JPS6022510B2 - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor deviceInfo
- Publication number
- JPS6022510B2 JPS6022510B2 JP620877A JP620877A JPS6022510B2 JP S6022510 B2 JPS6022510 B2 JP S6022510B2 JP 620877 A JP620877 A JP 620877A JP 620877 A JP620877 A JP 620877A JP S6022510 B2 JPS6022510 B2 JP S6022510B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- gate
- source
- conductivity type
- growth layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Description
【発明の詳細な説明】
本発明は半導体装置の製造方法に関し、高耐圧で製造が
容易で制御制の良い半導体装置の製造方2法を提供する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and provides two methods for manufacturing a semiconductor device that has a high breakdown voltage, is easy to manufacture, and has good controllability.
たとえば本発明は、縦型ジャンクション電界効果トラン
ジスタ(1−FET)に適用することにより、ゲート・
ソース間の耐圧又はゲート・ドレィン間の耐圧が高く、
かつマスク合せ工程数が署しく少なく、マスク合せ工程
にセルフアラィン方式を用いるのでマスク合せ時のマス
ク合せずれを問題にする必要がないなどの特徴をもつJ
−FETを得ることができる。For example, by applying the present invention to a vertical junction field effect transistor (1-FET), the gate
High breakdown voltage between source or gate and drain,
In addition, the number of mask alignment processes is significantly small, and since a self-alignment method is used in the mask alignment process, there is no need to worry about mask alignment misalignment during mask alignment.
-FET can be obtained.
まず一例としてJ−FETについて述べると、従来のJ
一FETでゲート領域を埋込み拡散で形成しその表面に
ェピタキシャル成長層を形成する構成では、ェピタキシ
ヤル成長時に高濃度に埋め込み拡散されたゲート領域か
らのェピタキシヤル成長届への拡散がおこり、チャンネ
ル領域を閉じてしまったり、ゲート・ソース間の耐圧の
制御が困難であった。First, let's talk about J-FET as an example.
In a structure in which the gate region of one FET is formed by buried diffusion and an epitaxial growth layer is formed on its surface, diffusion occurs from the gate region buried and diffused at a high concentration during epitaxial growth to the epitaxial growth layer, and the channel region is It was difficult to control the breakdown voltage between the gate and source.
それらの欠点を改良する方法として半導体基板の表面に
ゲートとソースを有するJ−FETが提案された。第1
図はそのJ−FETの製造方法を示す。まず、n型半導
体基板1上にn型のェピタキシャル成長層2を形成し、
所定の場所に開口部をもつ酸化膜3を形成し、P型不純
物を拡散し、ゲート拡散領域4を形成する【a}。A J-FET having a gate and source on the surface of a semiconductor substrate has been proposed as a method to improve these drawbacks. 1st
The figure shows a method for manufacturing the J-FET. First, an n-type epitaxial growth layer 2 is formed on an n-type semiconductor substrate 1,
An oxide film 3 having an opening at a predetermined location is formed, and a P-type impurity is diffused to form a gate diffusion region 4 [a}.
次にゲートとゲートの間に関口部をもつ酸化膜5を形成
し、この閉口部からソース拡散領域6を形成いb’、次
に新たな酸化膜7を形成したのちソース、ゲートの所定
の場所に再び開□部を設け金属蒸着を行って金属配線8
を形成する【c’。この方法は表面にゲート4を形成す
る方法であるので、埋め込みゲートのようなチャンネル
を閉じてしまうことは生じない。Next, an oxide film 5 having a closing part is formed between the gates, a source diffusion region 6 is formed from this closed part, and then a new oxide film 7 is formed, and then a predetermined area of the source and gate is formed. Make an opening again at the location, perform metal vapor deposition, and install metal wiring 8.
form [c'. Since this method is a method of forming the gate 4 on the surface, it does not close the channel unlike a buried gate.
しかしマスク合せ回数が多く、ソース領域6を形成する
際のマスク合せのズレ‘こよりソースとゲートが接触し
てソースゲート間の耐圧を低くしてしまうので高集積化
を図る上で問題がある。本発明はこのような欠点を改良
して、マスク合せの問題をなくするとともに、耐圧の向
上をはかり製造工程を簡略化するものである。However, the number of times of mask alignment is large, and the misalignment of the mask alignment when forming the source region 6 causes the source and gate to come into contact, lowering the withstand voltage between the source and gate, which poses a problem in achieving high integration. The present invention improves these drawbacks, eliminates the problem of mask alignment, improves the breakdown voltage, and simplifies the manufacturing process.
つぎに、本発明の方法をJ一FETに適用したZ実施例
とともに説明する。Next, the method of the present invention will be explained along with Example Z in which the method of the present invention is applied to a J-FET.
第2図は本発明の一実施例にかかるJ−FETの製造方
法を示す。n型高濃度不純物を含有する半導体基板10
1(ドレィン領域)の主表面にn型高濃度不純物を含有
するェピタキシャル成長層102を形成し、ェピタキシ
ャル成長層102の表面にn型高濃度不純物を拡散し、
ソース形成用拡散層103を形成する‘a}。次にゲ…
ト形成部に関口部をもつ室化膿104をソース拡散層1
03の表面に選択的に形成いb)、それをマスクとして
、弗化水素溶液中で紫外線を照射しながら多孔質化する
と高濃度に不純物が拡散されている領域103のみが多
孔質化され、第1図c}に示すように窒化膜104の織
部に多孔質層が形成される。次に1100午○の酸化雰
囲気中で多孔質層を酸化し、絶縁領域105を形成する
‘C’。次にこの絶縁領域105をマスクとして弗化水
素溶液で残された拡散層103よりなるn型拡散領域1
03′の側部の絶縁領域105の一部106残して絶縁
領域105の所定部を除去する【d’。FIG. 2 shows a method for manufacturing a J-FET according to an embodiment of the present invention. Semiconductor substrate 10 containing n-type high concentration impurities
1 (drain region), forming an epitaxial growth layer 102 containing an n-type high concentration impurity, and diffusing the n-type high concentration impurity on the surface of the epitaxial growth layer 102.
'a} to form the source forming diffusion layer 103; Next game...
Source diffusion layer 1
b) Using this as a mask, by irradiating ultraviolet rays in a hydrogen fluoride solution to make it porous, only the region 103 where impurities are diffused at a high concentration becomes porous. As shown in FIG. 1c}, a porous layer is formed in the texture of the nitride film 104. Next, the porous layer is oxidized in an oxidizing atmosphere at 1100 pm to form the insulating region 105 'C'. Next, using this insulating region 105 as a mask, an n-type diffusion region 1 made of a diffusion layer 103 left with a hydrogen fluoride solution.
A predetermined portion of the insulating region 105 is removed leaving a part 106 of the insulating region 105 on the side of 03'[d'.
残存する絶縁領域106の厚さは後のゲート拡散の条件
にもよるが数山mで良い。次に一部残存する絶縁領域1
06をマスクとしてP型不純物を拡散してゲート領域1
07を形成する‘d。The thickness of the remaining insulating region 106 may be several meters, although it depends on the conditions of subsequent gate diffusion. Next, some remaining insulation area 1
Gate region 1 is formed by diffusing P-type impurities using 06 as a mask.
'd forming 07.
次に窒化膜104を熱リン酸で除去し、金属蒸着(A夕
,Ti等)を行って、ゲート107,ソース領域103
′以外の金属を除去してソース電極108,ゲート電極
109を形成し、{f’に示すようにソース領域103
′、ゲート領域107、ドレィン領域101を有するJ
−FETが形成される。以上述べたJ一FETでは、ソ
ース、ゲート間に数rmの酸化絶縁膜106が存在しソ
ース、ゲート間の耐圧を高くすることができる。Next, the nitride film 104 is removed with hot phosphoric acid, and metal vapor deposition (A, Ti, etc.) is performed to form the gate 107 and source region 103.
Metals other than ' are removed to form a source electrode 108 and a gate electrode 109, and as shown in {f', the source region 103
', J having a gate region 107 and a drain region 101
-FET is formed. In the J-FET described above, the oxide insulating film 106 of several rms exists between the source and the gate, so that the withstand voltage between the source and the gate can be increased.
さらに上記第2図の方法は選択エッチングによる多孔費
絶縁膿106の形成、ゲート拡散の際のマスクを窒化膜
104を用いて行えるため、ゲート形成の際のマスク合
せ工程がなく、マスク合せずれによるソースとドレィン
の短絡が起らないとともに、ゲートの拡散深さおよび横
方向拡がりを制御できるのでゲートとソースの耐圧制御
性が良いすぐれた特長を有する。他の実施例を第3図に
示す。Furthermore, in the method shown in FIG. 2, the nitride film 104 can be used as a mask for forming the porous insulating material 106 by selective etching and for gate diffusion, so there is no mask alignment process when forming the gate. It has an excellent feature of not only preventing short-circuiting between the source and drain, but also controlling the diffusion depth and lateral expansion of the gate, which allows good controllability of breakdown voltage between the gate and the source. Another embodiment is shown in FIG.
n型高濃度不純物を含有する半導体基板201(ドレィ
ン領域)の主表面にn型低濃度不純物を含有するェピタ
キシャル成長層202を形成し、ェピタキシャル成長層
202の表面にn型高濃度不純物を拡散し、ソース拡散
層203を形成し、ソース拡散層203の表面にn型高
濃度不純物を含有する多結晶シリコン204(ソース電
極)を堆積する【a’。次にゲート形成部に開□部をも
つ窒化膜205をソース電極204の表面に形成いけ、
それをマスクとして、弗化水素溶液中で紫外線を照射し
ながら多孔質化すると、高濃度にn型不純物が含有され
ている領域203,204のみが多孔質化され、【机こ
示すように窒化膜205の端部に多孔質層が形成される
。次に110び0の酸化雰囲気中で多孔質層を酸化し、
‘dに示される絶縁領域206を形成する。次に再び絶
縁窒化膿205をマスクとして残された203,204
′よりなるとともにn型高濃度不純物を含有する領域2
03′,204′の側部の絶縁領域207を数山m残し
て、他の酸化絶縁膜206を除去する【d’。次に一部
残存する酸化領域207をマスクとしてP型不純物を拡
散してゲート領域208を形成する‘e’。An epitaxial growth layer 202 containing n-type low concentration impurities is formed on the main surface of a semiconductor substrate 201 (drain region) containing n-type high concentration impurities, and the n-type high concentration impurities are formed on the surface of the epitaxial growth layer 202. Diffusion is performed to form a source diffusion layer 203, and polycrystalline silicon 204 (source electrode) containing an n-type high concentration impurity is deposited on the surface of the source diffusion layer 203 [a'. Next, a nitride film 205 having an opening □ in the gate formation area is formed on the surface of the source electrode 204.
By using this as a mask and making it porous while irradiating ultraviolet rays in a hydrogen fluoride solution, only the regions 203 and 204 containing a high concentration of n-type impurities become porous, and [as shown in the table] A porous layer is formed at the end of membrane 205. Next, the porous layer is oxidized in an oxidizing atmosphere of 110 and 0,
An insulating region 206 shown in 'd is formed. Next, the insulating nitride pus 205 was left as a mask 203, 204
' and contains n-type high concentration impurities.
The other oxide insulating film 206 is removed leaving several m of insulating regions 207 on the sides of 03' and 204'[d'. Next, using the partially remaining oxidized region 207 as a mask, P-type impurities are diffused to form a gate region 208 'e'.
次に金属(AZ,Ti等)の蒸着を行つ ‐て金属層2
09を形成し、さらに別の金属(Pt,Au等)の蒸着
金属層2 1 0を形成する‘f}。この様子を(g)
にて詳細に示す。この図から明らかなように蒸着形成さ
れた金属層209,210は、窒化膜205の間隙およ
びそれと絶縁膜207間のすきま(段差)の存存により
分離形成される。次に硫酸またはリン酸で窒化膜205
をエッチングする際、第2蒸着金属層210は然記エッ
チング液には溶けないが窒化膜205の上の金属層20
9,210はリフトオフされ、(h)に示すような多結
晶シリコンの一部204′をソース電極、n型拡散層の
一部203′をソース、P軽拡散層208をゲート、ド
レィン領域201を有するJ−FETが形成される。Next, metal (AZ, Ti, etc.) is deposited - metal layer 2
09 is formed, and further a vapor-deposited metal layer 2 1 0 of another metal (Pt, Au, etc.) is formed 'f}. This situation (g)
The details are shown in . As is clear from this figure, the metal layers 209 and 210 formed by vapor deposition are formed separately due to the existence of the gap between the nitride film 205 and the gap (step) between it and the insulating film 207. Next, nitride film 205 is formed using sulfuric acid or phosphoric acid.
When etching the metal layer 205 on the nitride film 205, the second vapor-deposited metal layer 210 is not dissolved in the etching solution.
9 and 210 are lifted off, and as shown in (h), a part of the polycrystalline silicon 204' is used as a source electrode, a part of the n-type diffusion layer 203' is used as a source, the P light diffusion layer 208 is used as a gate, and the drain region 201 is used as a source electrode. A J-FET is formed.
この実施例においても第2図の場合と同様にすぐれた特
長を有するとともに、ゲート電極を第3図b,cの工程
で形成してしまうため、工程上有利である。This embodiment also has the same excellent features as the case shown in FIG. 2, and is advantageous in terms of process since the gate electrode is formed in the steps shown in FIGS. 3b and 3c.
以上の方法によれば、従来の第1図に示す表面ゲート型
J−FETよりマスク合せ工程が第1の実施例では1工
程、第2の実施例では2工程を減少でき、従来の埋め込
み型J−FETの欠点をおぎなうとともに、さらに表面
ゲート形FETを大中に改良することができる。According to the above method, the mask alignment process can be reduced by one step in the first embodiment and two steps in the second embodiment compared to the conventional surface gate type J-FET shown in FIG. In addition to overcoming the drawbacks of the J-FET, it is possible to significantly improve the surface gate type FET.
また、本実施例においては、ゲート領域を形成する際、
イオン注入法を用いると、ゲート領域の不純物の横方向
拡散がさらに小さくなり、ソース側部の絶縁膜厚を薄く
でき、ソースの面積を広くとることができる。なお、実
施例においては、n型基板を用いたがP型基板を用い、
導電性を逆にしてもよく、ソース、ドレインを入れ換え
ても良い。さらに、本発明はJ−FETに限らず、他の
半導体装鷹に適用することも可能である。以上のように
、本発明によれば、高耐圧の半導体領域を制御性良く、
工程上きわめて有利な方法で作成することができ、J−
FET等の半導体装置に大きく寄与するものである。Furthermore, in this example, when forming the gate region,
When ion implantation is used, the lateral diffusion of impurities in the gate region is further reduced, the thickness of the insulating film on the side of the source can be reduced, and the area of the source can be increased. In addition, in the example, an n-type substrate was used, but a p-type substrate was used,
The conductivity may be reversed, and the source and drain may be exchanged. Furthermore, the present invention is not limited to J-FETs, but can also be applied to other semiconductor devices. As described above, according to the present invention, a high breakdown voltage semiconductor region can be controlled with good controllability.
J-
This greatly contributes to semiconductor devices such as FETs.
第1図a,b,cは表面にゲート領域をもつJ−FET
の従来の製造工程断面図、第2図a〜fは本発明におけ
るJ−FETの一実施例を示す製造工程断面図、第3図
a〜hはJ−FETの他の実施例を示す工程断面図であ
る。
101,201・・・・・・n型半導体基板(ドレィン
)、102,202……n型ェピタキシヤル層、107
,208……ゲート拡散領域、103′,203′・・
・・・・ソース拡散領域、104,205・・・・・・
窒化膜、106,207・・・・・・絶縁領域、108
,204′……ドレィン又はソース電極、109,21
0・・・・・・ゲート電極。
第1図
第2図
第2図
第2図
第3図
第3図Figure 1 a, b, and c are J-FETs with gate regions on the surface.
FIGS. 2a to 2f are cross-sectional views of the manufacturing process of an embodiment of the J-FET according to the present invention, and FIGS. 3a to 3h are sectional views of the manufacturing process of another embodiment of the J-FET. FIG. 101, 201... N-type semiconductor substrate (drain), 102, 202... N-type epitaxial layer, 107
, 208... gate diffusion region, 103', 203'...
...Source diffusion region, 104,205...
Nitride film, 106, 207...Insulating region, 108
, 204'... drain or source electrode, 109, 21
0...Gate electrode. Figure 1 Figure 2 Figure 2 Figure 2 Figure 3 Figure 3
Claims (1)
一導電型のエピタキシヤル成長層を形成し、前記成長層
の全表面に第1導電型の高濃度不純物領域を形成する工
程と、この高濃度不純物領域の一部を選択的に多孔質化
し多孔質領域を形成する工程と、この多孔質領域を酸化
して絶縁領域とする工程と、前記高濃度不純物領域の側
部に位置する前記絶縁領域の一部を残し、他の絶縁領域
を除去して前記成長層表面を選択的に露出させる工程と
、この成長層の露出した部分に第2導電型の不純物を導
入して第2導電型領域を形成する工程とを備えたことを
特徴とする半導体装置の製造方法。 2 第2導電型の不純物の導入にイオン注入法を用いる
ことを特徴とする特許請求の範囲第1項記載の半導体装
置の製造方法。[Scope of Claims] 1. An epitaxial growth layer of the same conductivity type as the substrate is formed on the main surface of a semiconductor substrate of a first conductivity type, and a highly concentrated impurity region of the first conductivity type is formed on the entire surface of the growth layer. a step of selectively making a part of this high concentration impurity region porous to form a porous region; a step of oxidizing this porous region to form an insulating region; selectively exposing the surface of the growth layer by leaving a part of the insulation region located on the side of the growth layer and removing the other insulation region; a step of forming a second conductivity type region by introducing a semiconductor device. 2. The method of manufacturing a semiconductor device according to claim 1, wherein an ion implantation method is used to introduce the second conductivity type impurity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP620877A JPS6022510B2 (en) | 1977-01-21 | 1977-01-21 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP620877A JPS6022510B2 (en) | 1977-01-21 | 1977-01-21 | Manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5390879A JPS5390879A (en) | 1978-08-10 |
JPS6022510B2 true JPS6022510B2 (en) | 1985-06-03 |
Family
ID=11632105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP620877A Expired JPS6022510B2 (en) | 1977-01-21 | 1977-01-21 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6022510B2 (en) |
-
1977
- 1977-01-21 JP JP620877A patent/JPS6022510B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5390879A (en) | 1978-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6316673A (en) | Manufacture of semiconductor device | |
JPS5933880A (en) | Semiconductor device | |
JPH05283687A (en) | Production of semiconductor element | |
JPS6116573A (en) | Manufacture of mis type semiconductor device | |
JPS6022510B2 (en) | Manufacturing method of semiconductor device | |
JPH0127589B2 (en) | ||
JP2500688B2 (en) | Method for manufacturing vertical field effect transistor | |
JPS60124972A (en) | Manufacture of semiconductor device | |
JPS63275181A (en) | Manufacture of semiconductor device | |
JPH0555589A (en) | Insulated-gate field-effect transistor and its manufacture | |
JPS6154661A (en) | Manufacture of semiconductor device | |
KR960002083B1 (en) | Making method of mosfet | |
JPS60136377A (en) | Manufacture of semiconductor device with insulated gate | |
JPS6229165A (en) | Manufacture of vertical semiconductor device | |
JPH02135738A (en) | Manufacture of semiconductor device | |
JPH03125479A (en) | Manufacture of semiconductor integration circuit with non-volatile memory element | |
JPH04137735A (en) | Semiconductor device and manufacture thereof | |
JPS6155783B2 (en) | ||
JPH0298173A (en) | Manufacture of semiconductor memory | |
JPS6136974A (en) | Manufacture of mos semiconductor device | |
JPS61147575A (en) | Manufacture of semiconductor device | |
JPH06275839A (en) | Manufacture of vertical semiconductor element | |
JPS6028383B2 (en) | Selective impurity diffusion method into semiconductor substrate | |
JPS58216466A (en) | Manufacture of insulated gate fet | |
JPH03104168A (en) | Manufacture of semiconductor device |