JPS6178186A - Manufacture of semiconductor laser device - Google Patents

Manufacture of semiconductor laser device

Info

Publication number
JPS6178186A
JPS6178186A JP20000884A JP20000884A JPS6178186A JP S6178186 A JPS6178186 A JP S6178186A JP 20000884 A JP20000884 A JP 20000884A JP 20000884 A JP20000884 A JP 20000884A JP S6178186 A JPS6178186 A JP S6178186A
Authority
JP
Japan
Prior art keywords
layer
groove
type
semiconductor laser
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20000884A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Takashi Sugino
隆 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20000884A priority Critical patent/JPS6178186A/en
Publication of JPS6178186A publication Critical patent/JPS6178186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prepare a semiconductor laser device having striped structure, into which a current constriction region is formed, with high yield in a wafer surface by burying a groove section so that film thickness on a flat section on a substrate reaches the depth or less of the central section of the groove section, shaping the surface of the groove section to a flat surface and forming double hetero-structure containing an active layer onto the flat surface. CONSTITUTION:An N type GaAs layer 2 is grown on the surface of a P type GaAs substrate 1, the surface is washed and treated, a photo-resist film 8 is attached onto the surface, and a striped groove is shaped through chemical etching treatment. The photo-resist film 8 is removed, the surface is washed and treated, and a crystal is grown on the substrate. The surface of a P type GaAlambdaAs clad layer is flattened through organic-metal vapor phase epitaxial growth at pressure of approximately 1atm.. A Ga1-xAlAs active layer 4 (0<=y<x), an N type Ga1-xAlxAs clad layer 5 and an N type GaAs cap layer 6 are grown continuously in succession. Crystal rowth is completed, ohmic electrodes 7 are prepared, and currents are injected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種電子機器、光学機器の光源として、近年
急速に用途が拡大し需要の高まっている半導体レーザ装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device, which has been rapidly used as a light source for various electronic devices and optical devices in recent years and is in increasing demand.

従来例の構成とその問題点 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要な性能K、低電流動作、単−横モ
ード発振があげられる。これらを実現するためには、レ
ーザ光が伝播する活性領域付近にレーザ素子中を流れる
電流を集中するよう罠その拡がりを抑制し、かつ光を閉
じ込める必要がある。このような構造を有する半導体レ
ーザは通常ストライプ型半導体レーザと呼ばれている。
Conventional configurations and their problems Important performance K, low current operation, and single-transverse mode oscillation are required of semiconductor lasers as coherent light sources for electronic and optical equipment. In order to realize these, it is necessary to suppress the spread of the trap and to confine the light so as to concentrate the current flowing through the laser element near the active region where the laser light propagates. A semiconductor laser having such a structure is usually called a stripe type semiconductor laser.

比較的簡単なストライプ化の方法に、電流狭さくだけを
用いるものがある。具体的には、プレーナ型半導体レー
ザにプロトン照射を施したもの、ム拡散を施したもの、
酸化膜などの絶縁膜を形成したもの、結晶成長等圧より
内部に電流狭さく領域をつくりつけたものが挙げられる
。しかしながら、これらの方法にはそれぞれ重大な欠点
がある。
A relatively simple striping method uses only current constriction. Specifically, planar semiconductor lasers subjected to proton irradiation, those subjected to mu diffusion,
Examples include those in which an insulating film such as an oxide film is formed, and those in which a current narrowing region is created internally through constant pressure crystal growth. However, each of these methods has significant drawbacks.

プロトン照射を施すと、プロトン照射時に半導体レーザ
の各層の一部の結晶が損傷を受け、半導体レーザの特性
を損う事がある。Zn拡散型の場合、700〜850”
°Cというような高温でZn拡散を行なう事が多(、Z
n等のドーパノドが結晶中を移動じたりして、p/n接
合を設計通り形成するのが難しいという問題がある。酸
化膜などの絶縁膜による方法は前記二つの方法と比べ作
製された半導体レーザ中での電流狭さくの効果が弱い。
When proton irradiation is applied, some crystals in each layer of the semiconductor laser are damaged during the proton irradiation, which may impair the characteristics of the semiconductor laser. For Zn diffusion type, 700-850"
Zn diffusion is often carried out at high temperatures such as °C (Z
There is a problem in that it is difficult to form a p/n junction as designed because dopanodes such as n move in the crystal. The method using an insulating film such as an oxide film has a weaker effect of narrowing the current in the manufactured semiconductor laser than the above two methods.

これらのストライプ型半導体レーザはLPE法で作製さ
れることが多く、ウェハ面内で膜厚がバラツキ、同一ウ
ェハでの素子特性がバラツク。また、溝部を形成した基
板上へのストライプ型レーザを作製する場合、LPE法
では、活性層を0.05μm以下にしたり、さらに多重
量子井戸型にするのが困難である。MBE法では、結晶
成長後のエビ層表面を平坦面として得るのが難しい。
These striped semiconductor lasers are often manufactured using the LPE method, and the film thickness varies within the wafer surface, resulting in variations in device characteristics on the same wafer. Furthermore, when manufacturing a stripe type laser on a substrate with grooves formed therein, it is difficult to make the active layer smaller than 0.05 μm or to form a multi-quantum well type using the LPE method. In the MBE method, it is difficult to obtain a flat shrimp layer surface after crystal growth.

発明の目的 本発明は上記欠点に鑑み、内部に結晶成長等によりt流
狭さく領域をつくりつけ次ストライプ構造を有する半導
体レーザ装置をウニ・・面内で高い歩留りで作製する製
造方法を与えることを目的とする。
Purpose of the Invention In view of the above-mentioned drawbacks, the present invention aims to provide a manufacturing method for fabricating a semiconductor laser device having a stripe structure with a high yield in the same plane by creating a T-flow narrowing region inside by crystal growth or the like. purpose.

発明の構成 この目的を達成するために本発明の半導体レーザ装置の
製造方法は、pn接合を有する導電性基板上に前記pn
接合の一部を切るように溝部を中心部が深くその左右が
徐々に浅くなるよって形成し、有機金属気相エビタキ7
ヤル成長法により、前記基板上の平坦部上での膜厚が、
前記溝部の中心部の深さ以下となるように前記溝部を埋
めて平坦面とし、この平坦面上に活性層を含む二重ヘテ
ロ構造を形成することから構成されている0この構成に
より、溝部近傍で電流と光の閉じ込めを行ない、単−横
モード発振、低しきい電流値動作を行なう半導体レーザ
装置を、ウニ・・面内での素子特性のバラツキが少なく
、高い歩留りで製造することができる。
Structure of the Invention In order to achieve this object, the method for manufacturing a semiconductor laser device of the present invention provides a method for manufacturing a semiconductor laser device of the present invention.
A groove is formed so that it is deep in the center and gradually becomes shallower on the left and right sides to cut a part of the bond.
By the double growth method, the film thickness on the flat part of the substrate is
The groove is filled to a depth equal to or less than the depth of the center of the groove to form a flat surface, and a double heterostructure including an active layer is formed on the flat surface. Semiconductor laser devices that confine current and light in the vicinity and perform single-transverse mode oscillation and low-threshold current value operation can be manufactured at high yields with little variation in device characteristics within the surface. can.

実施例の説明 本発明の半導体レーザ装置の製造方法について一実施例
を用いて具体的に説明する〇 −例として、導電性基板にp型G a A s基板を用
いる。第1図0に示すようにp型GaAJ板1(キ+ 
リアai、〜1018ax−’程度)の(1oO)面上
にn型G a A tz層2を0.8μm成長させる。
DESCRIPTION OF EMBODIMENTS As an example, a method for manufacturing a semiconductor laser device according to the present invention will be specifically explained using an embodiment, in which a p-type GaAs substrate is used as a conductive substrate. As shown in FIG.
An n-type GaA tz layer 2 is grown to a thickness of 0.8 μm on the (1oO) plane of the rear ai, about 10 18 ax-'.

成長後、表面を洗浄処理した後、フォトレジスト膜8を
表面に付け、化学エツチング処理によりく110〉方向
にストライプ状の溝を形成する。フォトレジスト膜8を
除去し、表面を洗浄処理した後、第1図中)に示す基板
上に結晶成長を行なう。このときの溝の形状は、例えば
第2図で深さh = 1.2 μm 、幅d=4μmで
ある。
After the growth, the surface is cleaned, a photoresist film 8 is applied to the surface, and striped grooves are formed in the 110> direction by chemical etching. After removing the photoresist film 8 and cleaning the surface, crystal growth is performed on the substrate shown in FIG. The shape of the groove at this time is, for example, as shown in FIG. 2, with a depth h=1.2 μm and a width d=4 μm.

約1気圧の圧力で有機金属気相エピタキンヤル成長(以
下MOCVDとする)を行なう。−例として成長温度7
70℃、[族元素のV族元素に対する供給モル比40.
全ガス流量6/!/分、成長速度を12μm/hとする
。この条件では第2図に示すようKt2≦h(ただし、
t2:p型G a A I A sクラッド層の平坦部
での膜厚h:溝の深さ)で、P型G a A I A 
s  クラ、ド層表面が平坦になる。
Metal organic vapor phase epitaxy (hereinafter referred to as MOCVD) is performed at a pressure of about 1 atmosphere. - growth temperature 7 as an example
70°C, [supply molar ratio of group element to group V element 40.
Total gas flow rate 6/! /min, and the growth rate is 12 μm/h. Under this condition, as shown in Figure 2, Kt2≦h (however,
t2: p-type G a A I A s film thickness at the flat part of the cladding layer h: depth of the groove), p-type G a A I A
s The surface of the layer becomes flat.

本実施例ではt2= O,Sμmであった。さらに連続
してGa 1−y Al y A s活性層4(0≦y
≦X)を厚みt 1=O−05Bm + n型Q B1
−x Al x Asクラッド層5を1.5/l1m、
n型G a A s  キャ・7プ層6を1.5 μm
で順次成長させる。このとき、Ga 1−y Al y
 As 活性層4とn型Ga 1−x Al x As
 クラアト層5を成長する場合、成長速度のみ2μM時
に変更して結晶成長を行なっている。このようにMOC
VD法では成長条件を選ぶ事により、溝部を適当な膜厚
でエビ層表面が平坦面となるように埋め、しかもその面
上に0.05μm以下の活性層や量子井戸構造を連続し
て形成できる。
In this example, t2=O, Sμm. Furthermore, Ga 1-y Al y As active layer 4 (0≦y
≦X), thickness t 1=O-05Bm + n-type Q B1
-x Al x As cladding layer 5 of 1.5/l1m,
The thickness of the n-type GaAs cap layer 6 is 1.5 μm.
Grow sequentially. At this time, Ga 1-y Al y
As active layer 4 and n-type Ga 1-x Al x As
When growing the crystal layer 5, only the growth rate was changed to 2 μM during crystal growth. Like this MOC
In the VD method, by selecting the growth conditions, the grooves are filled with an appropriate film thickness so that the surface of the shrimp layer becomes a flat surface, and an active layer and quantum well structure of 0.05 μm or less are continuously formed on that surface. can.

結晶成長終了後、第2図に示すようにオーミック電極7
を作製し、電流を注入する。電流は内部ストライプ幅W
で流れ込む。発振しきい電流値は45 mA、  60
 mAの注入電流で安定に基本横モード発振する、5 
mWの光出力が得られた。
After the crystal growth is completed, the ohmic electrode 7 is connected as shown in FIG.
and inject a current. The current is internal stripe width W
It flows in. Oscillation threshold current value is 45 mA, 60
Stable fundamental transverse mode oscillation with mA injection current, 5
A light output of mW was obtained.

なお、本実施例ではG a A s  系、GaAlA
s 系半導体レーザについて述べたが、 InP系や他
の多元混晶系を含む化合物半導体を材料とする半導体レ
ーザ装置についても本発明を同様に適用することは可能
である。結晶成長方法は、ここではMOCV D法タケ
t 用イfcカ、MB E法ヤL P E法を併用して
も良い。さらに導電性基板にn型基板を用いてもよい。
In addition, in this example, GaAs system, GaAlA
Although the s-based semiconductor laser has been described, the present invention can be similarly applied to semiconductor laser devices made of compound semiconductors including InP-based and other multi-component mixed crystal systems. As the crystal growth method, the MOCV D method, the IFC method, the MBE method, and the LPE method may be used in combination here. Furthermore, an n-type substrate may be used as the conductive substrate.

発明の効果 本発明は、低電流動作、基本横モード発振を行なう半導
体レーザ装置を与えるものであり、その実用的効果は大
である。
Effects of the Invention The present invention provides a semiconductor laser device that operates at low current and performs fundamental transverse mode oscillation, and has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、□□□)は本発明の半導体レーザ装置の
製造工程を説明するための図、第2図は本発明により作
製した半導体レーザ装置の断面図である。 1・・・・・・p型GaAs基板、2・・・・・・n型
G a A s電流阻止層、3・・・・・・p型GaA
lAsクラッド層、4・・・・・・G a A I A
 s 活性層、5−・−・・n型G a A I A 
sクラフト層、6・・・・・・n型GaAs1ii、γ
・・・・・・オーミック電極、8・・・・・・フォトレ
ジスト膜、d・・・・・・溝幅、W・・・・・・内部ス
トライプ幅、 tl・・・・・・活性層膜厚、h・・・
・・・溝の深さ、 t2 ・・・・・p型G a A 
I A sクラッド層の華坦部での膜厚。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名城 
    d            −0橿
FIG. 1(a), □□□) is a diagram for explaining the manufacturing process of the semiconductor laser device of the present invention, and FIG. 2 is a sectional view of the semiconductor laser device manufactured according to the present invention. 1...p-type GaAs substrate, 2...n-type GaAs current blocking layer, 3...p-type GaA
lAs cladding layer, 4...G a A I A
s Active layer, 5-...n-type Ga AI A
s craft layer, 6...n-type GaAs1ii, γ
...Ohmic electrode, 8...Photoresist film, d...Groove width, W...Internal stripe width, tl...Active layer Film thickness, h...
...Groove depth, t2 ...p-type G a A
I A s Film thickness at the flat part of the cladding layer. Name of agent: Patent attorney Toshio Nakao and one other person
d −0

Claims (1)

【特許請求の範囲】[Claims] pn接合を有する導電性基板上に、前記pn接合の一部
を切るように中心部が深くその左右が徐々に浅くなった
溝を形成する工程と、有機金属気相エピタキシャル成長
法により前記基板上の平坦部上での膜厚が、前記溝部の
中心部の深さ以下となるように前記溝部を埋めて平坦面
となるように半導体層を形成させる工程と、前記平坦面
上に活性層を含む二重ヘテロ構造を形成すを工程とをそ
なえたことを特徴とする半導体レーザ装置の製造方法。
A process of forming a groove deep in the center and gradually becoming shallower on the left and right sides so as to cut a part of the pn junction on a conductive substrate having a pn junction, and a process of forming a groove on the substrate by metal organic vapor phase epitaxial growth. a step of filling the groove so that the film thickness on the flat part is less than or equal to the depth of the center of the groove to form a semiconductor layer to form a flat surface; and an active layer on the flat surface. 1. A method for manufacturing a semiconductor laser device, comprising a step of forming a double heterostructure.
JP20000884A 1984-09-25 1984-09-25 Manufacture of semiconductor laser device Pending JPS6178186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20000884A JPS6178186A (en) 1984-09-25 1984-09-25 Manufacture of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20000884A JPS6178186A (en) 1984-09-25 1984-09-25 Manufacture of semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6178186A true JPS6178186A (en) 1986-04-21

Family

ID=16417256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20000884A Pending JPS6178186A (en) 1984-09-25 1984-09-25 Manufacture of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6178186A (en)

Similar Documents

Publication Publication Date Title
CA1134485A (en) Strip buried heterostructure laser
JPS61190993A (en) Manufacture of semiconductor laser element
JPS6343387A (en) Semiconductor laser device and manufacture thereof
JPH09129974A (en) Semiconductor laser device
JPS6381884A (en) Semiconductor laser device and manufacture of the same
JPS6174382A (en) Semiconductor laser device and manufacture thereof
JPH08250801A (en) Semiconductor laser device and its manufacture
JPS6178186A (en) Manufacture of semiconductor laser device
Bellavance et al. Room‐temperature mesa lasers grown by selective liquid phase epitaxy
JPS5956783A (en) Semiconductor laser
JPS6178185A (en) Semiconductor laser device
JPS60235485A (en) Manufacture of semiconductor laser device
JPS6216592A (en) Semiconductor light-emitting element
JP2001230490A (en) Manufacturing method for semiconductor laser
JPS60251687A (en) Manufacture of semiconductor laser device
JPH0558594B2 (en)
CA1125897A (en) Strip buried heterostructure laser
JPH05259570A (en) Semiconductor laser and manufacture thereof
JPS61171185A (en) Semiconductor laser device
JPH01166592A (en) Semiconductor laser element
JPS60258986A (en) Manufacture of semiconductor laser device
JPH0559594B2 (en)
JPS60235486A (en) Semiconductor laser device and manufacture thereof
JPH01162397A (en) Semiconductor laser element
JPS58220488A (en) Semiconductor laser device