JPH0537676Y2 - - Google Patents

Info

Publication number
JPH0537676Y2
JPH0537676Y2 JP1986023975U JP2397586U JPH0537676Y2 JP H0537676 Y2 JPH0537676 Y2 JP H0537676Y2 JP 1986023975 U JP1986023975 U JP 1986023975U JP 2397586 U JP2397586 U JP 2397586U JP H0537676 Y2 JPH0537676 Y2 JP H0537676Y2
Authority
JP
Japan
Prior art keywords
inverter
circuit
power
control
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986023975U
Other languages
Japanese (ja)
Other versions
JPS62135598U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986023975U priority Critical patent/JPH0537676Y2/ja
Publication of JPS62135598U publication Critical patent/JPS62135598U/ja
Application granted granted Critical
Publication of JPH0537676Y2 publication Critical patent/JPH0537676Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【考案の詳細な説明】 A 産業上の利用分野 本考案は静止セルビウス装置に係わり、特に瞬
時停電(瞬停)発生時にも運転の継続を可能なら
しめる瞬停対策回路の簡素化をはかつた静止セル
ビウス装置に関するものである。
[Detailed description of the invention] A. Field of industrial application The present invention relates to a stationary Servius device, and in particular, it simplifies the momentary power outage countermeasure circuit that enables continued operation even in the event of a momentary power outage (instantaneous power outage). It concerns stationary Servius devices.

B 考案の概要 巻線形誘導電動機の速度制御を行なう静止セル
ビウス装置において、 瞬停時に前記電動機を停止させることなく運転
継続可能ならしめるために、逆変換器を自己消弧
形素子で構成し、その逆変換器の1次および2次
側に夫々自己消弧形素子を制御要素とする直流お
よび交流残留エネルギー吸収回路をもつ瞬停対策
回路を設け、瞬停発生時に前記逆変換器1次側の
直流過電流に基づいて前記逆変換器をしや断し同
時に夫々の前記残留エネルギー吸収回路を投入し
過電流制御を行なうこととし、瞬停対策回路の簡
単化、小形化、化電流減衰制御手順の簡素化をは
かり信頼性の向上、収納盤のスペース縮少、省エ
ネを行なうようにしたものである。
B. Summary of the invention In a stationary Servius device that controls the speed of a wound induction motor, in order to enable the motor to continue operating without stopping in the event of a momentary power failure, the inverter is constructed with a self-extinguishing element, and the Momentary power failure countermeasure circuits having DC and AC residual energy absorbing circuits each using a self-arc-extinguishing element as a control element are provided on the primary and secondary sides of the inverter, and when a momentary power failure occurs, the power failure prevention circuit on the primary side of the inverter Based on the DC overcurrent, the inverter is cut off and at the same time, each of the residual energy absorption circuits is turned on to perform overcurrent control. The system is designed to simplify the process, improve reliability, reduce storage space, and save energy.

C 従来の技術 静止型セルビウス装置は、負荷を駆動する巻線
形誘導電動機の2次すべり電力をダイオードなど
で構成した順変換器で直流に変換し、この直流を
サイリスタなどで構成した逆変換器で電源周波数
の交流電力に返還し、逆変換器の点弧位相制御に
より巻線形誘導電動機の速度制御を行なうもので
ある。こうした静止セルビウス装置では、他励変
換器の本質的欠陥である停電時の転流失敗動作が
発生し過電流が流れ素子を破損させることがあ
り、瞬停時でも巻線形誘導電動機(以後電動機と
記す)は停止され、復電後始動抵抗で起動させ加
速した後セルビウス運転に入るという手順をうむ
ため操作はん雑で、停電発生から所期の運転状態
に戻すまで非常に時間が掛つていた。
C. PRIOR TECHNOLOGY A static Servius device converts the secondary slip power of a wound induction motor that drives a load into direct current using a forward converter made up of diodes, etc., and converts this direct current into direct current using an inverse converter made up of thyristors. The power is returned to AC power at the power supply frequency, and the speed of the wound induction motor is controlled by controlling the firing phase of the inverter. In such stationary Servius devices, commutation failure occurs during a power outage, which is an essential flaw in separately excited converters, and overcurrent can flow and damage the elements. ) is stopped, and after the power is restored, it is started using a starting resistor, accelerated, and then enters Servian operation, which is a complicated procedure, and it takes a very long time to return to the desired operating state after a power outage occurs. Ta.

この問題を解決するために、瞬停発生時の転流
失敗による素子故障を防止すると共に、装置運転
を一旦停止することなく復電と同時に自動的にセ
ルビウス運転に移行させることを可能とするため
のパルス転流回路をそなえた第3図のような構成
のサイリスタセルビウス装置が使用されており、
そのパルス転流回路20における転流失敗時の過
電流減衰制御は第4図のようなタイムチヤートに
従つて行なわれる。即ち電源1が瞬停すると、無
停電電源でバツクアツプされた停電対策用制御回
路(図示されない)が電源電圧Eの電圧降下を検
出し、自動速度制御回路(図示されていない)に
信号を送り、該回路によつて逆変換器11におけ
る制御しや断を行ない、前記逆変換器11の電流
を絞つて転流失敗を防止する方向に制御する。併
し前記逆変換器11の電流絞りにも拘らず転流失
敗を起こすと、前記停電対策用制御回路は電流検
出器14によつて直流電流Idが所定の過電流値を
超過したことを検出し(転流失敗)、パルス転流
回路20に転流指令を与え前記逆変換器11のサ
イリスタのターンオフ制御(強制転流制御)およ
び充電用電磁接触器21の開放制御を行なう。前
記逆変換器11のサイリスタのターンオフ制御を
行なわせるためには、先づ前記パルス転流回路2
0を転流に先立つて転流用コンデンサC1に整流
器D6を通して図示の極性に充電しておく。今パ
ルス転流時の逆変化器11のY相、U相サイリス
タが導通しY相からU相の方向に電流I1が通電し
ているものとし、電源電圧降下で逆変換器11の
転流失敗が起こり直流電流Idが所定の過電流にな
ると、上述したように転流サイリスタS1が点弧さ
れ前記転流コンデンサC1がパルス電流I2の流れで
放電されU相サイリスタに逆電流を流しその導電
圧印加で該サイリスタがターンオフされる。前記
転流サイリスタS1の点弧は、前記転流コンデンサ
C1の放電に続く電流I3の流れで前記転流コンデン
サC1を図示と逆方向極性に充電すると共に、直
流リアクトル9に貯えられたエネルギーの放出を
行なう。前記転流コンデンサC1の逆方向の充電
電圧がY相サイリスタのアノード電圧をこえると
該サイリスタに逆電圧がかかりターンオフされ
る。このY相サイリスタのターンオフで直流側の
残留エネルギーは電流I4の経路で放出される。な
お前記停電対策制御回路は転流失敗検出と同時に
始動用電磁接触器5も投入制御して電動機3の2
次側出力を始動位置にある始動用抵抗器6に流し
てその電流の減衰も行なう。
In order to solve this problem, in addition to preventing element failure due to commutation failure when a momentary power outage occurs, it is also possible to automatically switch to Cerbius operation as soon as power is restored without having to temporarily stop equipment operation. A thyristor Servian device with a configuration as shown in Figure 3 is used, which is equipped with a pulse commutation circuit.
Overcurrent attenuation control when commutation fails in the pulse commutation circuit 20 is performed according to a time chart as shown in FIG. That is, when the power supply 1 momentarily stops, a power failure countermeasure control circuit (not shown) backed up by an uninterruptible power supply detects a voltage drop in the power supply voltage E, and sends a signal to an automatic speed control circuit (not shown). The circuit controls and disconnects the inverter 11, and controls the current in the inverter 11 in a direction to prevent commutation failure. However, if a commutation failure occurs despite the current throttling of the inverter 11, the power failure countermeasure control circuit detects by the current detector 14 that the DC current Id exceeds a predetermined overcurrent value. (commutation failure), a commutation command is given to the pulse commutation circuit 20 to perform turn-off control (forced commutation control) of the thyristor of the inverse converter 11 and opening control of the charging electromagnetic contactor 21. In order to perform turn-off control of the thyristor of the inverse converter 11, first, the pulse commutation circuit 2 is
0 is charged to the polarity shown in the figure through the rectifier D6 to the commutation capacitor C1 prior to commutation. It is assumed that the Y-phase and U-phase thyristors of the inverse converter 11 are conducting during pulse commutation, and a current I1 is flowing from the Y phase to the U phase, and the commutation of the inverse converter 11 is caused by a drop in the power supply voltage. When a failure occurs and the DC current Id reaches a predetermined overcurrent, the commutating thyristor S1 is fired as described above, and the commutating capacitor C1 is discharged by the flow of the pulse current I2 , causing a reverse current to flow into the U-phase thyristor. The thyristor is turned off by applying the conductive voltage. The ignition of the commutation thyristor S1 is caused by the commutation capacitor
Following the discharge of C 1 , the current I 3 flows to charge the commutating capacitor C 1 in a polarity opposite to that shown in the figure, and at the same time, the energy stored in the DC reactor 9 is released. When the reverse charging voltage of the commutating capacitor C1 exceeds the anode voltage of the Y-phase thyristor, a reverse voltage is applied to the thyristor and it is turned off. When the Y-phase thyristor is turned off, the residual energy on the DC side is released through the path of the current I4 . Note that the power outage countermeasure control circuit also controls the starting electromagnetic contactor 5 to close at the same time as commutation failure is detected, so that the electric motor 3 and 2
The next output is passed through the starting resistor 6 at the starting position to attenuate the current.

以上の回路動作によつて転流失敗に基づく荷電
流が減衰する。
The above circuit operation attenuates the charging current due to commutation failure.

このような転流失敗電流の減衰制御を実施した
後、電源回復(復電)時に電動機3の回転数Nが
セルビウス制御範囲内にあるときには、上記制御
しや断を解除してセルビウス運転の再開制御に入
り、一方復電時に電動機3の回転数Nがセルビウ
ス制御範囲以下に低下している時には電動機3を
始動抵抗器6の制御でセルビウス制御範囲速度ま
で加速してセルビウス運転の再開制御に入る。
After implementing such attenuation control of the failed commutation current, when the rotation speed N of the electric motor 3 is within the Cerbius control range at the time of power recovery (power restoration), the above-mentioned control interruption is canceled and Cerbius operation is resumed. On the other hand, if the rotation speed N of the electric motor 3 has fallen below the Servian control range when power is restored, the electric motor 3 is accelerated to the Servian control range speed under the control of the starting resistor 6, and the Servian operation restart control is started. .

D 考案が解決しようとする問題点 以上のようなパルス転流回路20をそなえたサ
イリスタ.サルビウス装置における逆変換器11
も他励インバータ動作であり、瞬停時のモードに
よつては転流失敗をし、第5図に示すように電動
機3側からの流入直流電流成分IMSと逆変換器1
1の2次側にある電力変換用変圧器12側からの
流入直流電流成分ITSが重畳し、大きな直流過電
流Idが発生することがある。従つてパルス転流回
路20は前記直流過電流Id=IMS+ITSをしや断す
るパルス電流I2を電流コンデンサC1より供給する
必要があり、このため転流コンデンサC1の容量
は大きくなり、収納盤体積の25〜30%を占めてお
り、またパルス転流回路20は部品点数が多く構
成が複雑なため過電流処理手順も複雑で信頼性低
く、高価でもある。またパルス転流回路20は一
度動作すると転流用サイリスタS1に自己消弧能力
がないためセルビウス投入用電磁接触器7や充電
用電磁接触器21のしや断操作も必要となる。
D Problems to be solved by the invention A thyristor equipped with the pulse commutation circuit 20 as described above. Inverter 11 in the Salvian device
is a separately excited inverter operation, and commutation may fail depending on the mode at the time of momentary power failure, and as shown in Figure 5, the inflow DC current component IMS from the motor 3 side and the inverter 1
The inflow DC current component I TS from the power conversion transformer 12 side on the secondary side of the power converter 1 may be superimposed, and a large DC overcurrent Id may occur. Therefore, the pulse commutation circuit 20 needs to supply the pulse current I 2 that cuts off the DC overcurrent Id = I MS + I TS from the current capacitor C 1 , and therefore the capacitance of the commutating capacitor C 1 is large. This occupies 25 to 30% of the volume of the storage board, and since the pulse commutation circuit 20 has a large number of parts and a complicated configuration, the overcurrent processing procedure is also complicated, unreliable, and expensive. Furthermore, once the pulse commutation circuit 20 is activated, the commutation thyristor S 1 does not have a self-extinguishing ability, so it is also necessary to perform a cutting operation on the Serbius input magnetic contactor 7 and the charging magnetic contactor 21.

本考案は以上のような欠点にかんがみなされた
もので、逆変換器を自己消弧形素子で構成すると
共に、逆変換器1次側、2次側に夫々自己消弧形
素子を制御要素とする直流、交流の残留エネルギ
ー吸収回路を有する瞬停対策回路を設け、回路の
簡単化、小型化、高信頼度化、省エネ化をはかる
ことを目的としたものである。
The present invention was developed in view of the above-mentioned drawbacks, and the inverter is configured with self-arc-extinguishing elements, and the self-arc-extinguishing elements are used as control elements on the primary and secondary sides of the inverter, respectively. The purpose of this design is to provide an instantaneous power failure countermeasure circuit that includes DC and AC residual energy absorption circuits to simplify the circuit, reduce its size, improve reliability, and save energy.

E 問題点を解決するための手段および作用 本考案の静止セルビウス装置は、自己消弧形素
子で構成された逆変換器と、前記逆変換器の1次
側に並列接続される自己消弧形制御素子、抵抗の
直列回路より成る直流残留エネルギー吸収回路お
よび前記逆変換器2次側に並列設置される整流
器、自己消弧形制御素子、抵抗の直列回路より成
る交流残留エネルギー吸収回路とをもつ瞬停対策
回路を構成の一要素とするものである。
E Means and Effects for Solving Problems The stationary Servius device of the present invention includes an inverter configured with self-arc-extinguishing elements, and a self-arc-extinguisher connected in parallel to the primary side of the inverter. It has a DC residual energy absorbing circuit consisting of a series circuit of a control element and a resistor, and an AC residual energy absorbing circuit consisting of a series circuit of a rectifier, a self-extinguishing control element, and a resistor installed in parallel on the secondary side of the inverter. The momentary power failure countermeasure circuit is one element of the configuration.

瞬停による電源電圧降下が検知され逆変換器1
次側に流れる直流過電流が所定値以上となると、
前記逆変換器をゲートしや断すると同時に前記瞬
停対策回路の各制御素子をゲートオンし、電動機
2次側の残留エネルギーによつて流入する前記逆
変換器1次側の直流過電流を前記直流残留エネル
ギー吸収回路へ流し、一方逆変換器2次側の電力
変換用変圧器の残留エネルギーによつて流れる交
流過電流を前記交流残留エネルギー吸収回路へ流
し、夫々の過電流を急速に減衰せしめる。
A power supply voltage drop due to a momentary power failure is detected and the inverter 1
When the DC overcurrent flowing to the next side exceeds a predetermined value,
At the same time as the inverter is gated and disconnected, each control element of the instantaneous power failure countermeasure circuit is gated on, and the DC overcurrent on the primary side of the inverter flowing in due to the residual energy on the secondary side of the motor is reduced to the DC overcurrent. On the other hand, the AC overcurrent flowing due to the residual energy of the power conversion transformer on the secondary side of the inverter is passed to the AC residual energy absorption circuit, and each overcurrent is rapidly attenuated.

F 実施例 以下に本考案の一実施例を第1図、第2図に基
づいて説明する。
F. Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は瞬停対策回路をそなえ静止セルビウス
装置の構成図、第2図は瞬停時における過電流制
御タイムチヤートである。第1図、第2図におい
て前記第3図、第4図の記号と同一のものは同一
または相当のものを示す。第1図において、30
は瞬停対策回路であり、停電対策制御回路(図示
されてない)は2つの残留エネルギー吸収回路3
01,302より成り、301は電動機3側から
の残留エネルギーを吸収し、302は逆変換器2
次側変圧器12よりの残留エネルギーを吸収す
る。なお、これら残留エネルギー吸収回路中の
R3,R4は瞬停対策用抵抗、CB2は瞬停対策用し
や断器、S2,S3は瞬停対策用GTOサイリスタ、
D7は瞬停対策用整流器である。また31は逆変
換器であり、GTOサイリスタで構成されている。
FIG. 1 is a block diagram of a stationary Servius device equipped with a circuit to prevent instantaneous power outages, and FIG. 2 is a time chart for overcurrent control during instantaneous power outages. In FIGS. 1 and 2, the same symbols as those in FIGS. 3 and 4 indicate the same or equivalent components. In Figure 1, 30
is a momentary power outage countermeasure circuit, and the power outage countermeasure control circuit (not shown) includes two residual energy absorption circuits 3.
01 and 302, 301 absorbs the residual energy from the motor 3 side, and 302 absorbs the residual energy from the inverter 2.
Absorbs residual energy from the next-side transformer 12. In addition, in these residual energy absorption circuits,
R 3 and R 4 are resistors for instantaneous power outage protection, CB 2 is a breaker for instantaneous power outage protection, S 2 and S 3 are GTO thyristors for instantaneous power outage protection,
D7 is a rectifier for momentary power outage countermeasures. Further, 31 is an inverse converter, which is composed of a GTO thyristor.

次に瞬停発生時の瞬停対策回路30による過電
流減衰制御動作を述べる。
Next, the overcurrent attenuation control operation by the momentary power failure countermeasure circuit 30 when a momentary power failure occurs will be described.

定常運転時においては、前記停電対策回路内の
GTOサイリスタS2,S3はしや断状態に保たれて
いる。瞬停が発生すると、前記停電対策制御回路
が電源電圧Eの電圧降下をとらえ停電を検知す
る。逆変換器31はGTOサイリスタで構成され
ているので転流失敗現象は生じないが、瞬停発生
と同時に逆変換器31の2次側電力変換用変圧器
12より残留エネルギーが放出されるので、逆変
換器31への交流電流IACが増大し始める。一方、
逆変換器31の交流側電圧の減少と共に、電動機
3側からの残留エネルギーに比例する電圧Edが
回路インピーダンスを通じて短絡される状態とな
るので、順変換器8から逆変換器31へ向つて第
5図に図示された電流IMSに近い電流が流れ、直
流電流Id(=Id′)は増大し始める。この直流電流
Id=(Id′)が所定の過電流値に達したことを停電
対策制御回路が直流電流検出器14により検知す
ると、逆変換器31へゲートオフ指令を送り逆変
換器31をしや断すると同時に停電対策制御回路
は残留エネルギー吸収回路301,302の
GTOサイリスタS2,S3へゲートオン指令を送り
GTOサイリスタS2,S3を導通させる。
During normal operation, the power failure countermeasure circuit
GTO thyristors S 2 and S 3 are kept in a de-energized state. When a momentary power outage occurs, the power outage countermeasure control circuit detects the voltage drop in the power supply voltage E and detects the power outage. Since the inverter 31 is composed of a GTO thyristor, commutation failure does not occur, but residual energy is released from the secondary power conversion transformer 12 of the inverter 31 at the same time as a momentary power failure occurs. The alternating current I AC to the inverter 31 begins to increase. on the other hand,
As the AC side voltage of the inverter 31 decreases, the voltage Ed proportional to the residual energy from the motor 3 side becomes short-circuited through the circuit impedance, so that the voltage Ed from the forward converter 8 toward the inverter 31 A current close to the current I MS shown in the figure flows, and the DC current Id (=Id') begins to increase. This direct current
When the power outage countermeasure control circuit detects through the DC current detector 14 that Id = (Id') has reached a predetermined overcurrent value, it sends a gate-off command to the inverter 31 and simultaneously turns off the inverter 31. The power outage countermeasure control circuit consists of residual energy absorption circuits 301 and 302.
Send gate-on command to GTO thyristors S 2 and S 3
Make GTO thyristors S 2 and S 3 conductive.

従つて逆変換器31へ流入していた直流電流Id
=0となり、順変換器8より流出していた直流電
流Idは直流残留エネルギー吸収回路301の抵抗
R3−しや断器CB2−GTOサイリスタS2経路を通
じて流れることとなり残留エネルギーの吸収が行
なわれ回路時定数に応じて直流電流Idは減少し始
める。
Therefore, the DC current Id flowing into the inverter 31
= 0, and the DC current Id flowing out from the forward converter 8 is absorbed by the resistance of the DC residual energy absorption circuit 301.
It flows through two paths: R 3 - breaker CB 2 - GTO thyristor S, residual energy is absorbed, and DC current Id begins to decrease according to the circuit time constant.

一方、逆変換器2次側の交流電流IACは交流残
留エネルギー吸収回路302の整流器D7−GTO
サイリスタS3−抵抗R4に流れ交流側残留エネル
ギーの吸収が行なわれ回路時定数に応じて交流電
流IACは減少し始める。交流側回路時定数は直流
側時定数より小さいため、交流電流IACの方が減
衰が早い。
On the other hand, the AC current I AC on the secondary side of the inverter is connected to the rectifier D 7 -GTO of the AC residual energy absorption circuit 302.
The remaining energy on the AC side flowing through the thyristor S 3 and the resistor R 4 is absorbed, and the AC current I AC begins to decrease according to the circuit time constant. Since the AC side circuit time constant is smaller than the DC side time constant, the AC current I AC decays faster.

逆変換器31の交流定格電流がI0であり、IAC
I0の状態を定電対策制御回路の交流側コンパレー
タが検出すると、交流残留エネルギー吸収回路3
02のGTOサイリスタS3へゲートオフ指令が送
られGTOサイリスタS3がしゃ断される。その後、
電動機2次定格電流に相当する直流定格電流が
IdNであり、Id≦IdNの状態を停電対策制御回路の
直流側コンパレータが検出すると、直流残留エネ
ルギー吸収回路301のGTOサイリスタS2へゲ
ートオフ指令が送られGTOサイリスタS2がしゃ
断される。
The AC rated current of the inverter 31 is I 0 , and I AC
When the AC side comparator of the constant voltage countermeasure control circuit detects the I 0 state, the AC residual energy absorption circuit 3
A gate-off command is sent to GTO thyristor S3 of 02, and GTO thyristor S3 is cut off. after that,
The DC rated current corresponding to the motor secondary rated current is
When the DC side comparator of the power failure countermeasure control circuit detects a state where Id≦I dN , a gate-off command is sent to the GTO thyristor S 2 of the DC residual energy absorption circuit 301 , and the GTO thyristor S 2 is cut off.

以上の制御によつて、瞬停に基づく過電流が減
衰した後の電源回復時の動作は従来のサイリス
タ.セルビウス装置のように電動機3の回転数N
がセルビウス制御範囲内にあるか範囲以下にある
かによつて、対応するシーケンスに従つてセルビ
ウス運転の再開制御に入る。
With the above control, the operation when the power is restored after the overcurrent caused by an instantaneous power failure has attenuated is similar to that of a conventional thyristor. The rotational speed N of the electric motor 3 as in the Servius device
Depending on whether it is within the Cerbius control range or below the Cerbius control range, control for restarting Cerbius operation is entered according to the corresponding sequence.

本実施例においては、逆変換器の構成素子およ
び瞬停対策回路の制御素子としてGTOサイリス
タを用いた場合を説明したが、自己消弧形素子で
あるトランジスタを用いても同様の制御動作を実
施できることは勿論である。
In this example, a case was explained in which a GTO thyristor was used as a component of an inverter and a control element of an instantaneous power failure countermeasure circuit, but the same control operation can also be performed using a transistor, which is a self-extinguishing element. Of course it can be done.

G 考案の効果 以上のように本考案はセルビウス装置の逆変換
器を自己消弧形素子で構成し、逆変換器の1次側
に直流側残留エネルギー吸収回路を、逆変換器の
2次側に交流側残留エネルギー吸収回路を設け、
それらの制御素子を自己消弧形素子とした瞬停対
策回路をそなえた自己消弧形セルビウス装置であ
るので、 従来の部品点数の多いパルス転流回路や充電回
路が浮揚となり、回路が簡単化され従つて過電流
制御手順も簡素化され信頼性が向上する。また、
特に大容量のコンデンサが不要となるため瞬停盤
の所要スペースが大巾(40%)に減少し、小形、
定価格化が可能となる。
G. Effect of the invention As described above, the present invention consists of the inverter of the Cerbius device using self-arc-extinguishing elements, the DC side residual energy absorption circuit is installed on the primary side of the inverter, and the DC side residual energy absorption circuit is installed on the secondary side of the inverter. A residual energy absorption circuit is installed on the AC side,
Since it is a self-arc-extinguishing Cervius device equipped with an instantaneous power failure countermeasure circuit in which these control elements are self-arc-extinguishing elements, the conventional pulse commutation circuit and charging circuit, which have a large number of parts, are eliminated and the circuit is simplified. Therefore, the overcurrent control procedure is also simplified and reliability is improved. Also,
In particular, since large capacity capacitors are no longer required, the space required for the instantaneous interruption board is greatly reduced (40%), making it compact and
Fixed price becomes possible.

また、従来は直接過電流しや断するため大きな
パルス電流の供給が必要とされたが、GTOサイ
リスタのゲートコントロールで処理できるので省
エネ効果がある。また従来はパルス転流回路を構
成する上で主回路母線を活用せねばならなかつた
が、本瞬停対策回路にはその必要がない等すぐれ
た効果を有するものである。
In addition, in the past, a large pulse current was required to be directly cut off due to overcurrent, but this can be handled by gate control of the GTO thyristor, resulting in energy savings. Furthermore, conventionally, it was necessary to utilize the main circuit bus in constructing a pulse commutation circuit, but this momentary power failure countermeasure circuit has excellent effects such as not having to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例である静止セルビウ
ス装置の構成図、第2図は実施例の瞬停時におけ
る過電流制御タイムチヤート、第3図は従来例の
静止セルビウス装置の構成図、第4図は従来例の
パルス転流動作タイムチヤート、第5図は従来例
の転流失敗時における過電流特性図。 1は電源、2,13はしや断器、3は巻線形誘
導電動機、4は速度検出器、5は始動用電磁接触
器、6は始動抵抗器、7はセルビウス投入用電磁
接触器、8は順変換器、9は直流リアクトル、1
0は高速度しや断器、11は逆変換器(サイリス
タ)、12は電力変換用変圧器、14は直流電流
検出器、20はパルス電流回路、21は充電用電
磁接触器、22は充電用電源、R1はバイパス用
抵抗、CB1はバイパス用しや断器、D1〜D4はバ
イパス用整流器、S1は転流用サイリスタ、C1
転流用コンデンサ、L1,L2は転流用リアクトル、
D5は転流用整流器、D6は充電用整流器、R2は充
電用抵抗、30は瞬停対策回路、301は直流残
留エネルギー吸収回路、302は交流残留エネル
ギー吸収回路、31は逆変換器(GTOサイリス
タ)、R3,R4は瞬停対策用抵抗、CB2は瞬停対策
用しや断器、S2,S3は瞬停対策用GTOサイリス
タ、D7は瞬停対策用整流器、Eは電源電圧、Id,
Id′は直流電流、IMSは転流失敗時の電動機側より
の流入直流、電流成分、ITSは転流失敗時の逆変
換器2次側よりの流入直流電流成分、IACは逆変
換器2次側の残留エネルギーに基づく交流電流。
FIG. 1 is a block diagram of a stationary Servius device which is an embodiment of the present invention, FIG. 2 is a time chart of overcurrent control during momentary power failure of the embodiment, and FIG. 3 is a block diagram of a conventional stationary Servius device. FIG. 4 is a pulse commutation operation time chart of the conventional example, and FIG. 5 is an overcurrent characteristic diagram when commutation fails in the conventional example. 1 is a power source, 2, 13 is a wire cutter, 3 is a wound induction motor, 4 is a speed detector, 5 is a starting electromagnetic contactor, 6 is a starting resistor, 7 is a Servius starting electromagnetic contactor, 8 is a forward converter, 9 is a DC reactor, 1
0 is a high-speed shield breaker, 11 is an inverter (thyristor), 12 is a power conversion transformer, 14 is a DC current detector, 20 is a pulse current circuit, 21 is a charging magnetic contactor, 22 is a charging R 1 is a bypass resistor, CB 1 is a bypass circuit breaker, D 1 to D 4 are bypass rectifiers, S 1 is a commutation thyristor, C 1 is a commutation capacitor, L 1 and L 2 are commutation capacitors. Commutation reactor,
D 5 is a commutation rectifier, D 6 is a charging rectifier, R 2 is a charging resistor, 30 is a momentary power failure countermeasure circuit, 301 is a DC residual energy absorption circuit, 302 is an AC residual energy absorption circuit, 31 is an inverter ( GTO thyristor), R 3 and R 4 are resistors to prevent instantaneous power outages, CB 2 is a circuit breaker to prevent instantaneous power outages, S 2 and S 3 are GTO thyristors to prevent instantaneous power outages, D 7 is a rectifier to prevent instantaneous power outages, E is the power supply voltage, Id,
Id' is the DC current, I MS is the DC inflow from the motor side when commutation fails, the current component, I TS is the DC current component flowing from the secondary side of the inverter when commutation fails, I AC is the inflow DC current component from the secondary side of the inverter when commutation fails, I AC is the inflow DC current component from the motor side when commutation fails AC current based on residual energy on the secondary side of the device.

Claims (1)

【実用新案登録請求の範囲】 巻線形誘導電動機の2次電力を順変換器で直流
変換しこの直流と逆変換器で交流電力に変換して
電源に電力返還し逆変換器の点弧位相制御により
速度制御を行なう静止セルビウス装置において、 自己消弧形素子で構成した逆変換器と、前記逆
変換器1次側に並列接続され自己消弧形素子を制
御要素とする直流残留エネルギー吸収回路および
前記逆変換器2次側に並列設置され自己消弧形素
子を制御要素とする交流残留エネルギー吸収回路
を有する瞬停対策回路とをそなえ、瞬時停電発生
時の前記逆変換器1次側の直流過電流検出に基づ
いて前記逆変換器をしや断すると同時に前記瞬停
対策回路を投入して過電流減衰制御を行なうこと
を特徴とした静止セルビウス装置。
[Claims for Utility Model Registration] Secondary power of a wound induction motor is converted to DC power by a forward converter, this DC and inverse converter converts it to AC power, the power is returned to the power source, and the ignition phase control of the inverse converter is performed. A stationary Servius device that performs speed control by: an inverter configured with self-arc-extinguishing elements; a DC residual energy absorption circuit connected in parallel to the primary side of the inverter and having the self-arc-extinguishing elements as control elements; A momentary power failure countermeasure circuit is installed in parallel on the secondary side of the inverter and has an AC residual energy absorbing circuit having a self-arc-extinguishing element as a control element, and is provided with an instantaneous power failure countermeasure circuit that is installed in parallel on the secondary side of the inverter to prevent DC current on the primary side of the inverter when a momentary power outage occurs. A stationary Servius device characterized in that the inverse converter is turned off based on overcurrent detection and at the same time the instantaneous power failure countermeasure circuit is turned on to perform overcurrent attenuation control.
JP1986023975U 1986-02-21 1986-02-21 Expired - Lifetime JPH0537676Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986023975U JPH0537676Y2 (en) 1986-02-21 1986-02-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986023975U JPH0537676Y2 (en) 1986-02-21 1986-02-21

Publications (2)

Publication Number Publication Date
JPS62135598U JPS62135598U (en) 1987-08-26
JPH0537676Y2 true JPH0537676Y2 (en) 1993-09-22

Family

ID=30822779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986023975U Expired - Lifetime JPH0537676Y2 (en) 1986-02-21 1986-02-21

Country Status (1)

Country Link
JP (1) JPH0537676Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683999U (en) * 1979-11-30 1981-07-06

Also Published As

Publication number Publication date
JPS62135598U (en) 1987-08-26

Similar Documents

Publication Publication Date Title
US4884182A (en) Current source power converting apparatus with overvoltage protection
JP3100805B2 (en) Overvoltage protection device for variable speed pumped storage power generation system
JPH0917294A (en) Two-way dc circuit breaker
US4203040A (en) Force commutated static isolator circuit
JPH0537676Y2 (en)
JP3460209B2 (en) Motor drive circuit shutdown control method
JP2980796B2 (en) Power converter
JP2684290B2 (en) Power supply
JPH0777486B2 (en) Multi-voltage inverter device
JPH07289766A (en) Industrial sewing machine driving equipment
JP3043556B2 (en) AC excitation synchronous machine protection device, protection method and AC excitation control device
JP2998213B2 (en) How to operate the power supply
JPH05176551A (en) Voltage-type inverter
JP2634692B2 (en) Secondary overvoltage protection device for AC-excited synchronous machine
JP2000312480A (en) Current inverter
JPS5992779A (en) Protecting device for voltage type inverter
JPS607475B2 (en) Induction motor operation control device
JPH03256564A (en) Protective circuit for power converter
JPH03253298A (en) Secondary overvoltage protective device of wound-rotor induction motor
JP3264581B2 (en) AC motor control device
JPH0866047A (en) Voltage type power converter
JPS5915263Y2 (en) frequency converter
JPH05122993A (en) Secondary power controller
JP2752218B2 (en) Protection device for secondary excitation device
JPS6212372A (en) Forcible commutation circuit of thyristor switch