JPH09117056A - Self-excited dc transmission controller - Google Patents

Self-excited dc transmission controller

Info

Publication number
JPH09117056A
JPH09117056A JP7265144A JP26514495A JPH09117056A JP H09117056 A JPH09117056 A JP H09117056A JP 7265144 A JP7265144 A JP 7265144A JP 26514495 A JP26514495 A JP 26514495A JP H09117056 A JPH09117056 A JP H09117056A
Authority
JP
Japan
Prior art keywords
self
voltage
excited
power
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7265144A
Other languages
Japanese (ja)
Other versions
JP3261947B2 (en
Inventor
Hiroo Konishi
博雄 小西
Hiroshige Kawazoe
裕成 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26514495A priority Critical patent/JP3261947B2/en
Publication of JPH09117056A publication Critical patent/JPH09117056A/en
Application granted granted Critical
Publication of JP3261947B2 publication Critical patent/JP3261947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To operate a DC system stably even at the time of a system fault by providing a control means for sustaining the voltage of the DC system and the effective and reactive powers of a self-excited converter at constant levels and increasing the power level being designated by an effective power control means by an amount corresponding to the power margin. SOLUTION: Based on a command from an operation command unit 60, the effective power command value 302 of a self-excited converter during the inverter operation is added 306 with a power margin 304 and inputted to an effective power control circuit 308. On the other hand, a DC voltage command value 312 is added 316 with a voltage margin 314 and inputted to a DC voltage control circuit 318. Subsequently, an effective power 322 during conversion is added with a power margin 324 and inputted to an effective power control circuit 328. An optimal value is selected 340, as an effective power command value, from each control circuit 308-328 and inputted to a non-interference current circuit 370 along with a reactive power command value 360. It is then converted 370 into a three-phase voltage reference value and a PWM pulse 380 is delivered to the self-excited converter. Consequently, DC power transmission can be sustained even at the time of a system fault.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は自励式変換器で構成
される自励式直流送電制御装置により、特に系統事故時
にも自励式直流送電設備を安定に運転の行える自励式直
流送電制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-excited DC power transmission control device including a self-excited DC power transmission control device including a self-excited converter, and more particularly to a self-excited DC power transmission control device capable of stably operating a self-excited DC power transmission facility even when a system fault occurs.

【0002】[0002]

【従来の技術】自己消弧機能を持ったスイッチング素子
で構成される自励式変換器は交流系統の波形歪の影響を
受けることなく交流から直流、または直流から交流への
電力変換が行えることから、将来の理想的な変換器とし
て電力系統への適用が期待されており、開発が進められ
ている。最も期待されている適用個所は直流送電設備
で、自励式変換器の適用により交流系統の状況如何に関
わらず安定送電できるばかりでなく、電源のない交流系
統へも電力を送ることが可能といったメリットがでてく
る。現在、自励式変換器は産業用の小容量設備の無停電
電源(CVCF)やアクティブフィルタとして実用化さ
れているが、電力用として使用できる大容量の変換器は
開発中である。
2. Description of the Related Art A self-excited converter composed of a switching element having a self-extinguishing function is capable of converting power from AC to DC or from DC to AC without being affected by waveform distortion of an AC system. , Is expected to be applied to the electric power system as an ideal converter in the future, and is under development. The most promising application point is DC power transmission equipment, and by applying a self-exciting converter, not only can stable power transmission be performed regardless of the status of the AC system, but it is also possible to send power to an AC system without a power supply. Comes out. Currently, the self-excited converter is put to practical use as an uninterruptible power supply (CVCF) for industrial small-capacity facilities and an active filter, but a large-capacity converter that can be used for electric power is under development.

【0003】自励式直流送電の運転制御方法として、特
願平4−15012号に示されるように、一端で直流系統の電
圧を指定し、他端で有効電力を制御する制御方法が開発
されている。しかし直流系統の電圧を制御している変換
所が系統事故により停止すると、直流系統の電圧制御変
換器がなくなり安定運転ができなくなる。また、たくさ
んの自励式変換器が直流系統に接続されて構成される直
流多端子送電の運転制御方法については、従来考えられ
ている制御方式は安定運転を行う上で充分とは言えな
い。
As an operation control method for self-excited DC power transmission, as shown in Japanese Patent Application No. 4-15012, a control method has been developed in which the voltage of the DC system is designated at one end and the active power is controlled at the other end. There is. However, if the converter station that controls the DC system voltage stops due to a system accident, the DC system voltage control converter will run out and stable operation will not be possible. Further, regarding the operation control method of DC multi-terminal power transmission configured by connecting a large number of self-excited converters to the DC system, the control method conventionally considered is not sufficient for stable operation.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、従来
技術の問題点を解決し、系統事故時にも自励式直流送電
を安定に運転の行える自励式直流送電制御装置を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and to provide a self-excited DC power transmission control device capable of stably operating self-excited DC power transmission in the event of a system fault. .

【0005】[0005]

【課題を解決するための手段】自己消弧機能を持ったス
イッチング素子で構成される自励式変換器を変換器とし
て持った直流送電設備の自励式変換器の制御装置におい
て、直流系統の電圧を指定された一定値に保つ直流電圧
制御手段、自励式変換器の有効電力を指定された一定値
に制御する有効電力制御手段、及び自励式変換器の交流
側の無効電力を指定された一定値に制御する無効電力制
御手段を備え、さらに直流系統の電圧を指定の一定値に
保つ制御を行う自励式変換器の制御装置の有効電力制御
手段の電力指令値を電力マージンだけ大きくする電力マ
ージン設定手段を備えたようにしたものである。
In a controller of a self-excited converter of a DC transmission facility having a self-excited converter composed of a switching element having a self-extinguishing function as a converter, the voltage of a DC system is changed. DC voltage control means for maintaining a specified constant value, active power control means for controlling the active power of the self-excited converter to a specified constant value, and reactive power on the AC side of the self-excited converter to a specified constant value The power margin setting that increases the power command value of the active power control means of the control device of the self-excited converter that performs the control to keep the voltage of the DC system at the specified constant value by the power margin. It is equipped with means.

【0006】自励式直流送電設備を安定運転するために
は、直流系統に接続された一つの自励式変換器で直流系
統の電圧を制御し、残りの変換器は有効電力制御するこ
とによって行える。自励式多端子直流送電となった場合
にもこのルールは同様である。
In order to stably operate the self-excited DC power transmission equipment, one self-excited converter connected to the DC system controls the voltage of the DC system, and the remaining converters are controlled by active power. This rule is the same in the case of self-excited multi-terminal DC transmission.

【0007】自励式変換器の制御装置には直流制御手
段,有効電力制御手段,無効電力制御手段が備わってい
る。直流電圧制御手段は直流系統の電圧が規定の一定値
となるように直流電圧制御の自励式変換器を動作させ
る。また有効電力制御手段は直流系統の残りの自励式変
換器の有効電力を指定の一定値に保つ制御する。無効電
力制御手段は直流電圧制御,有効電力制御いずれの制御
にも無関係に交流系統の特性に応じて各自励式変換器で
任意に無効電力制御する。ここで有効電力制御を行う自
励式変換器は各自励式変換器の有効電力指令値に従って
有効電力制御手段により有効電力を制御する。これらの
自励式変換器の直流電圧指令値は直流系統の電圧指令値
よりも電圧マージンだけ高いまたは低い、各々異なった
電圧指令値を与えておく。この場合順変換器運転を行う
変換器は高く、インバータ運転を行う変換器は低く設定
するのが好都合である。一方、直流電圧制御を行う自励
式変換器は直流電圧指令値に従って直流電圧制御手段に
より直流系統の電圧を制御する。この自励式変換器の有
効電力指令値は直流系統の有効電力指令値の和が零とな
る有効電力指令値を与え、これに電力マージンだけ大き
な有効電力指令値を与えておく。但し、有効電力指令値
は順変換器では正,逆変換器では負の値とする。従って
順変換運転を行う変換器では有効電力指令値に電力マー
ジンを加算し、インバータ運転を行う変換器では有効電
力指令値から電力マージンを差引いた値となる。これに
より系統事故により自励式変換器が停止し、直流系統か
ら切り離された場合にも安定に運転が行える。
The control device for the self-excited converter is provided with a DC control means, an active power control means, and a reactive power control means. The DC voltage control means operates the DC voltage controlled self-exciting converter so that the voltage of the DC system becomes a prescribed constant value. In addition, the active power control means controls the active power of the remaining self-excited converters in the DC system to be maintained at a specified constant value. The reactive power control means arbitrarily controls the reactive power with each self-exciting converter according to the characteristics of the AC system, regardless of whether the control is DC voltage control or active power control. Here, the self-excited converter that performs active power control controls active power by the active power control means according to the active power command value of each self-excited converter. The DC voltage command values of these self-exciting converters are given different voltage command values higher or lower than the voltage command value of the DC system by a voltage margin. In this case, it is convenient to set the converter that performs the forward converter operation high and the converter that performs the inverter operation low. On the other hand, the self-exciting converter for controlling the DC voltage controls the voltage of the DC system by the DC voltage control means according to the DC voltage command value. As the active power command value of the self-exciting converter, an active power command value at which the sum of active power command values of the DC system becomes zero is given, and an active power command value large by the power margin is given to this. However, the active power command value is a positive value in the forward converter and a negative value in the reverse converter. Therefore, in the converter performing the forward conversion operation, the power margin is added to the active power command value, and in the converter performing the inverter operation, the power margin is subtracted from the active power command value. As a result, the self-excited converter stops due to a system accident, and stable operation can be performed even when the converter is disconnected from the DC system.

【0008】今、仮に直流電圧制御の自励式変換器が系
統事故により直流系統から切り離され、直流電圧制御変
換器が無くなったとすると、各自励式変換器は電圧制御
手段を備えているので、直流系統の電圧は次に電圧指令
値の低い設定値を持った自励式変換器が直流系統の電圧
制御変換器に移動し安定運転が行われる。一方、有効電
力制御の自励式変換器が系統から切り離された場合は、
系統の電圧は健全な自励式変換器により電圧制御された
ままであるので安定運転上問題ない。なお電圧マージン
の値は電圧検出器の検出誤差,電圧のリップル等を考慮
し、これらによる誤差を見越した値をマージン値とす
る。また電力マージンの値として変換設備の損失分を見
込んだ値より大きな値とする。
Now, if the DC voltage controlled self-excited converters are disconnected from the DC system due to a system fault and the DC voltage controlled converters are lost, each self-excited converter is equipped with voltage control means. Then, the self-exciting converter having a set value of the voltage command value moves to the voltage control converter of the DC system for stable operation. On the other hand, if the active power control self-exciting converter is disconnected from the grid,
Since the voltage of the system remains voltage controlled by a sound self-exciting converter, there is no problem in stable operation. The voltage margin value takes into account the detection error of the voltage detector, the ripple of the voltage, and the like, and the value in consideration of the error due to these is taken as the margin value. Also, the value of the power margin should be larger than the value that accounts for the loss of the conversion equipment.

【0009】[0009]

【発明の実施の形態】本発明の自励式直流送電設備の制
御装置の一実施例を図1〜図5を用いて説明する。図3
は自励式直流送電設備の構成の概要を示す。図3におい
て1,2は電力系統、11,12は変換用変圧器、2
1,22は自励式変換器、31,32は電流制限用のリ
アクトル、41,42は電流制限用リアクトルに並列に
接続されたフライホイールダイオード、50は電力用コ
ンデンサ、60は自励式直流送電設備の運転指令装置、
61,62はそれぞれ自励式変換器21,22の制御装
置である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a control device for a self-excited DC power transmission facility according to the present invention will be described with reference to FIGS. FIG.
Shows the outline of the configuration of the self-excited DC transmission equipment. In FIG. 3, 1 and 2 are electric power systems, 11 and 12 are conversion transformers, and 2
Reference numerals 1 and 22 are self-exciting converters, 31 and 32 are current limiting reactors, 41 and 42 are flywheel diodes connected in parallel to the current limiting reactors, 50 is a power capacitor, and 60 is a self-exciting DC transmission facility. Operation command device,
Reference numerals 61 and 62 are control devices for the self-excited converters 21 and 22, respectively.

【0010】図2に自励式変換器21の詳細構成の一例
を示す。自励式変換器22の構成も同様である。図を説
明すると、GT1〜GT6(201〜206)は自己消
弧機能を持ったゲートターンオフサイリスタ等のスイッ
チング素子、D1〜D6(211〜216)はスイッチ
ング素子GT1〜GT6に逆並列に接続されるダイオー
ドである。自励式変換器はスイッチング素子と逆並列接
続されたダイオードがブリッジ結線されて構成される。
前記リアクトル31はスイッチング素子が転流失敗を起
こしたときの電力用コンデンサ50からの電荷の放電電
流の立上りを抑制する、前記ダイオード41は系統から
のコンデンサの充電を早めるためにリアクトルをバイパ
スすると共にリアクトルの循環電流を流す役目をする。
前記電力用コンデンサ50は自励式変換器の電圧源とな
り、電圧のリップルを抑制する。また前記変換用変圧器
11は自励式変換器を系統から絶縁すると共に、系統の
電圧を自励式変換器に適切な電圧に昇圧/降圧する役目
をする。自励式変換器には以上の機器/装置や素子が加
わって、制御装置61からの制御パルスによって交流か
ら直流、または直流から交流への電力の変換動作を行
う。
FIG. 2 shows an example of a detailed configuration of the self-excited converter 21. The configuration of the self-excited converter 22 is similar. Explaining the figure, GT1 to GT6 (201 to 206) are switching elements such as gate turn-off thyristors having a self-extinguishing function, and D1 to D6 (211 to 216) are connected in antiparallel to the switching elements GT1 to GT6. It is a diode. The self-excited converter is configured by bridge-connecting diodes that are connected in antiparallel with switching elements.
The reactor 31 suppresses the rise of the discharge current of the electric charge from the power capacitor 50 when the switching element causes commutation failure. The diode 41 bypasses the reactor in order to accelerate the charging of the capacitor from the system. It serves to pass the circulating current of the reactor.
The power capacitor 50 serves as a voltage source of the self-excited converter and suppresses voltage ripple. Further, the conversion transformer 11 serves to insulate the self-excited converter from the system and to step up / down the system voltage to a voltage suitable for the self-excited converter. The above-described devices / apparatuses and elements are added to the self-excited converter to perform the conversion operation of power from AC to DC or from DC to AC by the control pulse from the controller 61.

【0011】図1に制御装置61の一実施例を示す。A
D1は前記運転指令装置60からの指令である自励式変
換器21のインバータ運転時の有効電力指令値302と
電力マージン304の値を加算する加算器、API308は加
算器AD1(306)からの電力指令値を受けインバータ運転時
に自励式変換器21の有効電力を指令値の一定値に制御
する有効電力制御回路、AD2(316)は前記運転指令装置6
0からの指令である直流電圧指令値312と電圧マージ
ン314の値を加算する加算器、AVR318は加算器AD2
からの直流電圧指令値を受け自励式変換器21の直流出
力電圧を指令値の一定値に制御する直流電圧制御回路、
AD3(326)は前記運転指令装置60からの指令である自励
式変換器21の順変換運転時の有効電力指令値322と
電力マージン324の値を加算する加算器、APR328は加
算器AD3からの電力指令値を受け順変換運転時に自励
式変換器21の有効電力を指令値の一定値に制御する有
効電力制御回路、SEL340はAPI308,AVR318,APR328の各
制御回路の出力信号のうちの最適値を選択する信号選択
回路、この出力が電流制御回路ACR350の有効電流指令値
となる。AQR360は前記運転指令装置60からの無効電力
指令値を受け自励式変換器21の無効電力を指令値の一
定値に制御する無効電力制御回路で、この出力が制御回
路ACR350の無効電流指令値となる。ACR350は非干渉電流
制御回路で、有効電流指令値を受け、自励式変換器21
の有効電流を指令値の一定値に制御する有効電流制御回
路と、無効電流指令値を受け、自励式変換器21の無効
電流を指令値の一定値に制御する無効電流制御回路から
なり、2つの電流制御回路が非干渉で高速に各々の指令
値に一致するように制御動作する。TRF370は2つの電流
制御回路の出力を3相の電圧基準値に変換する変換回
路、PWM380は3相の電圧基準値から自励式変換器21に
より電圧基準値に比例した出力電圧を発生させるための
制御パルスを作成するパルス作成回路である。
FIG. 1 shows an embodiment of the control device 61. A
D1 is an adder for adding the value of the active power command value 302 and the power margin 304 during the inverter operation of the self-exciting converter 21 which is a command from the operation command device 60, and API 308 is the power from the adder AD1 (306). The active power control circuit for controlling the active power of the self-excited converter 21 to a constant command value when the inverter receives the command value, AD2 (316) is the operation command device 6
The AVR318 is an adder AD2 that adds the DC voltage command value 312, which is a command from 0, and the value of the voltage margin 314.
A DC voltage control circuit that receives a DC voltage command value from the DC voltage control circuit and controls the DC output voltage of the self-exciting converter 21 to a constant command value.
AD3 (326) is an adder for adding the active power command value 322 in the forward conversion operation of the self-exciting converter 21 which is a command from the operation command device 60 and the value of the power margin 324, and the APR328 is an adder from the adder AD3. The active power control circuit that receives the power command value and controls the active power of the self-exciting converter 21 to a constant command value during the forward conversion operation. The SEL340 is the optimum value of the output signals of the control circuits of API308, AVR318, and APR328. A signal selection circuit for selecting, and this output becomes the active current command value of the current control circuit ACR350. AQR360 is a reactive power control circuit that receives the reactive power command value from the operation command device 60 and controls the reactive power of the self-exciting converter 21 to a constant command value, and this output is the reactive current command value of the control circuit ACR350. Become. ACR350 is a non-interference current control circuit that receives the active current command value
Of the active current control circuit for controlling the active current of the self-exciting converter 21 to the constant value of the command value and the reactive current control circuit for controlling the reactive current of the self-excited converter 21 to the constant value of the command value. The two current control circuits operate in a non-interfering manner at high speed so as to match the respective command values. TRF370 is a conversion circuit that converts the output of two current control circuits into a three-phase voltage reference value, and PWM380 is for generating an output voltage proportional to the voltage reference value from the three-phase voltage reference value by the self-exciting converter 21. It is a pulse creation circuit that creates a control pulse.

【0012】前記運転指令装置60は自励式変換器21
が直流系統の電圧制御変換器として動作するときは加算
器AD1とAD3に電力マージンΔPを出力する。ま
た、有効電力制御回路として動作するときは電力マージ
ンΔPは出力せず、電圧マージンΔVを出力し、電圧指
令値からマージン分ΔVを差引く。
The operation command device 60 is a self-exciting converter 21.
Outputs a power margin ΔP to the adders AD1 and AD3 when operates as a DC system voltage control converter. When operating as an active power control circuit, the power margin ΔP is not output, the voltage margin ΔV is output, and the margin ΔV is subtracted from the voltage command value.

【0013】図4に図3の制御装置を備えた自励式変換
器21の有効電力に対する直流電圧の特性を示す。有効
電力の正の領域は自励式変換器が順変換器運転、負の領
域はインバータ運転を表す。従ってP1は制御回路AP
Rの指令値、VpはAVRの指令値、P2はAPIの指
令値による制御回路の動作による特性を表す。
FIG. 4 shows the characteristics of the DC voltage with respect to the active power of the self-excited converter 21 having the control device of FIG. The positive range of active power represents the forward converter operation of the self-excited converter, and the negative range represents the inverter operation. Therefore, P1 is the control circuit AP
The command value of R, Vp is the command value of AVR, and P2 is the characteristic by the operation of the control circuit according to the command value of API.

【0014】即ち、順変換器運転で有効電力を増加して
いくとP1までは直流電圧をVp一定に保つ制御動作を
し、P1以上では直流電圧を低下させてP1を一定に保
つ。逆にインバータ運転で有効電力を増加していくとP
2までは直流電圧をVp一定に保つ制御動作をし、それ
以上ではP2を一定に保って直流電圧が増加する特性と
なる。このような特性となるように図3の信号選択回路
SELを動作させる。図5に自励式直流送電の順変換器
とインバータを組合せた場合の変換器の有効電力−直流
電圧上の動作点を示す。図では順変換器(REC)で直
流電圧制御、インバータ(INV)で有効電力制御した場
合を示す。順変換器は前記運転指令装置60からの直流
電圧指令値Vp1で直流電圧制御を行う。従って有効電
力指令値は直流送電電力P22の値よりもΔPだけ大き
い指令値P11(APRの指令値)とP12(APIの
指令値)が前記運転指令装置60から与えられる。一
方、インバータは有効電力制御で有効電力指令値P22
が制御回路APIに、P21がAPRに前記運転指令装
置60から与えられる。また電圧制御回路AVRの指令
値はVp1よりも電圧マージンΔVだけ小さい指令値V
p2が前記運転指令装置60から与えられる。これによ
り動作点はそれぞれの自励式変換器の特性上の交点O1
で安定に運転される。直流の送電電力は前記運転指令装
置60からの有効電力指令値P22の値を変えることに
よって行える。
That is, when the active power is increased in the forward converter operation, a control operation is performed to keep the DC voltage constant at Vp up to P1, and the DC voltage is lowered to keep P1 constant at P1 or higher. Conversely, if the active power is increased by inverter operation, P
Up to 2, the control operation is performed to keep the DC voltage constant at Vp, and above that, P2 is kept constant and the DC voltage increases. The signal selection circuit SEL of FIG. 3 is operated so as to have such characteristics. FIG. 5 shows an operating point on the active power-DC voltage of the converter when the forward converter and the inverter of the self-excited DC power transmission are combined. The figure shows the case where direct voltage control is performed by the forward converter (REC) and active power control is performed by the inverter (INV). The forward converter performs DC voltage control with the DC voltage command value Vp1 from the operation command device 60. Therefore, the command value P11 (command value of APR) and P12 (command value of API) whose active power command value is larger than the value of the DC transmission power P22 by ΔP are given from the operation command device 60. On the other hand, the inverter uses active power control to determine the active power command value P22.
Is given to the control circuit API and P21 is given to the APR from the operation command device 60. Further, the command value of the voltage control circuit AVR is smaller than Vp1 by a voltage margin ΔV, which is a command value V.
p2 is given from the operation command device 60. As a result, the operating point is the intersection point O1 on the characteristics of each self-excited converter.
The operation is stable. The DC power can be transmitted by changing the value of the active power command value P22 from the operation command device 60.

【0015】次に自励式多端子送電の場合の動作を図6
と図7により説明する。図6に自励式3端子送電の系統
構成図を示す。図中、図1と同じ番号のものは図1と同
じ機能を表すので異なったものについて説明すると、3
は交流系統、13は変換用変圧器、23は3端子目の自
励式変換器、33はリアクトル、43はダイオード、6
3は自励式変換器23の制御装置で、前述の制御装置6
1や62と同様の回路構成となっていて、各制御回路の
指令値のみが運転指令装置60から異なった指令値が与
えられているものである。この3端子の動作を図7を使
って説明する。今自励式変換器21で直流多端子系統の
直流電圧を制御し、自励式変換器22と23はインバー
タで有効電力制御を行っているとする。従って運転指令
装置60から自励式変換器21には直流電圧指令値VP
1が与えられ、有効電力指令値は他の自励式変換器(イ
ンバータ)の有効電力指令値の和(P22+P32)よ
りも電力マージンΔPだけ大きい指令値が与えられる。
またインバータ22には電圧指令値Vp1より電圧マー
ジンΔV1だけ小さい電圧指令値Vp2、インバータ2
3にはΔV2だけ小さいVp3が与えられる。有効電力
指令値はそれぞれP22とP32である。この時の動作
点はO1となり安定運転が行える。
Next, the operation in the case of self-excited multi-terminal power transmission is shown in FIG.
FIG. FIG. 6 shows a system configuration diagram of self-excited three-terminal power transmission. In the figure, those having the same numbers as those in FIG. 1 represent the same functions as those in FIG.
Is an AC system, 13 is a conversion transformer, 23 is a self-exciting converter of the third terminal, 33 is a reactor, 43 is a diode, 6
3 is a control device for the self-excited converter 23, which is the control device 6 described above.
The circuit configuration is the same as that of 1 or 62, and only the command value of each control circuit is given a different command value from the operation command device 60. The operation of these three terminals will be described with reference to FIG. Now, it is assumed that the self-exciting converter 21 controls the DC voltage of the DC multi-terminal system, and the self-exciting converters 22 and 23 perform active power control by the inverters. Therefore, the DC voltage command value VP is transferred from the operation command device 60 to the self-exciting converter 21.
1 is given and the active power command value is given a command value larger than the sum (P22 + P32) of the active power command values of the other self-exciting converters (inverters) by the power margin ΔP.
Further, the inverter 22 has a voltage command value Vp2 smaller than the voltage command value Vp1 by a voltage margin ΔV1.
3 is given Vp3 which is smaller by ΔV2. The active power command values are P22 and P32, respectively. The operating point at this time is O1, and stable operation can be performed.

【0016】ここでインバータ23が系統事故により直
流系統から切り離されると、図7(b)に示したように
動作点はO2に移り、インバータが切り離された状態で
も安定に動作できる。
Here, when the inverter 23 is disconnected from the DC system due to a system fault, the operating point shifts to O2 as shown in FIG. 7 (b), and stable operation can be achieved even when the inverter is disconnected.

【0017】また電圧制御端子の自励式変換器21が切
り離されると、順変換器が無くなるので、インバータ2
2と23が残り、電力指令値の大きいインバータ23が
潮流反転が許されるならば潮流反転して電圧制御端子と
なり順変換運転を行い、電圧指令値Vp3で電圧制御運
転を行う。このとき変換器22はインバータとして動作
点O3で安定動作できる。
Further, when the self-exciting converter 21 of the voltage control terminal is disconnected, the forward converter disappears, so that the inverter 2
If 2 and 23 remain, and the inverter 23 having a large power command value is allowed to reverse the power flow, the power flow is reversed to serve as a voltage control terminal for forward conversion operation, and voltage control operation is performed with the voltage command value Vp3. At this time, the converter 22 can operate stably as an inverter at the operating point O3.

【0018】このように各自励式変換器に電圧制御回路
と有効電力制御回路を備え、電圧指令値と有効電力指令
値に対してマージンを与えることによって適切な指令値
とすることにより、系統事故時も系統事故の変換器を切
り離して、健全な変換器で安定運転を行うことができ
る。
As described above, each self-excited converter is provided with the voltage control circuit and the active power control circuit, and by giving a margin to the voltage command value and the active power command value to obtain an appropriate command value, a system fault occurs. It is also possible to separate the converter in case of system failure and perform stable operation with a healthy converter.

【0019】さらに、本発明の一実施例においては、電
力マージンの値は直流系統の電圧制御変換器が、変換器
の損失を含めた直流送電設備の損失を補償して電圧を規
定の一定値に制御することになり、変換器の容量として
は損失分だけ大きくないと電圧制御が行えない。このた
め、電圧制御を行う自励式変換器の有効電力設定値をこ
の損失分より大きい値に設定する必要があり、この大き
くする分を電力マージンとして設定する。
Furthermore, in one embodiment of the present invention, the value of the power margin is such that the voltage control converter of the DC system compensates for the loss of the DC transmission equipment including the loss of the converter and sets the voltage to a prescribed constant value. Therefore, voltage control cannot be performed unless the capacity of the converter is large by the loss. Therefore, it is necessary to set the active power setting value of the self-exciting converter that performs voltage control to a value larger than this loss amount, and this increased amount is set as a power margin.

【0020】そして、本発明の一実施例において電圧制
御端子は他の自励式変換器の電圧指令値よりも電圧の検
出誤差や電圧のリップル分より大きいマージンをとった
値に設定しないと、電圧制御変換器でないのに系統の電
圧制御を行う危険性がある。このため電圧検出誤差分と
リップル分よりも大きい値を電圧マージンとして、電圧
制御端子よりも電圧指令値を下げて有効電力制御変換器
を運転することが安定運転を行う上で好ましいことにな
る。
In one embodiment of the present invention, the voltage control terminal must be set to a value with a margin larger than the voltage command value of another self-excited converter and larger than the voltage detection error and the voltage ripple. There is a risk of voltage control of the system even though it is not a control converter. Therefore, it is preferable for stable operation to operate the active power control converter by lowering the voltage command value from the voltage control terminal with a voltage margin having a value larger than the voltage detection error and the ripple.

【0021】[0021]

【発明の効果】以上説明した本発明の制御装置によれ
ば、系統事故時にも自励式直流送電を安定に運転するこ
とが可能になり、特に複数の自励式変換器で直流送電を
行う場合に系統事故が発生したとしても、送電を安定に
保てる効果がある。
According to the control device of the present invention described above, it becomes possible to stably operate the self-excited DC power transmission even in the event of a system fault, and particularly when the DC power transmission is performed by a plurality of self-excited converters. Even if a system accident occurs, it has the effect of maintaining stable power transmission.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の対象をする自励式直流送電設備の1構
成例を示す図。
FIG. 1 is a diagram showing one configuration example of a self-excited DC power transmission facility to which the present invention is applied.

【図2】図1の自励式変換器の構成を示す図。FIG. 2 is a diagram showing the configuration of the self-excited converter of FIG.

【図3】本発明自励式変換器の制御装置の1構成例。FIG. 3 is a configuration example of a control device for a self-excited converter according to the present invention.

【図4】図3の自励式変換器の動作を説明する有効電力
−直流電圧特性図。
4 is an active power-DC voltage characteristic diagram illustrating the operation of the self-excited converter of FIG.

【図5】自励式直流送電設備の動作を説明する有効電力
−直流電圧特性図。
FIG. 5 is an active power-DC voltage characteristic diagram illustrating the operation of a self-excited DC power transmission facility.

【図6】本発明の対象をする自励式多端子直流送電設備
の1構成例を示す図。
FIG. 6 is a diagram showing one configuration example of a self-excited multi-terminal DC power transmission facility that is a target of the present invention.

【図7】自励式多端子直流送電設備の動作を説明する有
効電力−直流電圧特性図。
FIG. 7 is an active power-DC voltage characteristic diagram illustrating the operation of a self-excited multi-terminal DC power transmission facility.

【符号の説明】[Explanation of symbols]

1,2,3…電力系統、11,12,13…変換用変圧
器、21,22,23…自励式変換器、31,32,3
3…電流制限用のリアクトル、41,42,43…フラ
イホイールダイオード、50…電力用コンデンサ、60
…運転指令装置、61,62,63…制御装置、20
1,202,203,204,205,206…ゲート
ターンオフサイリスタ等のスイッチング素子、211,
212,213,214,215,216…ダイオー
ド、306,316,326…加算器、308…インバ
ータ運転時の有効電力制御回路、318…直流電圧制御
回路、328…順変換運転時の有効電力制御回路、34
0…信号選択回路、350…非干渉電流制御回路、36
0…無効電力制御回路、370…変換回路、380…パ
ルス作成回路。
1, 2, 3 ... Power system, 11, 12, 13 ... Conversion transformer, 21, 22, 23 ... Self-excited converter, 31, 32, 3
3 ... Reactor for limiting current, 41, 42, 43 ... Flywheel diode, 50 ... Capacitor for power, 60
... Operation command device, 61, 62, 63 ... Control device, 20
1, 202, 203, 204, 205, 206 ... Switching elements such as gate turn-off thyristors, 211,
212, 213, 214, 215, 216 ... Diode, 306, 316, 326 ... Adder, 308 ... Active power control circuit during inverter operation, 318 ... DC voltage control circuit, 328 ... Active power control circuit during forward conversion operation , 34
0 ... Signal selection circuit, 350 ... Non-interference current control circuit, 36
0 ... Reactive power control circuit, 370 ... Conversion circuit, 380 ... Pulse generation circuit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02M 7/48 9181−5H H02M 7/48 E 7/757 9181−5H 7/757 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location H02M 7/48 9181-5H H02M 7/48 E 7/757 9181-5H 7/757

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】自己消弧機能を有する可制御型半導体素子
で構成される自励式変換器を直流送電系統を介して接続
して構成される自励式直流送電制御装置において、 前記自励式変換器は前記直流送電電圧制御回路,有効電
力制御回路及び無効電力制御回路を備え、 前記直流送電系統の電圧を制御する自励式変換器の有効
電力制御回路の電力指令値を電力マージンだけ大きくす
ることを特徴とする自励式直流送電制御装置。
1. A self-excited DC power transmission control device configured by connecting a self-excited converter composed of a controllable semiconductor element having a self-extinguishing function through a DC power transmission system, wherein the self-excited converter is provided. Is provided with the DC transmission voltage control circuit, the active power control circuit, and the reactive power control circuit, and increases the power command value of the active power control circuit of the self-excited converter that controls the voltage of the DC transmission system by a power margin. Characteristic self-excited DC power transmission control device.
【請求項2】請求項1の自励式直流送電制御装置におい
て、 有効電力を制御する自励式変換器の電圧制御回路の電圧
指令値を、該変換器が順変換器運転の場合は電圧マージ
ンを加えて直流系統の電圧より高い電圧指令値とし、該
変換器がインバータ運転の場合は電圧マージンを引いて
直流系統の電圧より低い電圧指令値とすることを特徴と
する自励式直流送電制御装置。
2. The self-excited DC power transmission control device according to claim 1, wherein the voltage command value of the voltage control circuit of the self-excited converter for controlling active power is set to a voltage margin when the converter is in the forward converter operation. In addition, the self-excited DC power transmission control device is characterized in that a voltage command value higher than the voltage of the DC system is set, and when the converter is operating in an inverter, a voltage margin is subtracted to set the voltage command value lower than the voltage of the DC system.
【請求項3】請求項1の自励式直流送電制御装置におい
て、 インバータ運転の自励式変換器が複数台ある場合、順変
換器の有効電力指令値を前記複数の自励式変換器の有効
電力指令値の合計値以上でかつ、前記電力マージン分大
きな値にしたことを特徴とする自励式直流送電制御装
置。
3. The self-excited DC power transmission control device according to claim 1, wherein when there are a plurality of inverter-operated self-excited converters, the active power command value of the forward converter is set to the active power command of the plurality of self-excited converters. A self-excited DC power transmission control device, wherein the value is equal to or more than the total value of the values and is larger by the power margin.
【請求項4】請求項1の自励式直流送電制御装置におい
て、 インバータ運転の自励式変換器が複数台ある場合、該複
数の変換器に対する電圧指令値をそれぞれ順変換器の電
圧指令値より低い値で、かつ異なる値にしたことを特徴
とする自励式直流送電制御装置。
4. The self-excited DC power transmission control device according to claim 1, wherein when there are a plurality of inverter-operated self-excited converters, the voltage command values for the plurality of converters are lower than the voltage command values for the forward converter. A self-excited DC power transmission control device having different values.
【請求項5】請求項1の自励式直流送電制御装置におい
て、 前記電力マージンの値として変換設備及び送電線の損失
分を見込んだ値より大きな値とすることを特徴をする自
励式直流送電制御装置。
5. The self-excited DC power transmission control according to claim 1, wherein the value of the power margin is larger than a value that accounts for the loss of the conversion equipment and the transmission line. apparatus.
【請求項6】請求項1の自励式直流送電制御装置におい
て、 電圧マージンの値として電圧検出器の誤差と直流電圧の
リップルを合わせた値より大きな値とすることを特徴を
する自励式直流送電制御装置。
6. The self-excited DC power transmission control device according to claim 1, wherein the value of the voltage margin is larger than the sum of the error of the voltage detector and the ripple of the DC voltage. Control device.
JP26514495A 1995-10-13 1995-10-13 Self-excited DC power transmission controller Expired - Fee Related JP3261947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26514495A JP3261947B2 (en) 1995-10-13 1995-10-13 Self-excited DC power transmission controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26514495A JP3261947B2 (en) 1995-10-13 1995-10-13 Self-excited DC power transmission controller

Publications (2)

Publication Number Publication Date
JPH09117056A true JPH09117056A (en) 1997-05-02
JP3261947B2 JP3261947B2 (en) 2002-03-04

Family

ID=17413251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26514495A Expired - Fee Related JP3261947B2 (en) 1995-10-13 1995-10-13 Self-excited DC power transmission controller

Country Status (1)

Country Link
JP (1) JP3261947B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117015A (en) * 2012-12-06 2014-06-26 Univ Of Tokyo Multi-terminal type power conversion apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2991212B1 (en) * 2013-04-28 2020-03-04 Huawei Technologies Co., Ltd. Voltage adjusting power source and method for controlling output voltage
EP3468024B1 (en) 2016-06-02 2020-07-15 Mitsubishi Electric Corporation Power conditioner system
WO2018135031A1 (en) 2017-01-19 2018-07-26 三菱電機株式会社 Direct current power transmission system and dc-dc converter used in same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117015A (en) * 2012-12-06 2014-06-26 Univ Of Tokyo Multi-terminal type power conversion apparatus

Also Published As

Publication number Publication date
JP3261947B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
Jacobson et al. VSC-HVDC transmission with cascaded two-level converters
JP6207730B2 (en) DC transmission power conversion apparatus and DC transmission power conversion method
US7170767B2 (en) System and method for regenerative PWM AC power conversion
EP0554804B1 (en) Control equipment for high voltage direct current transmission system
US6542390B2 (en) System and method for regenerative PWM AC power conversion
WO2021181581A1 (en) Power conversion device
WO2018052070A1 (en) Dc power transmission system and control device for power converter
WO2021181582A1 (en) Power conversion device
JP6926355B1 (en) Power converter
JP2006238621A (en) Uninterruptible power supply
JP3469918B2 (en) Uninterruptible power system
JP6937962B1 (en) Power converter
WO2021181583A1 (en) Power conversion device
JP3234932B2 (en) Power conversion system and control device for power converter
JP3261947B2 (en) Self-excited DC power transmission controller
JP3259308B2 (en) Inverter device and uninterruptible power supply using the same
JP6899987B1 (en) Power converter
US7233081B2 (en) Power-supply device
JPH1028378A (en) Method for controlling power converter and method for controlling power converting system
JP2005130562A (en) Power converter
JPH08331771A (en) Charge/discharge controller for secondary battery
JP6896201B1 (en) Power converter
JP3700018B2 (en) Control device and method for DC power transmission equipment
JP3265410B2 (en) Power converter
JP6941185B2 (en) Power conversion system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees