When the inverter is started at a control angle that produces E di ,
Immediately after startup, the current is cut off, which puts stress on the converter, and this seems to be to prevent this. However, recent converters do not cause any problems even if the current is interrupted for a certain period of time, and there is a demand for a startup method that is suitable for such situations and causes less disturbance to the system.

発明の目的 従つて、本発明の目的はこのような要望を満た
すべくなされたものであつて、すでに運転中の直
流系統に、変換器を逆変換器として追加起動する
際、極力系統に与える擾乱の少ない起動方法を提
供することにある。
Purpose of the Invention Therefore, the purpose of the present invention has been made to satisfy such a need, and is to minimize the disturbance caused to the system when adding a converter as an inverter to a DC system that is already in operation. The purpose is to provide a startup method with fewer problems.

発明の実施例 以下、本発明を図面を参照して説明する。Examples of the invention Hereinafter, the present invention will be explained with reference to the drawings.

第2図は、本発明の一実施例を示す構成図であ
り、第1図と同一要素は同一符号で示している。
第2図において21は起動停止装置、22は電流
設定値Idpと計器用変流器23によつて検出され
た電流検出値Idを入力として電流を一定に制御す
る定電流制御装置、24は、前記電流検出値Id
逆変換器4に接続される交流系統電圧値EACを入
力として、余裕角を一定に制御する定余裕角制御
装置、25は定電流制御装置22と定余裕角制御
装置24の出力のうち、変換器の直流電圧を低く
する方の出力を選択する制御電圧選択装置、26
は制御電圧にリミツトをかける制御電圧リミツタ
装置、27は点弧パルスを決定する位相制御装
置、28は変換器にゲートパルスを送出するゲー
トパルス発生装置を示す。
FIG. 2 is a block diagram showing an embodiment of the present invention, and the same elements as in FIG. 1 are indicated by the same symbols.
In FIG. 2, reference numeral 21 indicates a start/stop device, 22 indicates a constant current control device, which controls the current to a constant value using the current setting value I dp and the current detection value I d detected by the instrument current transformer 23 as input, and 24 25 is a constant margin angle control device that uses the current detection value I d and the AC system voltage value E AC connected to the inverter 4 as input to control the margin angle to a constant value; 25 is a constant current control device 22 and a constant margin angle control device; a control voltage selection device 26 for selecting the output of the angle control device 24 that lowers the DC voltage of the converter;
Reference numeral 27 indicates a control voltage limiter device that limits the control voltage, 27 a phase control device that determines the ignition pulse, and 28 a gate pulse generator that sends a gate pulse to the converter.

第3図は第2図における定電流制御装置22の
本発明による一実施例を示したもので、29は第
2図における起動停止装置21の起動指令により
閉じられるスイツチ、30はX1を入力、X2を出
力とし、直流電流Idを電流設定値Idpに保つように
制御する装置である。
FIG. 3 shows an embodiment of the constant current control device 22 in FIG. 2 according to the present invention, where 29 is a switch that is closed by a start command of the start/stop device 21 in FIG. , _ _

次に作用について述べる。 Next, we will discuss the effect.

このような構成において変換器の追加起動時の
本発明の作用について説明する。
The operation of the present invention when the converter is additionally activated in such a configuration will be explained.

第2図における開閉器19,20が閉じられ、
逆変換器4に運転指令が与えられると、起動停止
装置21は第3図の定電流制御装置22のX2
初期値を約160°の制御角に相当する制御電圧にセ
ツトし、スイツチ29を閉じ定電流制御装置22
を生かすと同時に逆変換器4にゲートパルスを与
える。
The switches 19 and 20 in FIG. 2 are closed,
When an operation command is given to the inverter 4, the start/stop device 21 sets the initial value of X2 of the constant current control device 22 in FIG. Close the constant current control device 22
At the same time, a gate pulse is given to the inverter 4.

一方、定余裕角制御装置24の出力は最小余裕
角を17°とすると、追加起動する変換器4にはま
だ電流が流れておらず、重なり角が0°であるか
ら、180°から17°を差し引いた163°の制御角に相当
する制御電圧を出力している。従つて、制御電圧
選択装置25は、定電流制御装置22の出力を選
択する。多端子直流送電系統では1つの変換器が
直流電圧を決定し、他の変換器が定電流制御によ
り電流を決定するのが最も安定した運転であり、
直流系にはすでに電圧を決定している変換器が存
在しているため、追加起動される変換器は定電流
制御されるように交流側電圧が選定されており、
起動直後に限らず引き続き制御電圧選択装置25
は定電流制御装置22の出力を選択する。制御角
リミツタ装置は、直流系が全停の状態から最初に
起動される時は、2端子系統では一般的な第4図
の破線に示すように、制御角90°付近の始動位相
から徐々に大きくする方法がとられるが、追加起
動の場合は実線に示すようにはじめからリミツタ
を最小制御角(逆変換器では通常90°)と最大制
御角(逆変換器では通常160°)に相当する制御電
圧まで開いておく。
On the other hand, if the minimum margin angle is 17°, the output of the constant margin angle control device 24 will change from 180° to 17° since no current is flowing through the additional converter 4 and the overlap angle is 0°. It outputs a control voltage that corresponds to a control angle of 163° after subtracting . Therefore, the control voltage selection device 25 selects the output of the constant current control device 22. In a multi-terminal DC transmission system, the most stable operation is when one converter determines the DC voltage and the other converters determine the current using constant current control.
Since there is a converter that already determines the voltage in the DC system, the AC side voltage is selected so that the converter that is additionally activated is controlled with constant current.
The control voltage selection device 25 continues, not only immediately after startup.
selects the output of the constant current control device 22. When the control angle limiter device is first started from a state where the DC system is completely stopped, the control angle limiter gradually starts from the starting phase around the control angle of 90°, as shown by the broken line in Figure 4, which is common in two-terminal systems. However, in the case of additional activation, the limiter is set from the beginning to the minimum control angle (usually 90° for an inverter) and the maximum control angle (usually 160° for an inverter), as shown by the solid line. Leave open to control voltage.

以上のように、逆変換器4は、位相制御装置2
7、ゲートパルス発生装置28を介し、定電流制
御装置22の始動位相約160°でゲートデブロツク
され以後、定電流制御装置22の出力に従つて制
御角が決定される。
As described above, the inverse converter 4 is connected to the phase control device 2.
7. The gate is deblocked via the gate pulse generator 28 at a starting phase of about 160° of the constant current controller 22, and thereafter the control angle is determined according to the output of the constant current controller 22.

一般的に追加起動される逆変換器4の定常状態
における制御角は140°〜155°であり、160°の制御
角が発生する直流平均値電圧Ediはすでに運転中
の直流系統の電圧Edlよりも充分高い。従つて、
変換器4にゲートパルスが与えられても急に直流
電流は流れ込まず、定電流制御装置22は電流を
流そうとするため制御角を小さくし、直流出力電
圧Ediを下げる。そしてEdiがEdlと等しくなつた時
点から電流が円滑に流れはじまる。ということ
は、直流出力電圧Ediと直流線路電圧Edlとが等し
くなるような制御角で自動的にデブロツクしたこ
とと等価となり、交流系統における同期併入と同
様なことが行われ、最も擾乱の少い起動となるわ
けである。
Generally, the control angle in the steady state of the additionally activated inverter 4 is 140° to 155°, and the DC average voltage E di at which the control angle of 160° occurs is the voltage E of the DC system already in operation. Much higher than dl . Therefore,
Even when a gate pulse is applied to the converter 4, the DC current does not suddenly flow, and the constant current control device 22 tries to cause the current to flow, thereby reducing the control angle and lowering the DC output voltage E di . The current begins to flow smoothly from the moment E di becomes equal to E dl . This is equivalent to automatically deblocking at a control angle such that the DC output voltage E di and the DC line voltage E dl are equal. This means that there will be fewer startups.

デブロツクしてから実際に電流が流れはじまる
までの所要時間は、通常我国で用いられている定
電流制御定数を用いた場合、2〜3msであり、
この程度の遅れは実用上まつたく問題がなく、系
統の直流電圧がいかなる値であつても既に運転中
の系統に極力擾乱を与えずに併入できるという利
点の方がはるかに大きい。
The time required from deblocking to when current actually starts flowing is 2 to 3 ms when using the constant current control constant normally used in Japan.
This degree of delay poses no practical problem, and the far greater advantage is that no matter what the DC voltage of the system is, it can be added to the system that is already in operation with as little disturbance as possible.

このようにして第1図における逆変換器4を追
加起動したシミユーレーシヨン結果を第5図、第
6図に示す。同図では第1図における順変換器
1、順変換器2、逆変換器3を通常の2端子送電
と同じように全停の状態から制御角のリミツタを
第4図の破線のように徐々に開き起動した後、逆
変換器4を追加起動しており、第5図は上から順
変換器1、順変換器2、逆変換器3、逆変換器4
の電流波形を示し、第6図は上から順変換器1、
順変換器2、逆変換器3、逆変換器4の直流線路
側電圧を示している。
The simulation results obtained by additionally activating the inverse converter 4 in FIG. 1 in this manner are shown in FIGS. 5 and 6. In the figure, the forward converter 1, forward converter 2, and inverse converter 3 in Figure 1 are completely stopped, as in normal two-terminal power transmission, and the control angle limiter is gradually adjusted as shown by the broken line in Figure 4. After opening and starting, the inverse converter 4 is additionally started, and FIG.
Figure 6 shows the current waveforms of converter 1,
The DC line side voltages of forward converter 2, inverse converter 3, and inverse converter 4 are shown.

逆変換器4をゲートデブロツクしてから2〜3
ms後に、逆変換器4の電流はすみやかに立ち上
がり、系統電圧にほどんど擾乱を与えていない。
一方、従来のように逆変換器を追加起動する時、
この逆変換器の出力電圧が直流起動電圧よりも低
いと、直流電流が流入する方向であるため、運転
中の順変換器の直流電流の増加や逆変換器側にお
いては直流電流の減少など外乱が発生しやすい。
さらに追加起動する逆変換器に接続されている交
流系統の短絡容量が小さい系統では起動時の流入
電流が多い場合、消費無効電力が多くなり、交流
系統電圧の低下を招き、さらに直流起動電圧の低
下が生じ、運転中の順変換器の全電流が流入する
などの不具合が生ずる可能性もある。これに対
し、本発明では前述したように追加起動する逆変
換器の出力電圧が直流線路電圧よりも高めに設定
されているので、これらの不具合を有効に防止す
ることができる。
2-3 after gate deblocking inverter 4
After ms, the current of the inverter 4 quickly rises, causing almost no disturbance to the grid voltage.
On the other hand, when starting up an additional inverter as in the past,
If the output voltage of this inverse converter is lower than the DC starting voltage, the direct current will flow in, so disturbances such as an increase in the DC current of the forward converter during operation and a decrease in DC current on the inverter side will occur. is likely to occur.
Furthermore, in a system with a small short-circuit capacity of the AC system connected to the inverter to be additionally started, if the inflow current at startup is large, the reactive power consumption will increase, leading to a drop in the AC system voltage, and furthermore, the DC starting voltage will decrease. There is also the possibility that problems such as a drop in the current flowing through the forward converter during operation may occur. In contrast, in the present invention, as described above, the output voltage of the additionally activated inverter is set higher than the DC line voltage, so these problems can be effectively prevented.

以上は、第1図において直流線路電圧が正であ
る場合について説明したが、変換器の向きが第1
図と逆になり、直流線路電圧が負となる場合も同
様に、始動位相を約160°としてデブロツクするこ
とにより、円滑な起動が行える。
The above explanation is based on the case where the DC line voltage is positive in Figure 1, but the direction of the converter is
Even when the DC line voltage is negative (contrary to the diagram), smooth startup can be achieved by deblocking the startup phase by setting the startup phase to about 160°.

本発明の他の実施例について述べる。 Other embodiments of the present invention will be described.

これまでの説明では、定電流制御装置の出力制
御電圧の初期値は約160°の制御角に相当する値と
してきたが、直流系統が通常に運転される最高の
電圧値よりも高い電圧を発生するような制御電圧
であればなんでも良いことは明らかである。160°
よりも小さければ、その分だけ起動時の電流断続
時間は短縮される。さらに多少複雑になるが、直
流線路側の電圧Edlよりも高い直流出力電圧Edi
出すような制御電圧を計算して求め、その値に初
期値を設定しても良い。
In the explanation so far, the initial value of the output control voltage of the constant current control device has been set to a value corresponding to a control angle of approximately 160°, but the voltage generated is higher than the highest voltage value at which the DC system is normally operated. It is clear that any control voltage that does this will suffice. 160°
If it is smaller than , the current intermittent time at startup is shortened by that amount. Although it is more complicated, a control voltage that produces a DC output voltage E di higher than the voltage E dl on the DC line side may be calculated and set as the initial value.

以上の説明は、並列4端子の多端子直流送電系
統を対象にして行つたが、第7図に示すように2
端子送電系統でも、1端子に複数台の変換器が並
列に接続されるような系統であるなら、本発明に
よる起動方式が適用できる。
The above explanation was made for a multi-terminal DC transmission system with four terminals in parallel, but as shown in Figure 7,
The starting method according to the present invention can also be applied to a terminal power transmission system, if the system has a plurality of converters connected in parallel to one terminal.

発明の効果 以上説明したように、本発明によれば、3つ以
上の変換器が並列に接続される直流系統におい
て、追加起動する逆変換器を、すでに運転中の系
統の直流電圧よりも高い電圧を発生する制御遅れ
角でゲートデブロツクし、定電流制御を生かして
系統に併入することにより、すでに運転中の系統
に擾乱を与えない追加起動ができるという著しい
効果を有する。
Effects of the Invention As explained above, according to the present invention, in a DC system in which three or more converters are connected in parallel, the inverter to be additionally started is set to a voltage higher than the DC voltage of the system already in operation. By gate deblocking at the control delay angle that generates voltage and joining the system by taking advantage of constant current control, it has the remarkable effect of allowing additional activation without disturbing the system that is already in operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用し得る直流多端子系統の
一構成図、第2図は本発明の一実施例を示す構成
図、第3図は第2図の1部を説明するためのブロ
ツク図、第4図は本発明を説明するための図、第
5図及び第6図は本発明の効果を説明するための
特性図、第7図は本発明が適用し得る他の系統構
成図である。 1〜4……交直変換器、5〜8……直流リアク
トル、9〜12……直流線路、13,20……開
閉器、21……起動停止装置、22……定電流制
御装置、23……計器用変流器、24……定余裕
角制御装置、25……制御電圧選択装置、26…
…制御電圧リミツタ装置、27……位相制御装
置、28……ゲートパルス発生装置、29……ス
イツチ、30……制御回路。
Fig. 1 is a block diagram of a DC multi-terminal system to which the present invention can be applied, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 is a block diagram for explaining a part of Fig. 2. Figure 4 is a diagram for explaining the present invention, Figures 5 and 6 are characteristic diagrams for explaining the effects of the present invention, and Figure 7 is another system configuration diagram to which the present invention can be applied. It is. 1-4... AC/DC converter, 5-8... DC reactor, 9-12... DC line, 13, 20... Switch, 21... Start/stop device, 22... Constant current control device, 23... ...Instrument current transformer, 24...Constant margin angle control device, 25...Control voltage selection device, 26...
...Control voltage limiter device, 27...Phase control device, 28...Gate pulse generator, 29...Switch, 30...Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも3台以上の変換器が並列に接続さ
れた直流系統において、既に複数台の変換器が運
転中に、停止中の変換器を逆変換器として追加起
動し、直流系統に併入する場合、前記変換器に備
えられている定電流制御装置の始動位相としてセ
ツトされた運転中の直流線路電圧よりも高い電圧
を発生させる制御遅れ角で前記逆変換器をゲート
デブロツクし、しかる後前記定電流制御装置の出
力により前記逆変換器を位相制御することを特徴
とする直流送電系統の変換器起動方法。
1 In a DC system where at least three or more converters are connected in parallel, when multiple converters are already in operation, a stopped converter is additionally started as an inverse converter and joined to the DC system. , the inverter is gated deblocked at a control delay angle that generates a voltage higher than the operating DC line voltage set as the starting phase of the constant current controller included in the converter; 1. A method for starting a converter in a DC power transmission system, characterized in that the phase of the inverse converter is controlled by the output of a constant current control device.
JP57005721A 1982-01-18 1982-01-18 Converter starting system for dc transmission system Granted JPS58123323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57005721A JPS58123323A (en) 1982-01-18 1982-01-18 Converter starting system for dc transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57005721A JPS58123323A (en) 1982-01-18 1982-01-18 Converter starting system for dc transmission system

Publications (2)

Publication Number Publication Date
JPS58123323A JPS58123323A (en) 1983-07-22
JPH0326020B2 true JPH0326020B2 (en) 1991-04-09

Family

ID=11618978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57005721A Granted JPS58123323A (en) 1982-01-18 1982-01-18 Converter starting system for dc transmission system

Country Status (1)

Country Link
JP (1) JPS58123323A (en)

Also Published As

Publication number Publication date
JPS58123323A (en) 1983-07-22

Similar Documents

Publication Publication Date Title
JPS6358022B2 (en)
US4259713A (en) High voltage direct current transmission
JPS588234B2 (en) Denryokuhenkankiyouma-jinkakuseigiyosouchi
JPH0326020B2 (en)
JPH0326021B2 (en)
JPH07193982A (en) Variable speed power generation system
JP3504152B2 (en) Power converter
JPH0353872B2 (en)
JPS6111531B2 (en)
JP2797937B2 (en) Inverter control device
JPS6091820A (en) Method of starting dc multiterminal transmission system
JPH0785418B2 (en) Operating method of fuel cell power generator
JPS6332033B2 (en)
JPS60134735A (en) No-break switching device for generator varying in frequency
JPH0353847B2 (en)
JPH0974668A (en) Method and device for controlling dc power transmission
JPH07106034B2 (en) Control system of AC / DC converter
JPS592530A (en) Control system for converter
JPS59129537A (en) Method of controlling stationary reactive power compensator
JPS64908B2 (en)
JPH0213533B2 (en)
JPS6251076B2 (en)
JPS5931317B2 (en) AC non-commutator motor
JPS5822586A (en) Regenerative control of power converter
JPH0159834B2 (en)