JPS5931317B2 - AC non-commutator motor - Google Patents

AC non-commutator motor

Info

Publication number
JPS5931317B2
JPS5931317B2 JP52058520A JP5852077A JPS5931317B2 JP S5931317 B2 JPS5931317 B2 JP S5931317B2 JP 52058520 A JP52058520 A JP 52058520A JP 5852077 A JP5852077 A JP 5852077A JP S5931317 B2 JPS5931317 B2 JP S5931317B2
Authority
JP
Japan
Prior art keywords
power outage
motor
phase
power
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52058520A
Other languages
Japanese (ja)
Other versions
JPS53143911A (en
Inventor
勇 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP52058520A priority Critical patent/JPS5931317B2/en
Publication of JPS53143911A publication Critical patent/JPS53143911A/en
Publication of JPS5931317B2 publication Critical patent/JPS5931317B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 本発明は停電対策を施した交流無整流子電動機の提供を
目的とし、駆動、回生運転中に停電が発生した場合、過
電流を流すことなしに電動機を停止させ、また復電時に
は自動的に再運転できるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to provide an AC non-commutator motor with measures against power outages, so that when a power outage occurs during drive or regenerative operation, the motor is stopped without passing an overcurrent, It is also designed to be able to restart automatically when power is restored.

一般に停電と言われているものには、電源が全くなくな
るかまたはほぼ零Vにまで電圧降下する例えば「95%
O、5sec」などの完全停電と、電源が規定値を越え
て低下する、例えば「50%1.0sec」の50%瞬
停と呼ばれる、電源低下の二つがある。
Generally speaking, a power outage includes a complete loss of power or a voltage drop to almost zero volts, such as a 95% power outage.
There are two types of power outage: a complete power outage, such as "0.5 sec", and a power drop, called a 50% instantaneous power outage, in which the power drops beyond a specified value, for example, "50% 1.0 sec".

本発明は停電をこの完全停電と電源低下の二つに分けて
検知し、完全停電の際にはサイリスタのα位相を一定値
に固定せしめ主回路電流は直流リアクトル等回路条件と
電動機電圧との位相関係により減衰させ、また電源低下
時は設定制御進み角γ0を00から900の範囲内のあ
る一定値に、かつ制御遅れ角αを、位相器入力を零とし
キックパルス位置に各設定して成り、駆動時は電源側電
圧を正値から負値へ、回生時は逆に電動機側の逆起電圧
を負値から正値へと夫々反転させ、主回路電流を急速に
減衰させ過電流とならないようにしたものである。
The present invention detects a power outage by dividing it into two parts: a complete power outage and a power drop, and in the event of a complete power outage, the α phase of the thyristor is fixed at a constant value, and the main circuit current is determined based on the circuit conditions such as the DC reactor and the motor voltage. It is attenuated by the phase relationship, and when the power supply drops, the set control advance angle γ0 is set to a certain value within the range of 00 to 900, and the control delay angle α is set at each kick pulse position with the phaser input set to zero. During driving, the voltage on the power supply side is reversed from a positive value to a negative value, and during regeneration, the back electromotive force on the motor side is reversed from a negative value to a positive value, rapidly attenuating the main circuit current and causing an overcurrent. This was done to prevent this from happening.

以下図面に基づき本発明を具体的に説明する。The present invention will be specifically explained below based on the drawings.

図面は、第1図が交流無整流子電動機の典型的なブロッ
ク図、第2図が本発明実施例である当交流無整流子電動
機に関する制御回路図、第3図、第4図はその動作を説
明するための電動機電圧、主回路電流の各波形図及びそ
の時のサイリスタの導通関係を示す図である。第1図に
示す交流無整流子電動機は3相ΛC電源から変圧器Tr
l直流リアクトルLを介し、各組が電源の各相R,S,
Tに相当する3ケのサイリスタより成る電動機の各相に
対応する6組のサイリスタ群U,V,・・・・・・Zを
通して電動機SMへ電力が供給される、最も普通の構成
であり、詳細説明は省略する。
In the drawings, Fig. 1 is a typical block diagram of an AC non-commutator motor, Fig. 2 is a control circuit diagram of the AC non-commutator motor according to an embodiment of the present invention, and Figs. 3 and 4 show its operation. FIG. 2 is a diagram showing waveform diagrams of a motor voltage and a main circuit current, and a conduction relationship of a thyristor at that time, for explaining. The AC non-commutator motor shown in Figure 1 is connected to a transformer Tr from a three-phase ΛC power supply.
l Through the DC reactor L, each set connects each phase of the power supply R, S,
This is the most common configuration in which power is supplied to the motor SM through six thyristor groups U, V, . . . Z, each consisting of three thyristors corresponding to T, corresponding to each phase of the motor. Detailed explanation will be omitted.

また第2図示の制御回路は電動機電圧を制御し速度制御
を行うa制御機能と界磁極の位置に応じてサイリスタを
選択導通させ所定の電機子巻線に電流を流してトルクを
発生・回転させるγ制御機能から構成される。即ちα制
御は速度指令器1により設定された設定指令値と速度帰
還信号の差に応じて位相遅れ角αを制御する速度制御機
構で、図示例の場合、電流マイナループを有しており、
速度調節器PIN2、電流調節器PII3、移相器TD
4を主たる構成要素とし他に始動用リレーXS5,4象
限運転を行うべく正トルク、逆トルクの指令によつて作
動しPIN2出力の正・負に関係なくマイナループ指令
の極性を一定に保つ常開スイツチ要素F6a,R7aと
インバータ8、駆動・回生の切替えを円滑に行い無1駄
時間を極力少くするため電流調節器3入出力間に備えた
常閉スイツチ要素F6b,R7blなどから構成される
。またγ制御は位置検出器からの位置信号に基づき、該
当サイリスタにゲート信号を分配するのであるが、運転
モードに応じて設定制御進み角γ。を決定するため、電
流指令の正・負を判別、正トルク若しくは逆トルク指令
を出す、トルク方向判別器9,γ論理回路10、更に交
流方式であるので、γ論理回路10のγ信号と先の移相
器TD4のα信号を組合せサイリスタゲート信号用ロジ
ツク出力を演算するA,γ合成論理回路11から構成さ
れる。本発明は上記D,γ制御機能を有する交流無整流
子電動機の制御回路において、移相器TD4の同期電源
が停電により消失、若しくは規定値以上に低下した場合
、第1のコンパレータ20により電源低下を、第2のコ
ンパレータ21により完全停電を、夫々検知し、完全停
電の場合は、移相器TD4へしや断指令を与え、TD4
からのα信号を全てカツトするとともに、α,γ合成論
理回路11へは別途d信号(一定直流信号)を投入し、
γ信号と相俟つて特定サイリスタ群へー括してゲート信
号を与えその中の停電直前での導通サイリスタを引続き
導通させ位置信号の切替えに応じ他のループの同一相サ
イリスタが導通するようにし、また電源低下時は設定制
御進み角γ。
In addition, the control circuit shown in the second diagram has an a control function that controls the motor voltage and speed, and selectively conducts the thyristor depending on the position of the field pole to flow current to a predetermined armature winding to generate torque and rotate. Consists of γ control function. That is, the α control is a speed control mechanism that controls the phase delay angle α according to the difference between the set command value set by the speed command device 1 and the speed feedback signal, and in the illustrated example, it has a current minor loop,
Speed regulator PIN2, current regulator PII3, phase shifter TD
4 is the main component, and the other is the starting relay It consists of switch elements F6a, R7a, an inverter 8, normally closed switch elements F6b, R7bl, etc. provided between the input and output of the current regulator 3 in order to smoothly switch between drive and regeneration and minimize wasted time. In addition, the γ control distributes gate signals to the corresponding thyristors based on the position signal from the position detector, and the control advance angle γ is set depending on the driving mode. In order to determine the positive or negative current command, a torque direction discriminator 9 and a γ logic circuit 10 are used to determine whether the current command is positive or negative and issue a positive torque or reverse torque command. It is composed of an A and γ synthesis logic circuit 11 which combines the α signals of the phase shifter TD4 and calculates a logic output for a thyristor gate signal. The present invention provides a control circuit for an AC non-commutator motor having the above D, γ control function, in which when the synchronous power supply of the phase shifter TD4 disappears due to a power outage or decreases to a specified value or more, the power is reduced by the first comparator 20. The second comparator 21 detects a complete power outage, and in the case of a complete power outage, a power outage command is given to the phase shifter TD4, and TD4
At the same time, a d signal (constant DC signal) is separately input to the α, γ synthesis logic circuit 11,
In combination with the γ signal, a gate signal is given to a specific thyristor group so that the thyristors that were conducting immediately before the power outage are made to continue conducting, and the thyristors of the same phase in other loops are made to be conducting in response to the switching of the position signal, and When the power supply drops, the setting control advance angle γ.

を00から90電の例えば60定に固定するとともに、
リレーX22を作動させ速度、電源の両調節器2,3の
入出力を短絡し移相器TD4の入力を零にしα信号をキ
ツクパルス位置に設定したもので、停電時における主回
路電源の過大となるのを防ぎサイリスタの損傷を防止し
たことを特徴とする。以下その動作を図示する波形図に
より説明する。
While fixing it to a constant of 00 to 90 dens, for example 60,
By activating relay X22, the input and output of both speed and power regulators 2 and 3 are shorted, the input of phase shifter TD4 is zero, and the α signal is set to the hard pulse position, which prevents excessive main circuit power during a power outage. It is characterized by preventing damage to the thyristor. The operation will be explained below using waveform diagrams.

最初に、γo=60すで駆動中及びγ。−120での回
生運転中に完全停電が発生した場合の動作を説明する。
第3図にγ。=600の電源側よりサイリスタを経てみ
た電動機逆起電圧イ、整流して直流モデル化した電動機
電流口の各波形図とその時のゲート信号の入るサイリス
タ群ハ、導通サイリスタニを夫々示す。すなわち、γo
が60サで運転されているので、導通サイリスタを介し
てみた電動機逆起電圧は図示するような波形となり、今
TO時で停電が発生したとすれば先に述べたコンパレー
タ21が作動し、移相器TD4へd信号しや断指令が入
るとともに、α,γ合成を行うα,γ合成論理回路11
へ全サイリスタのd位相を一定とする全d一定信号が投
入され、γ制御系により決定されるグループの全サイリ
スタへ点弧信号が加えられる。図示の場合、このグルー
プはU及びZでかつ停電直前の交流電源側からみた点弧
相はR,S相であり、これら関係から停電時の導通サイ
リスタはUR及びZSで、これは位置信号が切替りグル
ープ間転流が行われるT2時点まで続く。T2時点で位
置信号即ちγ信号が変るとUグループのサイリスタから
VグループのVR,S,VTの各サイリスタへ点弧信号
が移るのであるが、実際に導通するサイリスタは、交流
電源が消失しているので負荷転流のみ行われ電源側から
みた同一相のサイリスタ、VRのみであり、Zグループ
はそのままで結局VR,ZSのサイリスタが導通する。
同様に、T2時点ではZからXグループへ、即ちZSか
らXSサイリスタへ転流が行われる。勿論、この間の各
電動機逆起電圧UW,VW,VUは電動機電流を減少さ
せる向きにあり、この電動機逆起電圧と直流リアクトル
等主回路条件により電動機電流を減衰させやがては零と
する。このように、本発明は電源からみて同じ相に次々
と負荷転流を行わせることにより、また主回路条件とあ
いまつて電動機電流を減少させていくもので、直流リア
クトルの大小如何に拘わらず電動機逆起電圧が電動機電
流と和動的に作用する等のことは起り得ず上記電流は必
ず減衰し零になる(t′o時)。第4図にγ。=120
0で回生運転中に完全停電が生じた場合の、第3図と同
様電源側よりサイリスタを経てみた電動機逆起電圧イと
そのときの電動機電流口(直流モデル化して示す)の各
波形図とその時のゲート信号の入るサイリスタハ、導通
サイリスタニを夫々示す。γoが120ハの通常速度に
おける回生運転の場合、制御おくれ角αは90おから1
800の、電動機逆起電圧に相応し、かつ最も効率よく
制動トルクを作動せしむる、最適な電源電圧、を与える
値に設定されるのであるが、図示するようにT。時点で
停電が発生すれば電源電圧は零Vになり、それ故電動機
電流は急速に増大する。即ち、停電が発生すると、電源
電圧が消失し電動機逆起電圧は直流リアクトルを介し電
源で短絡されたことになり、図示のT。時点での停電の
場合、逆起電圧の極性が反転するT2時までは電動機電
流は増加し続け、その後は極性が反転するので、減少し
ていき電動機電圧波形の関係上位置信号の切変り毎に若
干減少は遅れるが、やがて零になる。つまり、回生運転
中の場合、完全停電と同時にa記憶回路12へ記憶指令
が入り停電直前の導通サイリスタを記憶し、この相のみ
へゲート信号を与えるべくα位相一定信号を出すように
する。この間、動作をより確実にするため移相器4へは
駆動時と同様d信号停止指令が入り移相器4の機能は停
止される。このことは、停電時のTOから逆起電圧の極
性が反転するT2時点までの間、同一グループの他サイ
リスタUS,UT,ZR,ZTへはゲート信号を与えず
先の記憶回路12の作用によりUR.l5ZSのみのサ
イリスタを導通させ、TO−T2間の電動機逆起電圧を
変圧器Trl直流リアクトルLで短絡している状態を、
直流リアクトルLの1相のみにとどめ電動機電流の増大
するのを防ぐ意である。なお、この電流の定常実効値的
の大きさは、電動機逆起電圧を、電動機の巻線インピー
ダンス、直流リアクトル、電源インピーダンスで除すこ
とにより決定され、従つて、これら条件によつては、こ
の記憶回路12は必ずしも必要としない。即ち、,駆動
の時と同様、全サイリスタヘ一率にd信号を与え、U,
Zグループのサイリスタを全部点弧させることも可能で
あり、この場合、電動機電流は、3相交流の各相の電源
インピーダンス、直流リアクトルが負荷として接続され
、d記憶回路12を作動させる場合に比べ約3倍となる
。かくして、回生電源は電動機逆起電圧の極性が反転す
るT2時点で最大となり、その後減少していくが、この
最大電流は主回路条件で定まり、要すれば過電流保護装
置の動作を停止する引外し指令をコンパレータ21より
出すようにすればよく、このことは復電で再起動させる
ときに必要である。一方γ制御系はコンパレータ20の
作動によるγ。固定指令が発せられγ。論理回路10の
γo信号が回生時の120らよりOから900の一定値
、例えば600に切替えられており、転流時のT2時に
達して後も同一サイリスタUR,ZSが導通し続けT2
より600位相後のT3時まで変らず、この間電動機逆
起電圧は回生電流と逆位相で電流を抑制する向きにある
。T3時点で位置信号が切替りUグループからVグルー
プへの転流、即ちURサイリスタから、交流電源からみ
た同一相サイリスタVRへと転流し、R,ZSが導通、
回生電流は逆起電圧VWにより減少され、T4時点で同
様に位置信号が切替りサイリスタXSが点弧し逆起電圧
VUが電流抑制に働きついには(t′o時点)零とする
。この様に回生運転時の停電は、過大電流を流さない為
停電直前の導通サイリスタを記憶しその相のみへゲート
信号を与えるようにし、電動機逆起電圧の反転の後は駆
動時と同様位置信号の切替え毎の負荷転流に基づく転流
を行い電動機電流を逆起電圧により順次減少させていく
。なお、d記憶回路12として最も簡単のものの一つに
フリツプ・フロツプが挙げられる。なお、このd記憶回
路12は、完全停電発生後の最初の位置信号切替時(T
2時点)を検知し、この時点で全サイリスタヘ一率にd
信号を与えるようにすれば、不要となるのは自明である
Initially, γo=60 is already being driven and γ. The operation when a complete power outage occurs during regenerative operation at -120 will be explained.
γ in Figure 3. The motor back electromotive voltage (a) seen from the power supply side of =600 through the thyristor, the waveform diagram of the motor current inlet that has been rectified into a DC model, the thyristor group to which the gate signal is input at that time, and the conduction thyristor (c) are shown, respectively. That is, γo
Since the motor is operating at 60 s, the motor back electromotive force seen through the conduction thyristor has a waveform as shown in the figure.If a power outage occurs at the time of TO, the comparator 21 mentioned earlier will be activated and the When the d signal cutoff command is input to the phase shifter TD4, the α, γ synthesis logic circuit 11 performs α, γ synthesis.
An all-d constant signal is applied to make the d-phase of all thyristors constant, and a firing signal is applied to all thyristors of the group determined by the γ control system. In the case shown in the figure, these groups are U and Z, and the ignition phases seen from the AC power supply side immediately before a power outage are the R and S phases.From these relationships, the conductive thyristors at the time of a power outage are UR and ZS, which means that the position signal is The switching continues until time T2, when intergroup commutation takes place. When the position signal, that is, the γ signal, changes at time T2, the ignition signal is transferred from the thyristors in the U group to the VR, S, and VT thyristors in the V group, but the thyristors that actually conduct conduct because the AC power supply has disappeared. Therefore, only the load commutation is performed, and only the thyristors and VR of the same phase as seen from the power supply side are connected, and the Z group remains as it is, and the thyristors of VR and ZS become conductive.
Similarly, at time T2, a commutation takes place from Z to X group, ie from ZS to XS thyristor. Of course, the motor back electromotive voltages UW, VW, and VU during this time tend to decrease the motor current, and the motor current is attenuated depending on the motor back electromotive voltage and main circuit conditions such as the DC reactor, and eventually becomes zero. In this way, the present invention reduces the motor current by sequentially commutating the load to the same phase as seen from the power supply, and in combination with the main circuit conditions, the motor current can be reduced regardless of the size of the DC reactor. It is impossible for the back electromotive voltage to act harmonically with the motor current, and the current always attenuates and becomes zero (at time t'o). γ in Figure 4. =120
When a complete power outage occurs during regenerative operation at 0, as in Figure 3, the motor back electromotive force A seen from the power supply side through the thyristor and the waveform diagram of the motor current port (shown as a DC model) at that time. The thyristor and conductive thyristor into which the gate signal is applied at that time are shown, respectively. In the case of regenerative operation at normal speed where γo is 120mm, the control delay angle α is 90mm
It is set to a value that provides the optimum power supply voltage that corresponds to the motor back electromotive voltage of 800 and that operates the braking torque most efficiently, as shown in the figure. If a power outage occurs at this point, the power supply voltage becomes zero V, and therefore the motor current increases rapidly. That is, when a power outage occurs, the power supply voltage disappears and the motor back electromotive voltage is short-circuited at the power supply via the DC reactor, resulting in T shown in the figure. In the case of a power outage at that point, the motor current continues to increase until T2 when the polarity of the back electromotive force is reversed, and then the polarity is reversed, so it decreases every time the position signal changes due to the motor voltage waveform. Although there is a slight delay in the decrease, it eventually reaches zero. That is, when regenerative operation is in progress, a storage command is sent to the a memory circuit 12 at the same time as a complete power outage to store the conduction thyristor immediately before the power outage, and output a constant α phase signal to give a gate signal only to this phase. During this time, in order to make the operation more reliable, a d signal stop command is input to the phase shifter 4 as in the case of driving, and the function of the phase shifter 4 is stopped. This means that from TO at the time of a power outage to time T2 when the polarity of the back electromotive force is reversed, no gate signal is given to the other thyristors US, UT, ZR, and ZT in the same group due to the action of the memory circuit 12. UR. The state in which only the thyristor of l5ZS is made conductive and the motor back electromotive voltage between TO and T2 is short-circuited by the transformer Trl and the DC reactor L is as follows.
This is intended to prevent the motor current from increasing by limiting it to only one phase of the DC reactor L. The steady-state effective value of this current is determined by dividing the motor back electromotive voltage by the motor winding impedance, DC reactor, and power supply impedance. The memory circuit 12 is not necessarily required. That is, as in the case of driving, a d signal is given to all thyristors at a constant rate, and U,
It is also possible to fire all the thyristors in the Z group, and in this case, the motor current will be lower than when the power supply impedance of each phase of the three-phase AC and the DC reactor are connected as loads, and the d memory circuit 12 is operated. Approximately 3 times as much. In this way, the regenerative power reaches its maximum at time T2 when the polarity of the motor back electromotive force is reversed, and then decreases. However, this maximum current is determined by the main circuit conditions, and if necessary, it can be triggered to stop the operation of the overcurrent protection device. It is sufficient to issue a disconnection command from the comparator 21, which is necessary when restarting upon power restoration. On the other hand, the γ control system controls γ by the operation of the comparator 20. A fixed command is issued and γ. The γo signal of the logic circuit 10 is switched from 120 during regeneration to a constant value of 900, for example 600, and the same thyristors UR and ZS continue to be conductive even after reaching time T2 during commutation.
It does not change until time T3, which is 600 phases later, and during this period, the motor back electromotive force is in the opposite phase to the regenerative current and tends to suppress the current. At time T3, the position signal switches and commutation occurs from the U group to the V group, that is, from the UR thyristor to the same phase thyristor VR seen from the AC power supply, R and ZS become conductive.
The regenerative current is reduced by the back electromotive voltage VW, and at the time T4, the position signal is similarly switched, the thyristor XS is fired, and the back electromotive voltage VU works to suppress the current, and finally becomes zero (at the time t'o). In this way, in order to prevent excessive current from flowing during a power outage during regenerative operation, the conduction thyristor immediately before the power outage is memorized and a gate signal is given only to that phase, and after the motor back electromotive voltage is reversed, the position signal is sent in the same way as when driving. Commutation is performed based on the load commutation at each switching, and the motor current is sequentially reduced by the back electromotive voltage. Incidentally, one of the simplest types of d memory circuit 12 is a flip-flop. Note that this d memory circuit 12 is stored at the time of the first position signal switching after a complete power outage (T
2), and at this point all thyristors are uniformly d
It is obvious that if a signal is given, it becomes unnecessary.

即ち、T2時点以後の電動機逆起電圧は反転しており駆
動時と同様の回路条件となるからである。以上、完全停
電時における動作を説明したが、次に電源低下の際のそ
れを説明する。
That is, the motor back electromotive voltage after time T2 is reversed and the circuit conditions are the same as during driving. The operation at the time of a complete power outage has been explained above, and next, the operation at the time of a power drop will be explained.

駆動運転の場合、通常速度であれば設定制御進み角γ。In the case of drive operation, if the speed is normal, the set control advance angle γ.

が大低の場合60でに設定されているが、瞬時停電が発
生しコンパレータ20が作動すると、上記γ。は00か
ら900のあらかじめ定められたある値に設定し直され
、かつリレーXl22が作動し、電流調節器PII3、
速度調節器PIN2の各入出力を短絡し、移相器TD4
入力を零、d位相をキツクパルス位置とし電源電圧Vs
(サイリスタを介して電動機に加えられる電圧)を負の
最大値に制御し、電源電圧Vsと電動機逆起電圧VMの
関係を、Vs<VMなるように選定し電動機電流を急速
に減衰させ零とする。また、回生運転時は、αが90し
乃至1800の、電動機電圧に応じ、かつ適切な制動ト
ルクを働かせる、適当の値に設定され、一方γ。
is set at 60 when γ is large or low, but when a momentary power outage occurs and the comparator 20 is activated, the above γ. is reset to a predetermined value between 00 and 900, and relay Xl22 is activated, and current regulator PII3,
Short-circuit each input and output of the speed regulator PIN2, and connect the phase shifter TD4.
With the input at zero and the d phase at the kick pulse position, the power supply voltage Vs
(the voltage applied to the motor via the thyristor) is controlled to the negative maximum value, and the relationship between the power supply voltage Vs and the motor back electromotive voltage VM is selected so that Vs<VM, and the motor current is rapidly attenuated to zero. do. Further, during regenerative operation, α is set to an appropriate value of 90 to 1800, which corresponds to the motor voltage and applies an appropriate braking torque, while γ.

は電動機速度に見合う、すなわち通常速度であれば12
0速、低速時は180なに大旨定められており、電源電
圧s電動機逆起電圧VM共に負で、かつVMはVsより
大なる、IVsI<IVMIの条件で回生されている。
この状態で、停電が発生し交流電源電圧が低下すると、
コンパレータ20が作動し、γo固定指令が発せられ設
定制御進み角γ。は駆動運転における場合と同様00か
ら900の適当な値に切替えられ、電動機逆起電圧VM
は負から正の値に変換し、上記電圧VMに基づく制動電
流は急速に減衰され零となる。勿論γ。の切替えと同時
にリレーXl22が働き移相器TD4の入力を零、α位
相を負の最大値(キツクパルス位置)に変換し、電流の
減衰に寄与するのも駆動時と同様である。なお、短時間
で復電し電動機を停止させることなく停電前の運転をそ
のまま継続したい場合は、始動用リレーXS5をそのま
ま投入状態に維持しておけば、コンパレータ20,21
の作動が停止され、速度調節器PT82の出力短絡スイ
ツチ22bが開放、速度調節器PIN2の出力は設定指
令値と当復電時の速度帰還量の差に対応した値に戻り、
速度指令器1の指令に基づき運転が再開されることにな
る。以上述べたように本発明は駆動、回生のいづれの運
転中においても、瞬時停電などの停電に際し異常電流を
流すことなしに電動機を停止に導き、また復電するに当
り、運転を継続したい場合はそのまま継続できるように
したものであり、一般的に言つて、d制御系の移相器は
同期電源が著しく低下すると(例えば4001)以下)
、誤動作を起こすことが多く、従来の瞬停対策のないも
のである場合、特に回生運転中のα信号の誤作動は、タ
イミングによつては電源電圧が電動機逆起電圧と和動的
に加わり主回路に大電流を流し速断ヒユーズ溶断、保護
装置作動、ときにはサイリスタの損傷を招くことも考え
られるが、このような懸念を全く解消することができ、
また特に本発明の特長とするところは、電源電圧が消失
する完全停電時においても、電源側からみた特定相また
は全部の相へー率に一定のd信号を与え負荷転流により
順次サイリスタを導通制御させたことにあり、これによ
り主回路の直流リアクトルの値は実質的に制約を受けず
に済むという優れたメリツトを有する。
corresponds to the motor speed, i.e. 12 at normal speed.
At 0 speed and low speed, 180 glyphs are determined, and regeneration is performed under the condition that IVsI<IVMI, where both the power supply voltage and the motor back electromotive force VM are negative, and VM is greater than Vs.
In this state, if a power outage occurs and the AC power supply voltage drops,
The comparator 20 is activated, a γo fixing command is issued, and the setting control advance angle γ is set. is switched to an appropriate value from 00 to 900 as in the case of driving operation, and the motor back electromotive voltage VM
is converted from a negative value to a positive value, and the braking current based on the voltage VM is rapidly attenuated to zero. Of course γ. Simultaneously with the switching, the relay Xl22 operates to convert the input of the phase shifter TD4 to zero and the α phase to the negative maximum value (kick pulse position), contributing to the attenuation of the current, as in the case of driving. In addition, if you want to restore the power in a short time and continue the operation as before the power outage without stopping the motor, you can keep the starting relay XS5 in the closed state and the comparators 20 and 21
operation is stopped, the output short-circuit switch 22b of the speed regulator PT82 is opened, and the output of the speed regulator PIN2 returns to the value corresponding to the difference between the set command value and the speed feedback amount at the time of power restoration.
The operation will be restarted based on the command from the speed command device 1. As described above, the present invention enables the motor to be stopped during a power outage such as a momentary power outage during either drive or regeneration operation without causing abnormal current to flow, and when it is desired to continue operation when power is restored. Generally speaking, when the synchronous power supply drops significantly (for example, 4001 or less), the phase shifter of the d control system is designed to continue as it is.
, malfunctions often occur, and if there is no conventional protection against instantaneous power outages, malfunctions of the α signal, especially during regenerative operation, may occur due to the power supply voltage harmonically adding to the motor back electromotive force depending on the timing. It is conceivable that a large current will flow through the main circuit, causing a quick fuse to blow, a protective device to activate, and even damage to the thyristor, but these concerns can be completely eliminated.
In addition, a particular feature of the present invention is that even in the event of a complete power outage in which the power supply voltage disappears, a constant d signal is applied to a specific phase or all phases as seen from the power supply side, and the thyristors are sequentially turned on by load commutation. This has the excellent advantage that the value of the DC reactor in the main circuit is not subject to any substantial restrictions.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、第1図が交流無整流子電動機の基本プロツク図
、第2図は実施例の回路図、第3図、第4図は夫々駆動
・回生運転における停電時の逆起電圧、電動機電流の各
波形図である。 12・・・・・・α記憶回路、20,21・・・・・・
コンパレータ、22・・・・・・リレーXl.22a・
・・・・・リレーX1の常開接点、22b・・・・・・
リレーX1の常閉接点。
In the drawings, Fig. 1 is a basic block diagram of an AC non-commutator motor, Fig. 2 is a circuit diagram of an embodiment, and Figs. 3 and 4 show back electromotive force and motor current during power outage during drive and regenerative operation, respectively. FIG. 12...α memory circuit, 20, 21...
Comparator, 22... Relay Xl. 22a・
...Relay X1 normally open contact, 22b...
Normally closed contact of relay X1.

Claims (1)

【特許請求の範囲】 1 速度指令値と速度帰還量の差に応じて制御遅れ角α
を制御するα制御機能と、界磁極の位置に応じてサイリ
スタを選択導通させ、所定の電機子巻線に電流を流しト
ルクを発生、回転させるγ制御機能、を有する交流無整
流子電動機において、電源停電を電源低下と完全停電の
2つに分けて検出し、電源低下の場合は、制御遅れ角α
をキックパルス位置に、設定制御進み角γ_0を0°か
ら90°の範囲に各設定し、完全停電の場合は、α制御
系移相器へα信号しや断指令を与え移相器の機能を停止
させるとともに回生運転中は、停電直前導通サイリスタ
の交流電源側からみた相を記憶、この特定相へ信号を与
え、駆動運転中は全部の相へ一率に信号を与えα位相を
特定し、かつ設定制御進み角γ_0を0°から90°の
範囲に設定しα、γ合成を行いサイリスタのゲート信号
を供給したことを特徴とする交流無整流子電動機。 2 特許請求の範囲第1項記載の構成において、回生運
転中の完全停電に際し、過電流保護装置の動作を停止さ
せたことを特徴とする交流無整流子電動機。
[Claims] 1. The control delay angle α is adjusted according to the difference between the speed command value and the speed feedback amount.
In an AC non-commutated motor that has an α control function that controls A power outage is detected separately into two types: a power drop and a complete power outage, and in the case of a power drop, the control delay angle α is
to the kick pulse position, set the control lead angle γ_0 in the range of 0° to 90°, and in the case of a complete power outage, give an α signal cut-off command to the α control system phase shifter to control the phase shifter function. During regenerative operation, the phase of the conducting thyristor seen from the AC power supply side immediately before the power failure is memorized and a signal is given to this specific phase, and during drive operation, a signal is given to all phases at the same time to identify the α phase. , and a set control advance angle γ_0 is set in the range of 0° to 90°, α and γ are combined, and a gate signal of a thyristor is supplied. 2. An AC non-commutator motor having the configuration according to claim 1, characterized in that the operation of the overcurrent protection device is stopped in the event of a complete power outage during regenerative operation.
JP52058520A 1977-05-19 1977-05-19 AC non-commutator motor Expired JPS5931317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52058520A JPS5931317B2 (en) 1977-05-19 1977-05-19 AC non-commutator motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52058520A JPS5931317B2 (en) 1977-05-19 1977-05-19 AC non-commutator motor

Publications (2)

Publication Number Publication Date
JPS53143911A JPS53143911A (en) 1978-12-14
JPS5931317B2 true JPS5931317B2 (en) 1984-08-01

Family

ID=13086693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52058520A Expired JPS5931317B2 (en) 1977-05-19 1977-05-19 AC non-commutator motor

Country Status (1)

Country Link
JP (1) JPS5931317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346038Y2 (en) * 1984-02-28 1988-11-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346038Y2 (en) * 1984-02-28 1988-11-30

Also Published As

Publication number Publication date
JPS53143911A (en) 1978-12-14

Similar Documents

Publication Publication Date Title
US6038155A (en) Three phase SCR rectifier bridge with soft start control IC
US4931715A (en) Synchronous motor torque control device
JPS58224575A (en) Protecting system for integrated load commutation inverter
JPH0919052A (en) Protective device of converter
US3821630A (en) Commutation failure detection and control for scr inverters
US3887860A (en) Fuseless inverter
US4058738A (en) Method and circuit arrangement for starting up a converter having forced commutation with the correct phase
JPS5931317B2 (en) AC non-commutator motor
US4398141A (en) Static VAR generators
JP2569745B2 (en) Superconducting energy storage device
US4394614A (en) Static VAR generators
JP2614293B2 (en) Reactive power compensator
EP3622611B1 (en) Method for forcing the commutating of a bypass scr of a ups system and ups system
JP3496864B2 (en) Hybrid DC power transmission system and its controller
JP3085386B2 (en) Self-excited converter system and control method thereof
JPS6087695A (en) Excitation controller
JPS607475B2 (en) Induction motor operation control device
JPS5933000B2 (en) Power outage open phase protection device
JPH07159592A (en) Power source control device for bus with mg set and power source control method
JPH07231697A (en) Inverter device with dual controllers
JP2703212B2 (en) How to protect cycloconverter
JPS5951238B2 (en) Control device for anti-parallel connected thyristor converter
JPS6132898B2 (en)
JPH0537676Y2 (en)
JPS6243434B2 (en)