JPS6111531B2 - - Google Patents

Info

Publication number
JPS6111531B2
JPS6111531B2 JP51073238A JP7323876A JPS6111531B2 JP S6111531 B2 JPS6111531 B2 JP S6111531B2 JP 51073238 A JP51073238 A JP 51073238A JP 7323876 A JP7323876 A JP 7323876A JP S6111531 B2 JPS6111531 B2 JP S6111531B2
Authority
JP
Japan
Prior art keywords
converter
constant current
current
transmission line
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51073238A
Other languages
Japanese (ja)
Other versions
JPS52156345A (en
Inventor
Atsumi Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7323876A priority Critical patent/JPS52156345A/en
Priority to CA280,883A priority patent/CA1061861A/en
Publication of JPS52156345A publication Critical patent/JPS52156345A/en
Publication of JPS6111531B2 publication Critical patent/JPS6111531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Protection Of Static Devices (AREA)
  • Rectifiers (AREA)

Description

【発明の詳細な説明】 本発明は直流送電線の保護方式に関し、特に直
流送電系統の再起動を容易ならしめるのに好適な
保護方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a protection system for DC power transmission lines, and particularly to a protection system suitable for facilitating restart of a DC power transmission system.

従来直流送電線に故障が発生した場合には、変
換装置のゲート操作により直流電流をしや断する
のが普通である。例えば、直流送電線の両端子に
接続される変換装置を共に逆変換装置として運転
することにより、直流系のエネルギーを交流系に
放出させることにより、直流電流を急速にしや断
することは可能である。
Conventionally, when a failure occurs in a DC power transmission line, it is common to cut off the DC current by operating a gate of a converter. For example, by operating the converters connected to both terminals of a DC transmission line as inverse converters, it is possible to quickly cut off the DC current by releasing energy from the DC system into the AC system. be.

しかしながら、このような保護方式にはつぎに
示すような欠点がある。
However, such a protection scheme has the following drawbacks.

第1は、直流電流を一旦しや断してしまうと、
ある時間の経過後に再起動しようとする場合に、
順、逆変換装置を通して電流のループを作るため
に両変換装置の同期をとるための信号の授受が必
要となり時間がかかる。また、この信号の授受が
伝送の誤差等により誤まつた場合には、逆変換装
置にゲート信号が入らず開放状態のまま順変換装
置が起動され、いわゆる全電圧起動により直流送
電線に過電圧が発生する危険がある。
The first is that once the DC current is cut off,
If you try to restart after a certain amount of time,
In order to create a current loop through the forward and inverse converters, it is necessary to send and receive signals to synchronize both converters, which takes time. In addition, if this signal is sent and received incorrectly due to a transmission error, etc., the gate signal does not enter the inverse converter and the forward converter is activated in an open state, causing an overvoltage on the DC transmission line due to so-called full voltage activation. There is a danger that this may occur.

第2には、送電線両端の変換装置を逆変換運転
して電流をしや断する過程で故障点のアークが消
滅した場合には、直流電流がしや断された時点で
送電線の対地キヤパシタンスに電荷が残留して再
起動時の変換装置の動作を阻害したり、さらに
は、アーク消滅後に送電線の対地キヤパシタンス
が再び充電され、アークが再発生してキヤパシタ
ンスの電荷がなくなるまでそのアークが持続する
ようなケースもありうる。
Second, if the arc at the fault point is extinguished during the process of inverting the converters at both ends of the transmission line and cutting off the current, the point at which the DC current is interrupted is Charges may remain in the capacitance, inhibiting the operation of the converter during restart, or even worse, the ground capacitance of the transmission line may be charged again after the arc has disappeared, causing the arc to continue until the capacitance charge disappears. There may be cases where this persists.

本発明は以上のような従来技術の欠点を除き、
その目的とするところは、直流送電線の故障点の
アークのみをすみやかに消滅させながら、直流電
流を循環させておくことで安定な再起動動作を行
なうことのできる直流送電線の保護方式を提供す
るものである。
The present invention eliminates the drawbacks of the prior art as described above,
The purpose of this is to provide a protection method for DC transmission lines that can quickly extinguish only the arc at the fault point of the DC transmission line, while allowing DC current to circulate for stable restart operation. It is something to do.

本発明においては、直流送電線の故障が発生す
ると、一方の変換装置のバイパスペアを点弧する
ことによつて短絡状態となし直流電圧をごく小さ
な値とするとともに他端の変換装置を制御するこ
とによつて、故障点の電流を零としてアークを消
滅せしめ、その後も直流電流を流しておくことに
よつて、安定な再起動が可能とされる。
In the present invention, when a failure occurs in a DC power transmission line, the bypass pair of one converter is ignited to create a short circuit, reduce the DC voltage to a very small value, and control the converter at the other end. In this way, by reducing the current at the failure point to zero to extinguish the arc, and then continuing to flow DC current, stable restart is possible.

本発明の実施例を説明するに先立つて、第1
図、第2図によつて、一般的な直流送電系統の送
電線故障時の電流について説明する。
Before explaining the embodiments of the present invention, the first
With reference to FIGS. 2 and 2, the current at the time of a power transmission line failure in a general DC power transmission system will be explained.

第1図において、A,Bは交流系統、Bは順変
換装置、Iは逆変換装置、LDC1,LDC2は直流リ
アクトル、DLは直流送電線である。
In FIG. 1, A and B are AC systems, B is a forward converter, I is an inverse converter, L DC1 and L DC2 are DC reactors, and DL is a DC transmission line.

一般に直流送電系統においては、順逆両変換装
置が定電流制御回路を備えており、逆変換装置に
は、順変換装置よりも電流マージンΔIdだけ小さ
な直流電流設定値が与えられているのが普通であ
る。したがつて、両変換装置のレギユレーシヨン
特性は第2図に示すようになる。第2図において
は、横軸は直流電流id、たて軸は直流電圧vdであ
り、Rは順変換装置の、Iは逆変換装置のレギユ
レーシヨン特性を示す。よく知られるように、平
常時はA点で運転が行なわれているが、送電線に
故障が発生して直流電圧が零になると、動作点は
BおよびCとなり、第1図に示すように、順変換
装置側の直流電流はId、逆変換装置側の直流電流
は(Id−ΔId)、故障点の電流はΔIdとなる。
Generally, in a DC power transmission system, the forward/reverse converter is equipped with a constant current control circuit, and the inverter is usually given a DC current setting value that is smaller than the forward converter by a current margin ΔId. be. Therefore, the regulation characteristics of both converters are as shown in FIG. In FIG. 2, the horizontal axis is the DC current id, the vertical axis is the DC voltage vd, R represents the regulation characteristic of the forward converter, and I represents the regulation characteristic of the inverse converter. As is well known, during normal times, operation is carried out at point A, but when a fault occurs in the power transmission line and the DC voltage becomes zero, the operating points become B and C, as shown in Figure 1. , the DC current on the forward converter side is Id, the DC current on the inverse converter side is (Id - ΔId), and the current at the failure point is ΔId.

第3図は本発明の実施例を示す。図中で第1図
と同一符号のものは、第1図で説明したものと同
一のものである。DCCT1,DCCT2は直流電流
変成器であり、FD1,FD2は直流送電線故障検
出装置である。故障検出装置としては種々の方式
のものが考えられるが、ここでは電流差動方式の
ものを示している。これは、第1図に示した如
く、直流送電線に故障が発生すると、送電線両端
の電流の間にΔIdの差が出じるので、この差を検
出することにより直流送電線の故障と判定するも
のである。
FIG. 3 shows an embodiment of the invention. In the figure, the same reference numerals as in FIG. 1 are the same as those explained in FIG. DCCT1 and DCCT2 are DC current transformers, and FD1 and FD2 are DC transmission line fault detection devices. Although various types of failure detection devices are conceivable, a current differential type is shown here. This is because, as shown in Figure 1, when a fault occurs in a DC transmission line, a difference in ΔId appears between the currents at both ends of the transmission line, and by detecting this difference, it is possible to detect a fault in the DC transmission line. It is something to judge.

第3図のその他の部分は、変換装置の制御回路
を示しているが、ここでは、本発明に関係のある
定電流制御回路とゲート論理回路を示している。
The other parts of FIG. 3 show the control circuit of the conversion device, and here, a constant current control circuit and a gate logic circuit that are related to the present invention are shown.

T1,T2は設定値を与えるための端子であり、
T1には直流電流Idに対応する設定値Idpを与える
端子、T2は電流マージンΔIdに対応する説定値
ΔIdpを与えるための端子である。DA1,DA2
は複数個の入力を図示の極性で加算する加算器、
A1,A2は増幅器、AP1,AP2はパルス移相
器、GL1,GL2はゲート論理回路、PA1,PA
2はパルス増幅器である。
T 1 and T 2 are terminals for giving setting values,
T1 is a terminal for giving a set value Idp corresponding to the DC current Id, and T2 is a terminal for giving a predetermined value ΔIdp corresponding to the current margin ΔId. DA1, DA2
is an adder that adds multiple inputs with the polarity shown,
A1 and A2 are amplifiers, AP1 and AP2 are pulse phase shifters, GL1 and GL2 are gate logic circuits, PA1 and PA
2 is a pulse amplifier.

つぎに、この実施例の動作を第4図、第5図を
用いて時間をおつて説明する。
Next, the operation of this embodiment will be explained in detail using FIGS. 4 and 5.

直流送電線で故障が発生すると第1図に示すよ
うな電流分布となる。
When a fault occurs in a DC transmission line, the current distribution will be as shown in Figure 1.

この状態における送電線各部の電圧は第4図中
にVdr,Vdf,Vdiとして示されている。第4図に
おいては、F点が故障点であり、故障点のアーク
抵抗にΔIdが流れることにより、Vdfのような電
圧が現われている。Vdr,Vdiは、それぞれ順、
逆変換装置との接続点の送電線電圧であり、Vdf
との差は、送電線の抵抗による電圧降下である。
したがつて、Vdr,Vdf,Vdi等の電圧は、定格直
流電圧にくらべると非常に小さな値である。P0
が電圧零の点であるが、図からわかるように、こ
の点は故障点よりも逆変換装置側になる。
The voltages at various parts of the power transmission line in this state are shown as Vdr, Vdf, and Vdi in FIG. In FIG. 4, point F is the fault point, and as ΔId flows through the arc resistance at the fault point, a voltage like Vdf appears. Vdr and Vdi are respectively in order,
Transmission line voltage at the connection point with the inverter, Vdf
The difference is the voltage drop due to the resistance of the power transmission line.
Therefore, voltages such as Vdr, Vdf, and Vdi have very small values compared to the rated DC voltage. The P 0 point is the point where the voltage is zero, but as can be seen from the figure, this point is closer to the inverter than the failure point.

FD1,FD2が送電線の故障を検出すると、
FD1の出力がGL1に加えられRのバイパスペア
のゲート信号が加えられ、Rは直流短絡の状態と
なる。一方、FD2の出力により、第3図のスイ
ツチSWが開路され、逆変換装置の定電流制御回
路に与えられる設定値はΔIdpだけ増加して、
Idpとなる。この場合の第3図に示すI1,I2,I3
変化をみると、第5図のようになる。
When FD1 and FD2 detect a fault in the power transmission line,
The output of FD1 is applied to GL1 and the gate signal of the bypass pair of R is applied, so that R becomes a DC short circuit. On the other hand, the switch SW shown in Fig. 3 is opened by the output of FD2, and the set value given to the constant current control circuit of the inverter increases by ΔIdp.
Becomes an Idp. The changes in I 1 , I 2 , and I 3 shown in FIG. 3 in this case are as shown in FIG. 5.

T0が、FD1,FD2が動作した時点である。こ
の時点ではI1,I2,I3はそれぞれ第1図に示した
値に等しいが、Rの起電力がなくなるため、I1
減少しはじめ、I2はIの定電流制御回路の動作に
より増加しはじめる。I1とI2が等しくなると、故
障点電流I3は零となる。この時点の電圧分布は、
第4図のVdr′,Vdf′,Vdi′のようになり、Vdf′は
零である。したがつて、故障点のアークはこの時
点で消滅する。この後はI1=I2となり、Idに等し
い値まで増加してゆく、最終的には、第4図の
Vdr″,Vdf″,Vdi″のような電圧分布となるが、
Vdr″は零である。故障点の電圧は零となつてア
ーク消滅後頭初に逆極性の電圧Vdf″が加わるが
その値はわずかであり、アークが再発生するよう
なことはない。直流送電線の状態はこの後一定期
間Idの流れたこの状態に保持される。
T 0 is the point in time when FD1 and FD2 operate. At this point, I 1 , I 2 , and I 3 are each equal to the values shown in Figure 1, but since the electromotive force of R disappears, I 1 begins to decrease, and I 2 is the operation of the constant current control circuit of I. It starts to increase due to When I 1 and I 2 become equal, the fault point current I 3 becomes zero. The voltage distribution at this point is
Vdr', Vdf', and Vdi' in Fig. 4, and Vdf' is zero. Therefore, the arc at the fault point disappears at this point. After this, I 1 = I 2 , increasing to a value equal to Id, and finally, as shown in Figure 4.
The voltage distribution will be Vdr″, Vdf″, Vdi″,
Vdr'' is zero.The voltage at the fault point becomes zero, and after the arc disappears, a voltage Vdf'' of the opposite polarity is applied, but its value is small and the arc will not occur again. The state of the DC transmission line is then maintained in this state where Id flows for a certain period of time.

以上のように本発明によれば、故障点の電圧・
電流の零点が確実に作られ、その後も故障点の電
圧はごく小さい値に保たれるから、故障点のアー
クを確実に消滅させることができる。
As described above, according to the present invention, the voltage at the failure point
Since the current zero point is reliably created and the voltage at the fault point is kept at a very small value thereafter, the arc at the fault point can be reliably extinguished.

さらに、再起動を行なおうとする時点まで、直
流電流は順、逆変換装置を通して環流しているか
ら、バイパスペアの状態となつた順変換装置を通
常の転流状態とすることによつて、順逆変換装置
間の同期をとるための複雑な信号のやりとりを必
要とせず、また、全電圧起動等の危険をおかすこ
ともなく、安定な再起動が可能となる。
Furthermore, since the DC current is circulating through the forward and inverse converters until a restart is attempted, by bringing the forward converter, which is now in the bypass pair state, into a normal commutation state, Stable restart is possible without the need for complex signal exchange for synchronization between forward/inverter converters, and without risking full voltage startup or the like.

第3図の実施例においては、順変換装置のバイ
パスペアを投入したが、逆変換装置のバイパスペ
アを投入しても同様の効果が得られる。
In the embodiment of FIG. 3, a bypass pair of forward conversion devices is used, but the same effect can be obtained even if a bypass pair of inverse conversion devices is used.

また、第3図の実施例においては、順変換装置
をバイパスペア状態とするとともに、逆変換装置
の直流電流設定値も変化させる例を示したが、こ
れは変化させなくても、第5図に示したI1の減少
により、I1=I2となる時点が存在するので同様の
効果が期待できる。
In addition, in the embodiment shown in FIG. 3, an example was shown in which the forward conversion device is placed in a bypass pair state and the DC current setting value of the inverse conversion device is also changed. Due to the decrease in I 1 shown in , there is a point in time when I 1 = I 2 , so a similar effect can be expected.

また、第3図の実施例では、アーク消滅後も、
再起動まで、故障前と等しい直流電流Idを流して
おく例を示したが、この電流は、通常運転時の最
小運転電流まで減少させて再起動を待機するよう
にしてもよい。こうすることによつて、第4図に
示したVdf″は更に小さな値とすることができ
る。
In addition, in the embodiment shown in FIG. 3, even after the arc disappears,
Although an example has been shown in which a DC current Id equal to that before the failure flows until the restart, this current may be reduced to the minimum operating current during normal operation to wait for the restart. By doing so, Vdf'' shown in FIG. 4 can be made even smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な直流送電系統で送電線故障が
発生した場合の電流分布を示す図面、第2図は第
1図の電流分布を説明するための図面、第3図は
本発明の実施例、第4図、第5図は本発明の動作
を説明するための図面である。 符号の説明、DCCT1,DCCT2……直流電流
変成器、FD1,FD2……故障検出装置、A1,
A2……増幅器、AP1,AP2……パルス移相
器、GL1,GL2……ゲート論理回路、PA1,
PA2……パルス増幅器。
Figure 1 is a diagram showing the current distribution when a transmission line failure occurs in a general DC transmission system, Figure 2 is a diagram to explain the current distribution in Figure 1, and Figure 3 is a diagram showing the implementation of the present invention. For example, FIGS. 4 and 5 are drawings for explaining the operation of the present invention. Explanation of symbols, DCCT1, DCCT2...DC current transformer, FD1, FD2...Fault detection device, A1,
A2...Amplifier, AP1, AP2...Pulse phase shifter, GL1, GL2...Gate logic circuit, PA1,
PA2...Pulse amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 定電流制御装置により制御される順変換器、
常時は定電圧制御装置又は定余裕角制御装置によ
り制御され、直流線路に故障発生して直流電圧が
低下したときは定電流制御装置により制御される
逆変換器、これらの変換器を結合する直流線路、
該直流線路の電流を検出する直流変流器と該直流
変流器の出力と設定値との誤差信号を演算増幅す
る定電流制御回路と該定電流制御回路の出力によ
り前記変換器のパルス位相を制御するパルス位相
制御装置を備える前記定電流制御装置とより構成
される直流送電線において、直流線路の短絡ある
いは地絡の発生を直流線路の両端の電流によつて
検出する故障検出手段、該故障検出手段の出力に
応じて一方の変換器のパルス位相を制御してこの
変換器によりバイパスペアを形成させるバイパス
ペア形成手段、前記故障検出手段の出力に応じて
他方の変換器のパルス位相を定電流制御回路の出
力によつて制御してこの変換器により定電流制御
を行わせる制御手段、とを設けたことを特徴とす
る直流送電線の保護方式。
1 forward converter controlled by a constant current control device,
An inverse converter that is normally controlled by a constant voltage controller or constant margin angle controller, and is controlled by a constant current controller when a fault occurs in the DC line and the DC voltage drops, and a DC converter that connects these converters. line,
A DC current transformer detects the current of the DC line, a constant current control circuit operationally amplifies the error signal between the output of the DC current transformer and the set value, and the pulse phase of the converter is determined by the output of the constant current control circuit. In a DC power transmission line constituted by the constant current control device equipped with a pulse phase control device for controlling bypass pair forming means for forming a bypass pair by this converter by controlling the pulse phase of one converter according to the output of the failure detection means; and the pulse phase of the other converter is controlled according to the output of the failure detection means. 1. A protection system for a DC power transmission line, comprising: control means for controlling according to the output of a constant current control circuit and causing the converter to perform constant current control.
JP7323876A 1976-06-23 1976-06-23 Protecting dc power transmission line Granted JPS52156345A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7323876A JPS52156345A (en) 1976-06-23 1976-06-23 Protecting dc power transmission line
CA280,883A CA1061861A (en) 1976-06-23 1977-06-20 Protection system and method for high voltage direct current transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7323876A JPS52156345A (en) 1976-06-23 1976-06-23 Protecting dc power transmission line

Publications (2)

Publication Number Publication Date
JPS52156345A JPS52156345A (en) 1977-12-26
JPS6111531B2 true JPS6111531B2 (en) 1986-04-03

Family

ID=13512391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7323876A Granted JPS52156345A (en) 1976-06-23 1976-06-23 Protecting dc power transmission line

Country Status (2)

Country Link
JP (1) JPS52156345A (en)
CA (1) CA1061861A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791006B2 (en) * 1984-08-22 1998-08-27 株式会社東芝 Control method of AC / DC converter
JPS62225123A (en) * 1986-03-26 1987-10-03 東京電力株式会社 Dc transmission equipment control system
CN101944721A (en) * 2009-07-10 2011-01-12 国网运行有限公司上海超高压管理处 Valve fault detection treatment method of high-voltage direct-current transmission system

Also Published As

Publication number Publication date
CA1061861A (en) 1979-09-04
JPS52156345A (en) 1977-12-26

Similar Documents

Publication Publication Date Title
US4079443A (en) Circuit arrangement for starting up a converter having forced commutation with correct phase
JP2009177961A (en) Uninterruptible power supply device
JPS6111531B2 (en)
US4058738A (en) Method and circuit arrangement for starting up a converter having forced commutation with the correct phase
JP2020092483A (en) Cvcf power supply device
SU570168A1 (en) Autonomous current inverter
JPS6334695B2 (en)
JP2721285B2 (en) Control device of AC / DC converter
JPH08265975A (en) Static reactive power compensator
JP2797937B2 (en) Inverter control device
JPH0218018B2 (en)
JPS6347059B2 (en)
JP3216463B2 (en) Parallel operation power supply system
JP2703566B2 (en) AC excitation synchronous machine controller
JPS64908B2 (en)
JPH1032922A (en) Ratio differential relay
JPS6114734B2 (en)
JPH03190565A (en) Phase controller for power converter
JPS602100A (en) Excitation controller of generator
JP3107594B2 (en) Control device for winding induction machine
JPS6111996Y2 (en)
JPH0326020B2 (en)
JPH09191566A (en) Power converter controller
JPS586389B2 (en) Emergency operation method for reactive power compensation converter
JPH0670573A (en) Speed controller for wound-rotor induction motor