JPS60235486A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS60235486A
JPS60235486A JP9243184A JP9243184A JPS60235486A JP S60235486 A JPS60235486 A JP S60235486A JP 9243184 A JP9243184 A JP 9243184A JP 9243184 A JP9243184 A JP 9243184A JP S60235486 A JPS60235486 A JP S60235486A
Authority
JP
Japan
Prior art keywords
layer
substrate
type gaas
semiconductor laser
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9243184A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Masaru Kazumura
数村 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9243184A priority Critical patent/JPS60235486A/en
Publication of JPS60235486A publication Critical patent/JPS60235486A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Abstract

PURPOSE:To obtain narrow striped structure easily on the inside by forming a thin-film layer having conductivity reverse to a conductive substrate on the substrate with an inverted mesa-shaped stepped section and shaping multilayer thin- films containing double hetero-structure on the thin-film layer. CONSTITUTION:A stepped section 2 is formed on a P type GaAs substrate 1. The section of the stepped section 2 takes an inverted mesa shape. The growing surface of the substrate is washed by an organic solvent, etc., and a crystal is grown. A clad layer 4, an active layer 5, a clad layer 6 and an N type GaAs layer 7 are formed on the stepped section after an N-GaAs layer 3 is grown, and growth is completed when the growing surface is cladded. When electrodes are manufactured to both the P type GaAs substrate 1 and the N type GaAs layer 7 and currents are flowed, currents are injected in width (d), and current constriction is realized. It is because the N type GaAs layer 3 shapes a P/N junction together with the clad layer 4 and the P/N junction is reverse-biassed on the injection of currents.

Description

【発明の詳細な説明】 産業上の利用分野 太易朋は−fr化序生用及び産挙用の各層電子梼器・電
気機器用光源として、用途が急速に拡大している半導体
レーザ装置およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The industrial field of application is -fr semiconductor laser devices and semiconductor laser devices whose applications are rapidly expanding as light sources for various layer electronic equipment and electrical equipment for chemical production and production. The present invention relates to a manufacturing method thereof.

従来例の構成とその問題点 電子機器・光学機器のコし−レント光源として半導体レ
ーザに要求される重要な性能の1″:)Vc1単一スポ
ットでの発振、すなわち、単−横モード発振かあげられ
る。これを実現するためには、活性領域付近で半導体レ
ーザ素子中を流ねる電流の拡がりを抑制し、かつ光を閉
じ込める必要がある。
The configuration of the conventional example and its problems The important performance required of a semiconductor laser as a coherent light source for electronic and optical equipment is oscillation in a single spot of 1":) Vc1, that is, single-transverse mode oscillation. To achieve this, it is necessary to suppress the spread of the current flowing in the semiconductor laser device near the active region and to confine the light.

このような半導体レーザはストライプ型半導体レーザと
一般には呼ばねでいる。
Such a semiconductor laser is generally not called a stripe type semiconductor laser.

比較的簡単なストライヴ化の方法としては、電流狭さく
だけによる方法がある。具体的には、つり−ナ型半導体
レーザにプロトン照射を施したもの、Zn拡紋を施した
もの、酸化膜などの絶縁膜を形成したものが挙げられる
。これらの方法にはそれぞれ重大な欠点がある。プロト
ン照射を施すと、クロトン照射時に牛萼体レーザの各種
の一部の結晶が損傷を受け、半導体レーザの特性を損う
ことがある。Zn拡牧型の場合、70 ()−850℃
というような高温で処理を行なうことか多く、Zn等の
dopantの結晶中での移動が起こり、ストライプ化
は可能であるが、狭ストライプ化は離しい。酸化膜など
の絶縁膜による方法は、@記2つの方法と比べて作製さ
れた半導体レーザ中での電流狭さくの効果が弱いという
欠点がある。
A relatively simple method of forming a stripe is a method using only current narrowing. Specifically, examples include those in which a vertical type semiconductor laser is subjected to proton irradiation, those in which a Zn pattern is spread, and those in which an insulating film such as an oxide film is formed. Each of these methods has significant drawbacks. When irradiated with protons, some of the crystals in the calyx laser may be damaged during croton irradiation, which may impair the characteristics of the semiconductor laser. For Zn expansion type, 70()-850℃
Processing is often carried out at such high temperatures that dopant such as Zn moves in the crystal, making it possible to form stripes, but it is difficult to form narrow stripes. The method using an insulating film such as an oxide film has a disadvantage in that the effect of narrowing the current in the manufactured semiconductor laser is weaker than the two methods described in @.

発明の目的 本発明はL記欠点に鑑み、導電性の基板Eに電流制限層
を設け、その上に二重ヘテロ構造を含む多層薄膜ケ設け
ることにより、@配電流制限層を介して内部に狭ストラ
イ″′j構造が容易に得らhる半導体レーザ装置と、そ
の製造方法を提供することを目的とするものである。
Purpose of the Invention In view of the drawback L, the present invention provides a current limiting layer on a conductive substrate E, and a multilayer thin film including a double heterostructure is provided on the current limiting layer, so that the current distribution can be made internal via the current limiting layer. The object of the present invention is to provide a semiconductor laser device in which a narrow stripe structure can be easily obtained, and a method for manufacturing the same.

発明の構成 上記目的を達成するために本発明の半導体レーザ装置は
、逆メサ状の段差を何する#電性基板ヒに、前基板とは
逆の導電性を有する薄膜層を形成し、前記薄膜層りに二
重へテロ構造を含む多層薄膜を形成した構成とし、この
構成により、内部に電流狭さく用ストライプを有せしめ
ることができ、単−横モード発振、低しきい値動作の半
導体レーザ装置を実現することができるものである。
Structure of the Invention In order to achieve the above object, the semiconductor laser device of the present invention is provided by forming a thin film layer having conductivity opposite to that of the front substrate on a conductive substrate which forms an inverted mesa-like step, and It has a structure in which a multilayer thin film including a double heterostructure is formed in the thin film layer, and with this structure, it is possible to have a current narrowing stripe inside, and it is possible to create a semiconductor laser with single-transverse mode oscillation and low threshold operation. The device can be realized.

実施例の説明 以下本発明の半導体レーザ装置の一実施例を図面に基づ
いて説明する。第1図、第2図において、−例として、
半導性基板にP型GaAs基板を用いる場合を説明する
。P型GaAs基板(1)の(too)而Eに、フォト
リソグラフィにより<011.>方向に平行に段差(2
)を設ける。この時、段差(2)の断面形状は第1図の
ように逆メサ形状となる。次にMBE法により基板源度
550℃でn型GaAs(3) (t−Pリア濃度I 
X 10” cyn ”程度、成長速度1μ卯詩)を1
μm程度成長する。第1図に示すように、逆メサ状の段
差(2)近傍[dはとんど成長しない領域が存在する。
DESCRIPTION OF EMBODIMENTS An embodiment of the semiconductor laser device of the present invention will be described below with reference to the drawings. In Figures 1 and 2 - for example,
A case where a P-type GaAs substrate is used as a semiconductor substrate will be explained. <011. > Parallel to the direction (2 steps)
) will be established. At this time, the cross-sectional shape of the step (2) becomes an inverted mesa shape as shown in FIG. Next, using the MBE method, the n-type GaAs(3) (t-P rear concentration I
x 10"cyn", growth rate 1μ Utsu)
It grows to about μm. As shown in FIG. 1, there is a region near the inverted mesa-shaped step (2) [d] where the growth hardly occurs.

成長した基板表面を有機溶剤などで洗浄したのち、LP
E法により、結晶成長を行なう。成長湿度850℃過飽
和度7℃、0,5 ℃/分のクーリンジレイトにより成
長を行なった。第1図に示すn−GaAs層(3)を成
長した後の段差Eにρ型Ga、 y、At XASクラ
ッド層(4)、Ga1−yAl yAs Q5性層(5
) (0<、y<x)、n 型Ga、)(At)(As
クラ・シト層t6Ln型GaAs層(7)を形成し、成
長表面がクラッドになったところで成長を終える。P型
GaAs基板(1)とn型GaAs層(7)の両方に電
極を作製し、電流を流すと、P型GaAs基板(1)か
らP型Ga、 −XAlxAsクラッド層(4)へは、
第2図に示すdの幅で電流が注入され、電流狭さくが実
現する。これは、n型GaAs層(3)が、P ’l 
Gal −xA7?)(As り5 ”J t’ Nj
 (4) (!:p/n接合を形成し、電流注入時は、
p/n接合が逆方向バイアスとなるためである。この結
果d=2μmでしきい値電流が20mAとなる低しきい
値の半導体レーザ装置が得らねた。この結果、単−横モ
ード発振も同時に実現できた。
After cleaning the surface of the grown substrate with an organic solvent, LP
Crystal growth is performed by E method. Growth was performed at a humidity of 850°C, a supersaturation level of 7°C, and a cooling rate of 0.5°C/min. After growing the n-GaAs layer (3) shown in Fig. 1, a ρ-type Ga, y, At
) (0<, y<x), n-type Ga, )(At)(As
A cladding layer t6Ln type GaAs layer (7) is formed, and the growth is finished when the growth surface becomes a cladding. When electrodes are made on both the P-type GaAs substrate (1) and the n-type GaAs layer (7) and a current is applied, the flow from the P-type GaAs substrate (1) to the P-type Ga, -XAlxAs cladding layer (4) is as follows.
A current is injected with a width d shown in FIG. 2, and current narrowing is realized. This means that the n-type GaAs layer (3) is P'l
Gal-xA7? ) (As ri5 ``J t' Nj
(4) (!: When forming a p/n junction and injecting current,
This is because the p/n junction becomes reverse biased. As a result, a low threshold semiconductor laser device with a threshold current of 20 mA at d=2 μm could not be obtained. As a result, single-transverse mode oscillation was also realized at the same time.

なお、本実施例では、GaAs系、GaAl!As系半
導体し〜ザについて述べたが、InP糸や他の多元混晶
糸を含む化合物半導体を材料とする半導体レーザについ
ても同様に本発明を適用できる。
In this example, GaAs-based, GaAl! Although the As-based semiconductor has been described, the present invention can be similarly applied to semiconductor lasers made of compound semiconductors including InP threads and other multi-component mixed crystal threads.

発明の効果 以上本発明によれば、低しきい値で単一槽上−ば点E手
ム牢遣を太1.−ぜ吐置冬普柑r錫医hスジ、のであり
、その実用的効果は著しい。
Effects of the Invention According to the present invention, it is possible to perform point E-hand control on a single tank with a low threshold value. - It is said to be used in winter, and its practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図はMBE法によ
る段差基板上への成長形状を示す断面図、第2図は本発
明による半導体レーザを示す断面構成図である。 (1) −p型GaAs基板、(2) ・・・段差、(
3)−n型GaAs電流制限層、(4) ・P型GaA
l!Asクラッド層、(5) −GaAJ!As活性層
、(6) −n型GaAlAsクラッド層、(7) −
n型GaAs層 代理人 森 本 義 弘
The drawings show an embodiment of the present invention; FIG. 1 is a cross-sectional view showing a growth shape on a stepped substrate by the MBE method, and FIG. 2 is a cross-sectional configuration diagram showing a semiconductor laser according to the present invention. (1) -p-type GaAs substrate, (2) ... step, (
3) -n-type GaAs current limiting layer, (4) -P-type GaA
l! As cladding layer, (5) -GaAJ! As active layer, (6) -n-type GaAlAs cladding layer, (7) -
Yoshihiro Morimoto, n-type GaAs layer agent

Claims (1)

【特許請求の範囲】 1、段差を有する導電性基板とに、段差下部面と段差傾
斜面の交わる近傍領域を除いて形成された前記基板とは
逆の導電性を有する薄膜層と前記基板および薄膜層上圧
形成された二重ヘゲ0構造を含む多層薄膜とを有する半
導体レーザ装置。 2、段差下部の面と設差傾斜部の面のなす角が90沫満
である段差を有する導電性基板tに、前記基板とは逆の
導電性を有する薄膜層をMBE法(分子線工じタ十シャ
ル法)で作製し、前記薄膜層上に二重ヘゲ0構造を含む
多層薄膜をLPE法(液相エピタ士シャル法)で作製す
る半導体レーザ装置の製造方法。
[Claims] 1. A thin film layer having conductivity opposite to that of the substrate formed on a conductive substrate having a step, except for a region near the intersection of the lower surface of the step and the sloped surface of the step, and the substrate and A semiconductor laser device having a multilayer thin film including a double heave zero structure formed on top of the thin film layer. 2. A thin film layer having a conductivity opposite to that of the substrate is coated on a conductive substrate t having a step where the angle between the surface of the lower part of the step and the surface of the sloped part is more than 90 degrees using the MBE method (molecular beam technique). A method for manufacturing a semiconductor laser device, wherein a multilayer thin film including a double heave structure is formed on the thin film layer by an LPE method (liquid phase epitaxial method).
JP9243184A 1984-05-08 1984-05-08 Semiconductor laser device and manufacture thereof Pending JPS60235486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9243184A JPS60235486A (en) 1984-05-08 1984-05-08 Semiconductor laser device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9243184A JPS60235486A (en) 1984-05-08 1984-05-08 Semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60235486A true JPS60235486A (en) 1985-11-22

Family

ID=14054247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9243184A Pending JPS60235486A (en) 1984-05-08 1984-05-08 Semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60235486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404031A (en) * 1992-03-03 1995-04-04 Sharp Kabushiki Kaisha Semiconductor light emitting device with current confining layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132384A (en) * 1981-02-06 1982-08-16 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device and manufacture thereof
JPS5834988A (en) * 1981-08-25 1983-03-01 Nec Corp Manufacture of semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132384A (en) * 1981-02-06 1982-08-16 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device and manufacture thereof
JPS5834988A (en) * 1981-08-25 1983-03-01 Nec Corp Manufacture of semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404031A (en) * 1992-03-03 1995-04-04 Sharp Kabushiki Kaisha Semiconductor light emitting device with current confining layer

Similar Documents

Publication Publication Date Title
JPS61190993A (en) Manufacture of semiconductor laser element
JPH02288288A (en) Manufacture of buried hetero-structure laser diode
JPS6381884A (en) Semiconductor laser device and manufacture of the same
JPS60235486A (en) Semiconductor laser device and manufacture thereof
Tsang et al. Lateral current confinement by reverse‐biased junctions in GaAs‐AlxGa1− xAs DH lasers
JPS603178A (en) Semiconductor laser device
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPS63211788A (en) Semiconductor laser and manufacture thereof
JPS5956783A (en) Semiconductor laser
JPS60251687A (en) Manufacture of semiconductor laser device
JPH0559594B2 (en)
JPS60235485A (en) Manufacture of semiconductor laser device
JPS6178186A (en) Manufacture of semiconductor laser device
JP2908480B2 (en) Semiconductor laser device
JPS6180881A (en) Semiconductor laser device
JPH01162397A (en) Semiconductor laser element
JPS6191990A (en) Semiconductor laser and manufacture thereof
JPS62259490A (en) Buried hetero structure semiconductor laser
JPH0430758B2 (en)
JPS6149489A (en) Manufacture of semiconductor luminescent device
JPS60258986A (en) Manufacture of semiconductor laser device
JPS6161484A (en) Manufacture of light emitting element
JPH0559593B2 (en)
JPS60176287A (en) Manufacture of stripped structure double hetero- junction type laser
JPH04120788A (en) Semiconductor laser