JPS5822586A - Regenerative control of power converter - Google Patents

Regenerative control of power converter

Info

Publication number
JPS5822586A
JPS5822586A JP56121412A JP12141281A JPS5822586A JP S5822586 A JPS5822586 A JP S5822586A JP 56121412 A JP56121412 A JP 56121412A JP 12141281 A JP12141281 A JP 12141281A JP S5822586 A JPS5822586 A JP S5822586A
Authority
JP
Japan
Prior art keywords
thyristor
power
commutation
current
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56121412A
Other languages
Japanese (ja)
Inventor
Tatsuaki Anpo
達明 安保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56121412A priority Critical patent/JPS5822586A/en
Publication of JPS5822586A publication Critical patent/JPS5822586A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To improve the power-factor and the fault when a current is regenerated on the titled power converter by a method wherein, when a current is commuted on a thyristor inverting bridge, a DC power source and the bridge are disconnected and after the commutation has been completed, they are connected again and a current is applied. CONSTITUTION:A thyristor power inverter 16 is provided to generate regenerative power from load, the DC terminals of both positive and negative electricity on the power inverter 16 are connected to bus of a DC power source through the intermediate of reactors 31 and 32, and DC switches 33 and 34, and besides, diodes 35 and 36 are connected in crossed form. Then the above DC switches 33 and 34 are open-circuited before commutation when the above power inverter 16 is commutated for power regeneration, and after the regenerated current running to the power inverter has been sufficiently attenuated, commutation is performed on it. After the commutation has been completed, the above DC switches 33 and 34 are close-circuited and the regenerated current is flown.

Description

【発明の詳細な説明】 本発明は負荷側から電力の回生がある場合の電力変換器
の回生制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a regeneration control method for a power converter when power is regenerated from the load side.

近年、電力変換装置の分野でも、可変速駆動などへの用
途が拡大しているが、特に負荷からの電力の回生のある
場合抵抗などで無駄に消費せず、交流電源にまで回生じ
ようという技術が望まれている。
In recent years, in the field of power conversion devices, applications such as variable speed drives have expanded, but especially when regenerating power from a load, it is important to avoid wasting it in resistors and regenerating it into AC power. Technology is desired.

特に電圧形インバータなどでGD!の大きな負荷に接続
された電動機を駆動する際に(′!、回生電力の処理の
仕方が回生電力の省エネルギーという面からだけではな
く交流電動機の可変速制御性能という面からも重要な技
術である。
Especially GD with voltage type inverters! When driving an electric motor connected to a large load ('!), the method of processing regenerated power is an important technology not only from the perspective of energy saving of regenerated power but also from the perspective of variable speed control performance of the AC motor. .

従来はこれらの要求に答えるため、第1図のy口き回路
が採用されていた。
Conventionally, in order to meet these demands, the Y-type circuit shown in FIG. 1 has been adopted.

交流電源10の交流電圧はダイオード順変換器11によ
り直流に変換され、大容量の平滑コンデンサ]2により
平滑され直流電圧13となる。
The alternating current voltage of the alternating current power supply 10 is converted to direct current by a diode forward converter 11, and smoothed by a large capacity smoothing capacitor]2 to become a direct current voltage 13.

一方交流電源10の交流電圧は昇圧トランス14により
昇圧されて回生用交流電源15となり、回生用サイリス
タ逆変換器16に接続される。サイリスタ逆変換器16
の正側の母線は直流リアクトル17を介して平滑コンデ
ンサ12の正側に接続される。又サイリスタ逆変換器1
6の負側の母線は平滑コンデンサ12の負側に接続され
る。
On the other hand, the AC voltage of the AC power source 10 is stepped up by a step-up transformer 14 to become an AC power source 15 for regeneration, which is connected to a thyristor inverter 16 for regeneration. Thyristor inverter 16
The positive side bus bar of is connected to the positive side of the smoothing capacitor 12 via the DC reactor 17. Also, thyristor inverse converter 1
The negative side bus bar 6 is connected to the negative side of the smoothing capacitor 12.

直流電圧13は電圧検出器18によって検出され、電圧
フィードバック信号19となり、レベル検出器頒に入力
され、サイリスタ逆変換器16の位相制御信号21が出
力され、位相制御装置nはサイリスタ逆変換器16の位
相を制御し、回生時の直流電圧13を制御する。
The DC voltage 13 is detected by the voltage detector 18 and becomes a voltage feedback signal 19, which is input to the level detector distribution, and the phase control signal 21 of the thyristor inverter 16 is output, and the phase control device n is connected to the thyristor inverter 16. and controls the DC voltage 13 during regeneration.

第2図は従来回路第1図の回生時のサイリスタ逆変換器
16の動作を示したものであり、時刻1.においては回
生電流は平滑コンデンサ12の正側→直流リアクトル1
7→Vサイリスタ→電fMW相→電源V相→V−サイリ
スタ→平滑コンデンサ12の負側の経路を通り電力が平
滑コンデンサ12から電源へ回生されている。時刻t2
になるとU+サイリスクに点弧信号が送られW+サイリ
スタからU+サイリスタへの転流が行なわれ、回生電流
の経路は、平滑コンデンサ12の正側→直流リアクトル
17→Uサイリスタ→電源U相→電源V相−V−サイリ
スタ→平滑コンデンサ12の負側の様に変わる。
FIG. 2 shows the operation of the thyristor inverter 16 during regeneration in the conventional circuit shown in FIG. 1, at time 1. In this case, the regenerative current flows from the positive side of the smoothing capacitor 12 to the DC reactor 1.
7→V thyristor→power fMW phase→power supply V phase→V-thyristor→power is regenerated from the smoothing capacitor 12 to the power supply through the negative side path of the smoothing capacitor 12. Time t2
When this occurs, an ignition signal is sent to the U+ thyristor, commutation is performed from the W+ thyristor to the U+ thyristor, and the path of the regenerative current is as follows: positive side of the smoothing capacitor 12 → DC reactor 17 → U thyristor → power supply U phase → power supply V The phase changes from the V-thyristor to the negative side of the smoothing capacitor 12.

このサイリスタ逆変換器16の点弧タイミングは一般に
制御角βで表わされ、βを小さくすなわち点弧タイミン
グを早めればサイリスタ逆変換器の直流電圧は小さくな
り、βを大きくすなわち点弧タイミングを遅らせれば、
サイリスタ逆変換器16の電圧は大きくなり、回生時平
滑コンデンサ12の電圧さらには電流検出器及び電流制
御ループを付加することにより、回生電流の制御も行う
ことができる。
The firing timing of this thyristor inverter 16 is generally expressed by a control angle β, and if β is made smaller, that is, the firing timing is advanced, the DC voltage of the thyristor inverter becomes smaller. If you delay,
The voltage of the thyristor inverter 16 increases, and by adding a current detector and a current control loop to the voltage of the smoothing capacitor 12 during regeneration, the regenerative current can also be controlled.

ここで回生時の直流電圧をEd′、サイリスタ逆変換器
16の交流電圧実効値をErとすると、転流重なり角を
無視すると周知のように Edl≠−1,35E、 100β      ・・・
・・・・・・ (1)の関係が成立している。
Here, if the DC voltage during regeneration is Ed', and the effective value of the AC voltage of the thyristor inverter 16 is Er, then if the commutation overlap angle is ignored, as is well known, Edl≠-1, 35E, 100β...
...... The relationship (1) is established.

次に第3図において前記のW+サイリスターU+サイリ
スタの転流の様子を説明する。時刻t、においてはW+
サイリスタとV−サイリスタが導通して回生電流nが流
れているのでW+サイリスタ電流拐は回生電流ると等し
く、U+サイリスタは導通していないのでU+サイリス
タ電流6はOである。又、W+サイリスタのA−に端子
間電圧部は順電圧降下のみでありU+サイリスタのA−
に端子間電圧、271こはW−Uの電圧がかかつている
。時刻t2でU+サイリスタに点弧信号が送られ転流が
開始される。U+サイリスタには順電圧がかかつている
ので点弧信号とともに導通し、電源W相−W++イリス
ターU+サイリスタ→電源U相→電源W相の閉回路がで
き、この閉回路電流は電源のインピーダンス及び電源W
相、醒源U相の電圧差Iこよって決まる増加率に従って
増加してゆき、W+サイリスタ電流屑を減少させる。時
刻t、においてW+サイリスタ電流24はO6こな1ハ
U+サイリスタ磁流5は回生を流膿と等しくな1ハ回虫
畦流器は転流され、W+サイリスタは非導通となり逆バ
イアスとして電源W相、電源U相の電圧差が印加され、
適当なターンオフタイム後完全に順方向阻止能力が回復
され、一連の転流動作が完了する。ここで時刻t2から
時刻t、までの時間は転流重り角と呼ばれ、転流するサ
イリスタに流れている転流開始直前電流(ここでは回生
電流23)1転流する相関の電圧差(ここでは電源W相
、電源U相の電圧差)、及び電源のインピーダンスに依
存しており、90<β<1800 の範囲ではβが大き
くなると重り角も増大し電源が相間短絡している時間も
長くなる。
Next, referring to FIG. 3, the state of commutation of the W+thyristor U+thyristor will be explained. At time t, W+
Since the thyristor and the V-thyristor are conducting and a regenerative current n is flowing, the W+ thyristor current is equal to the regenerative current, and the U+ thyristor is not conducting, so the U+ thyristor current 6 is O. In addition, the voltage part between the terminals of A- of W+ thyristor is only a forward voltage drop, and A- of U+ thyristor.
The terminal voltage is applied to 271, and the W-U voltage is applied to 271. At time t2, an ignition signal is sent to the U+ thyristor to start commutation. Since a forward voltage is applied to the U+ thyristor, it conducts along with the firing signal, creating a closed circuit of power supply W phase - W++ irisister U + thyristor → power supply U phase → power supply W phase, and this closed circuit current is caused by the impedance of the power supply and the power supply W
The voltage difference I between phase and U phase increases according to the rate of increase determined by this, thereby reducing W+thyristor current waste. At time t, the W+ thyristor current 24 is O6, the 1 H U+ thyristor magnetic current 5 is equal to the regeneration, and the 1 H Ascaris current is commutated, and the W+ thyristor becomes non-conducting and reverse biased to the W phase of the power supply. , the voltage difference of the power supply U phase is applied,
After a suitable turn-off time, the forward blocking ability is completely restored and the series of commutation operations is completed. Here, the time from time t2 to time t is called the commutation weight angle, and the current immediately before the start of commutation flowing through the commutating thyristor (here, the regenerative current 23), and the voltage difference (here: It depends on the voltage difference between the power supply W phase and the power supply U phase) and the impedance of the power supply, and in the range of 90<β<1800, as β increases, the weight angle also increases and the time that the power supply is shorted between phases increases. Become.

又W+サイリスタにかかる逆バイアス時間は時刻t、か
ら、電源W相、電源U相の電圧差がOになる時刻t4ま
でであり、もしこの逆バイアス時間がサイリスタのター
ンオフタイムより短い場合は、順方向阻止能力は回復さ
れず、時刻t4において再びW+サイリスタは導通し、
転流失敗となり、サイリスタ逆変換器は無制御状態に陥
る。かかる事態を防ぐためには、逆バイアス時間を充分
確保する必要があり、先に述べた転流重り角の増加も考
慮し、例えば一般のサイリスタ逆変換器ではβリミット
を1.50”に定めていた。
In addition, the reverse bias time applied to the W+ thyristor is from time t to time t4 when the voltage difference between the power supply W phase and the power supply U phase becomes O. If this reverse bias time is shorter than the thyristor turn-off time, the The direction blocking ability is not recovered, and the W+ thyristor becomes conductive again at time t4.
Commutation fails and the thyristor inverter goes into an uncontrolled state. In order to prevent such a situation, it is necessary to ensure sufficient reverse bias time, and taking into account the increase in commutation weight angle mentioned above, for example, in a general thyristor inverter, the β limit is set at 1.50". Ta.

このためサイリスタ逆変換器で回生しうる直流電圧は(
1)式から J、i、/≦−1.35−E、−100150°弁1.
1 ’1Er−・−・−(2)となり、第1図のように
ダイオード順変換器11をもったものは交流電圧実効値
をE、直流電圧をJ〕dとすると ”d=1.351i1!           ・・・
・・・・・・ (3)で表わされ、回生制御を行う−E
では、(2)式及び(3)式より、少くとも Er> 1.15 B           −−−−
−−−−−(4)が成立することが要求され、昇圧トラ
ンス14は省くことができず又、昇圧トランス14は備
えても回生制御可能な直流電圧は昇圧トランスの変圧比
によっており、回生可能電圧の上限を高くすると通常の
回生時の力率は悪くなっていた。
Therefore, the DC voltage that can be regenerated by the thyristor inverter is (
1) From the formula, J, i, /≦-1.35-E, -100150° valve 1.
1'1Er-・-・-(2), and for the one with the diode forward converter 11 as shown in Fig. 1, if the effective value of the AC voltage is E and the DC voltage is J]d, then "d=1.351i1 !...
・・・・・・ Expressed as (3) and performs regeneration control -E
Then, from equations (2) and (3), at least Er> 1.15 B -----
------- (4) is required to hold, the step-up transformer 14 cannot be omitted, and even if the step-up transformer 14 is provided, the DC voltage that can be regenerated depends on the transformation ratio of the step-up transformer, and the regenerative When the upper limit of possible voltage was raised, the power factor during normal regeneration deteriorated.

又、回生時の電圧制御はβ制御にて行うため回生電流を
増加させるべく回生電圧を低く制御しようとした場合も
力率が著しく低下していた。
Further, since voltage control during regeneration is performed by β control, even when attempting to control the regenerative voltage to a low level in order to increase the regenerative current, the power factor decreases significantly.

これに対して、昇圧トランスなしで回生制御可能な直流
電圧の範囲を広げ、かつまたサイリスクの位相制御をβ
=1500のβリミットで行い力率を改善した電力変換
器が考えられてきた。第4図はかかる電力変換器の回路
構成を示すものである。
On the other hand, we have expanded the range of DC voltage that can be regenerated without a step-up transformer, and also improved the phase control of cyrisk.
A power converter that improves the power factor by using a β limit of =1500 has been considered. FIG. 4 shows the circuit configuration of such a power converter.

サイリスタ逆変換器16の正負双方の直流端子はそれぞ
れ直流リアクトル31 、32及びゲートターンオフサ
イリスタのような自己消弧可能な直流スイッチ33 、
34を介して直流電源の正負それぞれの母線に接続され
ている。さらにダイオードあのカソードは、直流スイッ
チ33の直流電源側に又アノードは直流スイッチ34と
直流リアクトル32の間に接続され、ダイオード36の
カソードは直流スイッチおと直流リアクトル31の間に
接続され、アノードは直流スイッチあの直流電源側に接
続されている。
Both positive and negative DC terminals of the thyristor inverter 16 are connected to DC reactors 31 and 32, respectively, and a self-extinguishable DC switch 33, such as a gate turn-off thyristor.
34 to the positive and negative busbars of the DC power supply. Further, the cathode of the diode is connected to the DC power supply side of the DC switch 33, the anode is connected between the DC switch 34 and the DC reactor 32, the cathode of the diode 36 is connected between the DC switch and the DC reactor 31, and the anode is connected to the DC switch 33. The DC switch is connected to that DC power supply side.

又、サイリスタ逆変換器16の交流側は交流電源10に
直接接続されている。
Further, the AC side of the thyristor inverter 16 is directly connected to the AC power supply 10.

この場合、レベル検出器加の出力は回生制御指令37で
直流スイッチオ、34及びサイリスタ逆変換器16を制
御しており直流スイッチ制御装置あ及び位相制御装置n
に入力されぞれぞれ直流スイッチ33.34、サイリス
タ逆変換器を制御する。以上述べた如き構成を有する電
力変換器において、これに適用される従来の制御方法の
1例を第5図にて説明する。
In this case, the output of the level detector is used to control the DC switch 34 and the thyristor inverter 16 with the regeneration control command 37, and the DC switch controller A and the phase controller n
are input to control the DC switches 33 and 34 and the thyristor inverter, respectively. An example of a conventional control method applied to a power converter having the configuration described above will be explained with reference to FIG.

時刻tIoで負荷からの回生が始まり、直流電圧13が
上昇し始める。時刻14.にて設定レベル4oに達する
と、回生制御指令37は1となり直流スイッチ33゜3
4は閉となり、位相制御装置は、β=150°にて最も
早く転流を行うサイリスタの組合せ(ここではW+サイ
リスタ及びV−サイリスタ)に点弧信号398送り導通
させ回生電流路を流し直流電圧13は下降させる。時刻
tttにて設定レベル41に達するとレベル検出器加の
出力37は0になり、電源V相→サイリスタ逆変換器V
−1ダイオード順変換器U−→電源U相→電源V相の還
流回路を遮断する。直流スイッチ34を開路し、直流電
源とサイリスタ逆変換器を断路し、直流リアクトル31
 、32に貯えられた電力を回生じ、負荷からの回生に
より再び直流電圧13(J上昇しはじめる。時刻t1s
で再び設定レベル40に達すると前述と同様の動作が繰
かえされ、直流電圧が制御される。時刻t14ではサイ
リスタの制御角βは1500のβリミットに達し転流動
作に入る。
At time tIo, regeneration from the load begins, and the DC voltage 13 begins to rise. Time 14. When the set level 4o is reached, the regeneration control command 37 becomes 1 and the DC switch 33°3
4 is closed, and the phase control device sends an ignition signal 398 to the combination of thyristors that commutates earliest at β = 150° (in this case, the W+ thyristor and the V-thyristor) to conduct the regenerative current path and set the DC voltage. 13 is lowered. When the set level 41 is reached at time ttt, the output 37 of the level detector becomes 0, and the power supply V phase → thyristor inverter V
-1 Cut off the freewheeling circuit of diode forward converter U-→power supply U phase→power supply V phase. The DC switch 34 is opened, the DC power source and the thyristor inverter are disconnected, and the DC reactor 31 is disconnected.
, 32 is regenerated, and the DC voltage 13 (J) begins to rise again due to regeneration from the load. Time t1s
When the set level 40 is reached again, the same operation as described above is repeated, and the DC voltage is controlled. At time t14, the control angle β of the thyristor reaches the β limit of 1500, and commutation operation begins.

この場合はサイリスタの点弧信号39が直流スイッチ制
御装置に入力され電源W相→ダイオード順変換器W+→
サイリスタ逆変換器U+→電源U相−電源W相の還流回
路8遮断する直流スイッチ33を開路し、サイリスタU
+が点弧され、サイリスタW+→サイリスタU+への転
流が行なわれ転流終了を見込んだ時刻’1Bに直流スイ
ッチ調は閉路され回生動作が継続される。直流スイッチ
開の指令を出してから回生電流nがOになると見込まれ
る充分な時間’16が経過しても直流スイッチ閉の指令
が出ない時は回生動作終了と見なし、双方の直流スイッ
チ33゜34を開路する。
In this case, the thyristor firing signal 39 is input to the DC switch control device, and the power supply W phase → diode order converter W+ →
Thyristor inverse converter U+ → power supply U phase - power supply W phase freewheeling circuit 8 The DC switch 33 that interrupts the circuit is opened, and the thyristor U
+ is fired, commutation from thyristor W+ to thyristor U+ is performed, and at time '1B when the completion of commutation is expected, the DC switch regulator is closed and regeneration operation continues. If the command to close the DC switch is not issued even after a sufficient period of time '16 during which the regenerative current n is expected to reach O after the command to open the DC switch is issued, it is assumed that the regeneration operation has ended, and both DC switches 33° 34 is opened.

以上述べた第4図の例では転流時に直流電源とサイリス
タ逆変換器が断路されるため、直流電圧が高くなった場
合でも転流が可能であり、昇圧トランスなしで回生制御
を行いうる。
In the example shown in FIG. 4 described above, the DC power source and the thyristor inverter are disconnected during commutation, so commutation is possible even when the DC voltage becomes high, and regeneration control can be performed without a step-up transformer.

又β=150°に位相制御は固定し直流スイッチのチョ
ッピングにより直流電圧及び回生電流を制御しつるので
、直流リアクトルは第一図の例に較べて小さいもので充
分であり、又回生電流を増加させたい場合、力率の低下
を招くこともなかった。
Also, since the phase control is fixed at β = 150° and the DC voltage and regenerative current are controlled by chopping the DC switch, a smaller DC reactor is sufficient compared to the example in Figure 1, and the regenerative current can be increased. When desired, the power factor did not decrease.

しかしながら、サイリスタ逆変換器において前述の理由
により一般的に定められるβリミット1500というの
は、サイリスタ順変換器のα−3001こ相当し、一般
的なサイリスタ順変換器のαリミット10゜に比しては
なはだ悪く、交流電源に及ぼす影響はまだ大きな問題で
あった。又転流するサイリスタに流れる電流が大きくな
れば、転流型なり角の交流側に与える影響も無視できな
い問題となり、それを防ぐためには交流入力側に交流リ
アクトルを接続しなければならなかった。
However, the β limit of 1500, which is generally determined for the above-mentioned reason in a thyristor inverse converter, corresponds to α-3001 of a thyristor forward converter, and is compared to the α limit of 10° of a general thyristor forward converter. The situation was even worse, and the effect it had on AC power sources was still a major problem. Furthermore, if the current flowing through the commutating thyristor increases, the effect of the commutating type on the AC side becomes a problem that cannot be ignored, and to prevent this, an AC reactor must be connected to the AC input side.

さらに、β−1500より進んだβ=βiで転流を行う
とβiくβ<180°の間で、先の第4図の例でも述べ
た交流電源10サイリスタ逆変換器16ダイオード順変
換器11の還流回路が形成される。β−1500にて転
流を行う場合は、通関期間の50%に相当する300に
わたって還流回路が形成されることになり、直流リアク
トルは第1図の例の場合に比較すれば小さくしつるが、
この還流回路のことも考慮しなければならなかった。
Furthermore, if commutation is performed at β=βi, which is more advanced than β-1500, βi will increase between β<180°, and as described in the example of FIG. A reflux circuit is formed. When commutation is carried out at β-1500, a reflux circuit will be formed for 300 mm, which corresponds to 50% of the customs clearance period, and the DC reactor will be smaller compared to the example shown in Figure 1. ,
This reflux circuit also had to be taken into consideration.

本発明はその点に鑑みなされたものであり直流スイッチ
の操作により、サイリスタ逆変換器のβリミットを極力
180°に近づけ、力率を改善し、転流時の重り角を極
力短縮し、交流電源へ与える障害となる影響を低減し、
又電源、サイリスタ逆変換器、ダイオード順変換器で還
流回路が形成される時間を極力短縮し、信頼性の高い小
形で高性能の電力変換器の回生制御方法を提供すること
を目的としている。
The present invention was made in view of this point, and by operating a DC switch, the β limit of the thyristor inverter is brought as close to 180° as possible, the power factor is improved, the weight angle during commutation is shortened as much as possible, and the AC Reduces the impact of interference on the power supply,
Another object of the present invention is to provide a highly reliable, compact and high-performance regeneration control method for a power converter by minimizing the time required to form a freewheeling circuit using a power supply, a thyristor inverter, and a diode forward converter.

以下本発明を第6図に示す一実施例について説明するが
、通常の回生制御に関しては前述の例と伺ら差異はない
ので説明を省略し、サイリスタ逆変換器の転流の動作に
ついてのみ第7図を参照して説明する。
The present invention will be described below with reference to an embodiment shown in FIG. 6, but since there is no difference in normal regeneration control from the previous example, the explanation will be omitted, and only the commutation operation of the thyristor inverter will be described. This will be explained with reference to FIG.

W+サイリスタからU+サイリスタへの転流が近づくと
サイリスクの転流を行う時に転流型なり角をほとんど生
じないようにサイリスタに流れる電流が充分小さくなる
ことを見込んで設定した時間’20だけ転流タイミング
t8.より早い時刻t21において、位相制御装置nか
ら転流準備信号42が出力され、直流スイッチ制御装置
間に入力される。直流スイチ制御装置あはその転流準備
信号42を判別して、還流ループを生じないように適当
な直流スイッチ(第6図、第7図では直流スイッチ33
)を開路する。これによりサイリスタ逆変換器16と直
流電源は断路されるので、回生電流器は減少し、転流タ
イミングt□までには転流するサイリスタを流れる回生
電流るは、充分短い転流型なり角にて転流可能なまでに
減少する。
When the commutation from the W+ thyristor to the U+ thyristor approaches, commutation is carried out for a set time of '20 in anticipation that the current flowing through the thyristor will be sufficiently small so that almost no commutation-type turning angle will occur when performing the commutation of the thyristor. Timing t8. At an earlier time t21, the commutation preparation signal 42 is output from the phase control device n and inputted between the DC switch control devices. The DC switch control device determines the commutation preparation signal 42 and selects an appropriate DC switch (DC switch 33 in Figures 6 and 7) to prevent a reflux loop.
) is opened. As a result, the thyristor inverter 16 and the DC power supply are disconnected, so the regenerative current generator decreases, and by the commutation timing t□, the regenerative current flowing through the commutating thyristor becomes a sufficiently short commutating angle. It decreases to the point where it can be commutated.

このサイリスタ転流時の直流スイッチの開路ζこあたっ
ては別に適当な一方のみを開路する必要はなく、双方の
直流スイッチを開路してもかまわない。この場合、サイ
リスタ逆変換器16に流れる電流は、サイリスタ逆変換
器16→直流リアクトル32→ダイオード35→平滑コ
ンデンサ12→ダイオードあ→サイリスタ逆変換器16
の径路を通って流れ交流電源、直流電圧の双方の電圧に
より減流されるので、適当な一方を閉じた場合より、サ
イリスタに流れる電流を短い時間で減流することができ
る。
Regarding the opening of the DC switch at the time of thyristor commutation, it is not necessary to open only one appropriate one, and both DC switches may be opened. In this case, the current flowing through the thyristor inverter 16 is as follows: thyristor inverter 16 → DC reactor 32 → diode 35 → smoothing capacitor 12 → diode A → thyristor inverter 16
Since the current flows through the path of the thyristor and is reduced by the voltages of both the AC power source and the DC voltage, the current flowing through the thyristor can be reduced in a shorter time than if the appropriate one is closed.

さて、t、2において点弧信号をU+サイリスタ、V−
サイリスタに送ると、転流型なり角に起因する障害を取
り除いたW+サイリスタ→U+サイリスタの転流が行な
われ、W+サイリスタは非導通となる。この時点から電
源W相と電源U相の電圧差がなくなる時刻ttsまでが
W+サイリスタの逆バイアス時間であり、これがサイリ
スタのターンオフタイムを確保するようlこ転流タイミ
ング及びt2゜が決定されるU+サイリスクに点弧信号
を送った後、′きわめて短い転流型なり角の時間だけ遅
らせて、直流スイッチ33を閉路すれば再び回生電流が
流れはじめ、通常の回生制御にと移行する。
Now, at t,2, the ignition signal is transferred from U+thyristor to V-
When it is sent to the thyristor, commutation from the W+ thyristor to the U+ thyristor is performed, which removes the disturbance caused by the commutated turning angle, and the W+ thyristor becomes non-conductive. The time from this point until the time tts when the voltage difference between the power supply W phase and the power supply U phase disappears is the reverse bias time of the W+ thyristor, and the commutation timing and t2° are determined to ensure the turn-off time of the thyristor U+ After sending the ignition signal to the SIRISK, if the DC switch 33 is closed after a delay of an extremely short commutation type turning angle, the regenerative current starts flowing again and the system shifts to normal regenerative control.

ここで注意すべき点は、位相制御の進み分がサイリスタ
のターンオフタイム分だけになるのでβリミットは17
5o付近まで遅らすことが可能となり、先に述べた一般
的な従来例のβリミツl−150’に比して格段に力率
は改善されることとなる。さらに転流型なり角がきわめ
て短いため、交流電源側へ与える電源短絡の障害の影響
もほとんど問題にならなくなっている。ヌ、β−175
°にて転流を行っている時は先に述べた交流を源10、
サイリスタ逆変換器16、ダイオード順変換器1]の還
流回路の形成される時間は5°となり、大幅に改善する
こ表ができる。さて次に本発明の他の実施例を第8図で
説明する。これはサイリスタ逆変換器16の負側と直流
リアクトル32との間に電流検出器43を接続し回生電
流23を検出し、転流準備信号発生器44に入力する。
The point to note here is that the advance of phase control is only the turn-off time of the thyristor, so the β limit is 17
It becomes possible to delay the power factor to around 5o, and the power factor is significantly improved compared to the general conventional β limit l-150' described above. Furthermore, since the commutation type bending angle is extremely short, the influence of power supply short circuits on the AC power supply side is hardly a problem. Nu, β-175
When commutation is carried out at °, the above-mentioned AC source 10
The time for forming the free wheel circuit of the thyristor inverse converter 16 and the diode forward converter 1 is 5°, which is a significant improvement. Next, another embodiment of the present invention will be described with reference to FIG. A current detector 43 is connected between the negative side of the thyristor inverter 16 and the DC reactor 32 to detect the regenerative current 23 and input it to the commutation preparation signal generator 44 .

転流準備信号発生器44 rは位相制御装置22から出
力される電源位相情報45と、検出された回生電流器の
値からβ−175°で回生電流器が充分減少し、転流重
り角のきわめて短い転流が行いうる開路すべきi′Iq
流スイッチ及び開路タイミングを決定し転流準備信号4
2を発生し、直流スイッチ制御装置アに入力する。この
ような方法によれば、回生電流が小さい時には直流スイ
ッチを開路するタイミングが遅くなり、回生制御時間を
無駄なくもつことができる。
The commutation preparation signal generator 44r uses the power supply phase information 45 outputted from the phase control device 22 and the detected value of the regenerative current generator to determine that the regenerative current generator is sufficiently decreased at β-175° and the commutation weight angle is i'Iq to be opened for very short commutation
Determine the current switch and opening timing and send the commutation preparation signal 4
2 is generated and input to the DC switch control device A. According to such a method, when the regenerative current is small, the timing of opening the DC switch is delayed, so that the regenerative control time can be maintained without wasting it.

以上説明したように本発明による電力変換器の回生制御
方法は、直流母線に接続した直流スイッチの制御により
、回生時の力率を改善し、転流重り角による電源の短絡
を格段に軽減するなど、回生時に電力変換器が交流電源
へ与える障害となる影響を著しく軽減したものであり、
信頼性の高い小形で高性能かつ経済性に富んだ電力変換
器を提供するうえですぐれた効果を有するものである。
As explained above, the regeneration control method for a power converter according to the present invention improves the power factor during regeneration by controlling the DC switch connected to the DC bus, and significantly reduces short circuits in the power supply due to commutation weight angle. This significantly reduces the hindrance effect that the power converter has on the AC power supply during regeneration.
This has an excellent effect in providing a highly reliable, compact, high-performance, and economical power converter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一般的な回生制御可能な電力変換器の1
例を示す構成図、第2図、第3図は第1図の動作説明図
、第4図は直流母線にスイッチをもった回生制御可能な
電力変換器の構成図、第5図は第4図の動作説明図、第
6図は本発明による電力変換器の一実施例を示す構成図
、第7図は第6図の実施例の動作説明図、第8図は本発
明の他の実施例を示す構成図である。 10・・・交流電源11・・・ダイオード順変換器12
・・・平滑コンデンサ 13・・・直流電圧14・・・
昇圧トランス  15・・・回生用交流電源16・・・
回生用サイリスタ逆変換器 17・・・直流リアクトル
18・・・電圧検出器    J9・・・電圧フィード
バック信号側・・・レベル検出器  21・・・位相制
御信号n・・・位相制御装置  囚・・・回生電流ム・
・・耐サイリスタ電流 部・・・U+サイリスタ電流が
・・・W+サイリスタ′酸圧 都・・・U+サイリスタ
電圧31.32・・・直流リアクトルオ、34・・・直
流スイッチ35.36・・・ダイオード  37・・・
回生制御指合羽・・・直流スイッチ制御装置  39・
・・点弧信号40.41・・・設定レベル  42・・
・転流準備信号43・・・電流検出器   44・・・
転流準備信号発生器45・・・電源位相情報 (7317)代理人 弁理士  則近憲佑(ほか1名)
手 続 補 正 書(自発) 昭和  年  月  日 56.12.−3 特許庁長官殿 1、事件の表示 特願昭56−121412号 2、発明の名称 電力変換器の回生制御方法 3、補正をする者 事件との関係   特許出願人 (307) 東京芝浦電気株式会社 4、代理人 〒100 東京都千代田区内幸町1−1−6 東京芝浦電気株式会社東京事務所内 発明の詳細な説明の欄 6、補正の内容 (1)本願明細書第4頁の最下行の記載[Ed”=、 
−1,35Er100β」をJEd’=5−1.35E
rcosβ」(二訂正する。 (2)同′第7頁第5行に記載の[Ed′≦−1,35
−Er−100150°41.17 Edを[Ed′≦
−1,35−E、−008150°初1.17 Erj
に訂正する。 以上
Figure 1 shows a conventional power converter that can control regeneration.
A configuration diagram showing an example, Figures 2 and 3 are operation explanatory diagrams of Figure 1, Figure 4 is a configuration diagram of a power converter that has a switch on the DC bus and is capable of regenerative control, and Figure 5 is a diagram explaining the operation of Figure 4. FIG. 6 is a configuration diagram showing an embodiment of the power converter according to the present invention, FIG. 7 is an explanatory diagram of the operation of the embodiment of FIG. 6, and FIG. 8 is another embodiment of the present invention. It is a block diagram which shows an example. 10... AC power supply 11... Diode forward converter 12
... Smoothing capacitor 13 ... DC voltage 14 ...
Step-up transformer 15... AC power supply for regeneration 16...
Regenerative thyristor inverse converter 17... DC reactor 18... Voltage detector J9... Voltage feedback signal side... Level detector 21... Phase control signal n... Phase control device prisoner...・Regenerative current ・
...Thyristor current resistance part...U+thyristor current...W+thyristor' acid pressure capital...U+thyristor voltage 31.32...DC reactor loop, 34...DC switch 35.36... Diode 37...
Regeneration control finger cover...DC switch control device 39.
...Ignition signal 40.41...Setting level 42...
・Commutation preparation signal 43...Current detector 44...
Commutation preparation signal generator 45...Power supply phase information (7317) Agent: Patent attorney Kensuke Norichika (and one other person)
Procedural amendment (voluntary) Month, day, 56.12, Showa. -3 Commissioner of the Japan Patent Office 1, Indication of the case, Patent Application No. 1983-121412, 2, Title of the invention: Regeneration control method for power converter 3, Person making the amendment Relationship with the case Patent applicant (307) Tokyo Shibaura Electric Co., Ltd. Company 4, Agent Address: Tokyo Shibaura Electric Co., Ltd. Tokyo Office, 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100 Japan Detailed Description of the Invention Column 6, Contents of Amendment (1) The bottom line of page 4 of the specification of the present application. Description [Ed”=,
-1,35Er100β'JEd'=5-1.35E
rcosβ'' (2 corrections. (2) [Ed'≦-1,35 described in page 7, line 5 of the same ')
-Er-100150°41.17 Ed [Ed'≦
-1,35-E, -008150° first 1.17 Erj
Correct. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)直流電源の負荷としてチョッパ等の直流−直流変
換器又はインバータ等の直流−交流変換器などを有し、
それらの負荷からの回生電力を交流電源へ回生する逆変
換器を前記直流電源の正負母線にそれぞれ直列に接続さ
れるスイッチと限流要素及び前記スイッチにたすき掛け
に接続されたダイオード並びに前記限流要素の他端に接
続されるサイリスタ逆変換ブリッジで構成した電力変換
器において、回生時の前記サイリスタ逆変換ブリッジの
転流時lこ、転流を行なう前に予め前記スイッチを開略
し、前記直流電源から前記サイリスタ逆変換ブリッジを
断路し、前記サイリスタ逆変換ブリッジに流れる回生電
流を充分減衰させた後に転流を行ない、転流完了後再び
前記スイッチを閉路し、回生電流を流すように制御する
ことを特徴とする電力変換器の回生制御方法。
(1) Having a DC-DC converter such as a chopper or a DC-AC converter such as an inverter as a load of the DC power supply,
An inverter that regenerates the regenerated power from those loads to the AC power source is connected in series to the positive and negative bus bars of the DC power source, respectively, and a switch and a current limiting element, a diode connected crosswise to the switch, and the current limiting element. In a power converter configured with a thyristor inversion bridge connected to the other end of the element, when the thyristor inversion bridge commutates during regeneration, the switch is opened in advance before commutation, and the DC The thyristor inversion bridge is disconnected from the power source, commutation is performed after the regenerative current flowing through the thyristor inversion bridge is sufficiently attenuated, and after commutation is completed, the switch is closed again to control the regeneration current to flow. A regeneration control method for a power converter, characterized in that:
(2)前記スイッチの開路タイミングを前記回生電流の
値に応じて行なうようにしたことを特徴とする特許請求
の範囲第1項記載の電力変換器の回生制御方法。
(2) The regeneration control method for a power converter according to claim 1, characterized in that the opening timing of the switch is determined in accordance with the value of the regenerative current.
JP56121412A 1981-08-04 1981-08-04 Regenerative control of power converter Pending JPS5822586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56121412A JPS5822586A (en) 1981-08-04 1981-08-04 Regenerative control of power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56121412A JPS5822586A (en) 1981-08-04 1981-08-04 Regenerative control of power converter

Publications (1)

Publication Number Publication Date
JPS5822586A true JPS5822586A (en) 1983-02-09

Family

ID=14810528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56121412A Pending JPS5822586A (en) 1981-08-04 1981-08-04 Regenerative control of power converter

Country Status (1)

Country Link
JP (1) JPS5822586A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166569A (en) * 1984-09-05 1986-04-05 Toshiba Corp Power converter
CN100344057C (en) * 1997-02-04 2007-10-17 西门子公司 Driving mechanism for industrial installations, in particular for primary industry installations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166569A (en) * 1984-09-05 1986-04-05 Toshiba Corp Power converter
CN100344057C (en) * 1997-02-04 2007-10-17 西门子公司 Driving mechanism for industrial installations, in particular for primary industry installations

Similar Documents

Publication Publication Date Title
Ooi et al. An integrated AC drive system using a controlled-current PWM rectifier/inverter link
JP2760666B2 (en) Method and apparatus for controlling PWM converter
JP2543336B2 (en) Superconducting coil energy storage circuit
JPS61102172A (en) Current type converter utilizing self-extinguishing element
US3474320A (en) Variable frequency and voltage electric power inverter utilizing an auxiliary source of fixed-magnitude commutating voltage
EP0538825A2 (en) Power converting apparatus
JPS5822586A (en) Regenerative control of power converter
US4713743A (en) Load-commutated inverter and synchronous motor drive embodying the same
JPS6132915B2 (en)
JPS6117231B2 (en)
US11855555B2 (en) Control device for an inverter, inverter for a vehicle, vehicle and method of operating an inverter
SU1003039A1 (en) Transformer winding taps switching device
JPH0156636B2 (en)
KR820000338B1 (en) Dc-side commutating circuit for current source inverter
JPH05146155A (en) Ac-dc converter
JPS6358037B2 (en)
JPS6350955B2 (en)
JPS6027271B2 (en) Inverter device
SU1089736A1 (en) Versions of three-phase a.c.voltage-to-a.c.voltage converter
JPS6347071B2 (en)
JPS636000B2 (en)
SU1030947A1 (en) Control device for reversible rectifier
JP3117457B2 (en) Snubber circuit
JPS5896320A (en) Thyristor type voltage regulator
JPH06505621A (en) Minimizing GTO gate driver losses when anti-parallel diodes conduct