JPS6022033A - Air-fuel ratio controlling method for internal- combustion engine - Google Patents

Air-fuel ratio controlling method for internal- combustion engine

Info

Publication number
JPS6022033A
JPS6022033A JP12949783A JP12949783A JPS6022033A JP S6022033 A JPS6022033 A JP S6022033A JP 12949783 A JP12949783 A JP 12949783A JP 12949783 A JP12949783 A JP 12949783A JP S6022033 A JPS6022033 A JP S6022033A
Authority
JP
Japan
Prior art keywords
air
fuel
fuel ratio
correction
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12949783A
Other languages
Japanese (ja)
Other versions
JPH0251053B2 (en
Inventor
Tsutomu Saito
斎藤 努
Tsuneyuki Egami
常幸 江上
Tokio Kohama
時男 小浜
Kimitaka Saito
公孝 斎藤
Masaru Takahashi
大 高橋
Kunihiko Sato
邦彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP12949783A priority Critical patent/JPS6022033A/en
Priority to US06/630,682 priority patent/US4616619A/en
Publication of JPS6022033A publication Critical patent/JPS6022033A/en
Publication of JPH0251053B2 publication Critical patent/JPH0251053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration

Abstract

PURPOSE:To improve driving performance of an engine, by varying the fuel correction value for transient operation of the engine according to the deviation of the air-fuel ratio from the optimum air-fuel ratio at the time of accelerating of decelerating the engine in correcting the fuel supply rate by said fuel correction value according to the accelerating or decelerating conditions of the engine. CONSTITUTION:In operation of an engine, a control circuit CONT calculates the basic fuel quantity from the output signals of a means 2 for detecting the quantity of intake air, an engine-speed sensor 3 and a water-temperature sensor 4, corrects the basic fuel quantity in response to the output of an air-fuel ratio sensor 6, and controls a fuel injection valve 8 according to the corrected fuel quantity. Further, at the time of accelerating and decelerating the engine, the fuel quantity is corrected according to the fuel correction value for transient operation of the engine. Here, deviation of the air-fuel ratio from the optimum air-fuel ratio at the time of accelerating or decelerating the engine is detected and the fuel correction value for the transient operation of the engine is varied according to the detected deviation of the air-fuel ratio. By employing such a method, it is enabled to improve the driving performance of an engine by preventing deviation of the air-fuel ratio of mixture gas from the optimum air-fuel ratio at the time of accelerating or decelerating the engine.

Description

【発明の詳細な説明】 技術分野 本発明は内燃機U」の空燃比制f叩方法に閃する。[Detailed description of the invention] Technical field The present invention is inspired by a method for controlling the air-fuel ratio of an internal combustion engine U.

不発・明による方法は自動班用エンジンに適用される。The method according to Undiscovered and Akira is applied to an automatic squad engine.

従来技術 従来、エンジン用の釜燃比制仰装置の一形式か知られて
いる。この形式の装置は、エンジンの)28:’料要求
を表わすエンジン温度を含む予め定められたエンジンの
動作パラメータの値にl、iijVml)して定常状態
におけるエンジンのjij、H料要求を表わす基本燃料
信号を発生ずる手段と、出力増大要求を表わす過渡的な
エンジンのpiIJ作状態全状態する手段と、エンジン
湿度の1j411定された値と検出された過渡的なエン
ジンのTJrb作状p↓1に屈、動して、エンジン温J
’):によって決定される第1の値に等しく、検出され
たエンジンの過渡状態によって決定される初jj、ll
値を有し、エンジンの湿度によって決定される1二にノ
;工で1に向って変化する因子によって増大される補強
促進信号を発生する手段と、糸本燃料信号および補強促
進信号に従ってエンジンに燃料を供給し、それによって
エンジンの定常状態および過渡状態のいずれにあっても
、その要求に応じてエンジンに燃料を供給する手段とを
有する。この装置は、エンジンの定常状態のみならず過
渡状Lローにおいて常に最適な空燃比を確保して、エン
ジンの最適動作を得る燃料供給システムを提供する(例
えば、特開昭56−6054号参照)。
BACKGROUND OF THE INVENTION One type of kettle fuel ratio control device for engines is known in the prior art. This type of device is a basic system that represents the jij,H fuel demand of the engine in steady state conditions by adjusting the values of predetermined engine operating parameters, including the engine temperature, which represents the engine's fuel demand. means for generating a fuel signal; means for detecting a transient engine piIJ operating state representative of a power increase request; Succeed, move, and lower the engine temperature
'): equal to the first value determined by and the first jj, ll determined by the detected engine transient
means for generating a reinforcement promoting signal having a value of 1 and increasing by a factor varying towards 1 determined by engine humidity; means for supplying fuel and thereby supplying fuel to the engine on demand during both steady state and transient conditions of the engine. This device provides a fuel supply system that always ensures the optimum air-fuel ratio not only in the steady state of the engine but also in the transient L-low state and obtains the optimum operation of the engine (for example, see Japanese Patent Application Laid-Open No. 56-6054). .

前述の形式の装置においては、エンジンの経時変化、例
え゛ば、パルプクリアランスやEF工におけるインジェ
クタ噴口部へのデポジット付着による特性変化、シリン
ダ吸気弁の背面部等に付着するデポジット、すなわち、
溜滑油成分および燃焼生成物に由来する炭緊微粒子等の
粘る物、による特性変化、ガソリン行状のバラツキによ
るJdi発性の変化が原因の特性変化等に対し8慮され
ておらず、これらエンジンの経時変化、ガソリンの性状
変化による加速時の空燃比の最適値からの変化な検出す
る手段を有していないため、揮発性の悪いガソリンを使
用したり、エンジンの経時変化により混合ガスの希薄化
による加速時のもたつき等のドライバビリティの悪化が
生じたり、逆に411(発性の良いガソリンを使用した
場合には加速時に混合ガスが濃くなることによる燃費悪
化、エミ、ジョン悪化が発生ずる可能性があるという間
煕点があった。
In the above-mentioned type of device, changes in the engine over time, such as changes in characteristics due to deposits attached to the injector nozzle during pulp clearance and EF work, deposits attached to the back surface of the cylinder intake valve, etc.
Changes in characteristics due to sticky substances such as coal particles derived from distilled oil components and combustion products, and changes in characteristics caused by JDI-induced changes due to variations in gasoline behavior, etc., are not taken into account, and these engines Since there is no means to detect changes in the air-fuel ratio from the optimum value during acceleration due to changes in the air-fuel ratio over time or changes in the properties of gasoline, gasoline with poor volatility may be used, or the mixture gas may be diluted due to changes in the engine over time. This may cause deterioration in drivability such as sluggishness during acceleration due to 411 (411) (conversely, if high-emission gasoline is used, the mixed gas will become richer during acceleration, resulting in poor fuel efficiency, poor emissions, and poor performance). There was a hint that it was a possibility.

この場合の空燃比の変動状況特に吸気弁背面部にデポジ
ットが付着した場合の開動状況が第1図にlff1M’
Fされている。第1は[において、A/F(0)はデポ
ジット付着riiJ (1)、A/F(DEP)はデポ
ジ。
Figure 1 shows the fluctuation of the air-fuel ratio in this case, especially the opening operation when deposits are attached to the back surface of the intake valve.
It has been F. The first is [, where A/F (0) is deposit attached riiJ (1), and A/F (DEP) is deposit.

ト付着後の空燃比の変化状況をそれぞれあられず。The changes in the air-fuel ratio after the adhesion are shown below.

AOOは加速時点を、DFjOはi、°6に速時点を、
A/F(OPT)は最適柴燃比を、A/F(LN)は希
薄(リーン)佃]を、A/F(ROH)は濃厚(リッヂ
)但りをそれぞれあられず。
AOO is the acceleration point, DFjO is i, the speed point at °6,
A/F (OPT) indicates the optimum fuel ratio, A/F (LN) indicates the lean fuel ratio, and A/F (ROH) indicates the rich fuel ratio.

また、インジェクタの目づまりについでも定常において
は空燃比センサのフィードバックで補止できるが、加減
速時においては補正手段をもたないため同行の問題を生
じていた。また、エンジン、エアフローメータの製作時
のばらつきや経時変化によっても同様の問題を生じてい
た。
In addition, clogging of the injector can be corrected by feedback from the air-fuel ratio sensor in steady state, but this causes problems during acceleration and deceleration because there is no correction means. Further, similar problems have also occurred due to variations in manufacturing of the engine and air flow meter and changes over time.

また内燃機関に使用するガソリンは一般に四季を通じ夏
用と冬用というように特’iJHの異なったものが同一
メーカから市販されている。ガソリンの揮発性を示す数
値としてはリード蒸気圧とか蒸留特性とかが一般によく
知られているが、成るメーカーのガソリン性状を調べて
もリード蒸気圧は0、5 kff/Cd〜0.86 k
!、/dL また10%留出1品度も40〜58trと
ばらついており、ガソリン性状の35いによるJ’li
発性の変化により’r?’5渡時の空燃比!1)性は大
きく変化する。従来方式ではこうしたガソリン性状のバ
ラツキによる揮発性の変化が原因の空燃比変動について
も何ら4風はなされていない。
Furthermore, the gasoline used in internal combustion engines is generally commercially available from the same manufacturer with different special characteristics such as summer and winter gasoline for all four seasons. Reed vapor pressure and distillation characteristics are generally well-known numerical values that indicate the volatility of gasoline, but when we look at the gasoline properties of various manufacturers, the Reid vapor pressure is 0.5 kff/Cd to 0.86 k.
! ,/dL Also, the grade of 10% distillate varies from 40 to 58 tr, and the J'li
Due to developmental changes, 'r? Air fuel ratio at '5 crossing! 1) Gender changes greatly. In the conventional system, no consideration is given to air-fuel ratio fluctuations caused by changes in volatility due to variations in gasoline properties.

それゆえ、前述の形式の装置゛tにおいてGJ1加減速
時の空燃比を最適化する手段をI、1っていないために
、上記デポジット付着等エンジンの経時変化や揮発性の
悪いガソリンを使用した場合には、加力時においては、
空燃比が希薄となり、もたつき等ドライバビリティの悪
化を生じ、また減速時においては、空燃比がより濃厚と
なりエミッションの悪化、燃費の悪化を招いていた。
Therefore, since there is no means for optimizing the air-fuel ratio during GJ1 acceleration/deceleration in the above-mentioned type of device, there is a risk of aging of the engine such as deposits and the use of gasoline with poor volatility. In this case, when applying force,
The air-fuel ratio becomes lean, causing deterioration in drivability such as sluggishness, and during deceleration, the air-fuel ratio becomes richer, leading to worsening of emissions and fuel efficiency.

発明の目的 本発明の主な目的は、前述の従来形における問題点にか
んがみ、空;3比偏差検出によりめたfiiめ空燃比か
らの空燃比偏差を補うよう過渡時燃利補正における補正
量を調整するという梠想にもとづき、吸気弁背面部への
デポジットの付着やインジェクタの目づまり、エンジン
や吸入空気り士検出装置なの経時変化による、加減速時
混合ガスのi?t yM空燃比からのずれを防止するこ
とにより加r51j時の空燃比の希薄化を防止し、エミ
ッションおよび燃費の悪化を防止しつつドライバビリテ
ィの向上をはかることにある。
OBJECTS OF THE INVENTION In view of the problems with the conventional type described above, the main object of the present invention is to correct the amount of correction in transient fuel correction so as to compensate for the air-fuel ratio deviation from the fii air-fuel ratio determined by detecting the air/fuel ratio deviation. Based on the idea of adjusting the i? of the mixed gas during acceleration and deceleration, due to deposits on the back of the intake valve, clogging of the injector, and changes over time in the engine and intake air conditioner detection device. The purpose is to prevent dilution of the air-fuel ratio at the time of acceleration r51j by preventing deviation from the tyM air-fuel ratio, and to improve drivability while preventing deterioration of emissions and fuel efficiency.

また、本発明は経時変化だけでなく、ガソリン性状の違
い、エンジンの製作時のノぐラツキやエアフローメータ
の製作時のばらつきによる加戯がy時混合ガスの最適空
燃比からの空燃比ずれを防止することを付随的な目的と
する。
In addition, the present invention is capable of reducing the deviation of the air-fuel ratio from the optimum air-fuel ratio of the mixed gas at time y due to not only changes over time but also differences in gasoline properties, irregularities during engine manufacturing, and variations in air flow meter manufacturing. Ancillary purpose is to prevent.

発明の構成 本発明においては、内燃機関の加減速状腟に応じて、所
定間隔毎に過渡時燃料補正もtを決定して該内燃機関に
供給されるヅ々)料量をこの補正量で補正するにあたり
、該内燃(51目9Jの加減迷時における最適空燃比か
らの空燃比偏差を検出し、該検出された空燃比偏差に応
じて過渡時燃料補正の補正量を調整する第を特徴とする
内燃機関の空燃比制御方法が提供される。
Structure of the Invention In the present invention, the transient fuel correction amount t is determined at predetermined intervals according to the acceleration/deceleration state of the internal combustion engine, and the amount of fuel supplied to the internal combustion engine is determined by this correction amount. In performing the correction, the air-fuel ratio deviation from the optimum air-fuel ratio during the fluctuation of the internal combustion (51st 9J) is detected, and the correction amount of the transient fuel correction is adjusted in accordance with the detected air-fuel ratio deviation. An air-fuel ratio control method for an internal combustion engine is provided.

実施例 本発明の一実施例としての内燃機関の空燃比制御方法を
行う装置が第2図に示される。第2図装置における制御
回路の構成が第6図に示される。
Embodiment An apparatus for performing an air-fuel ratio control method for an internal combustion engine as an embodiment of the present invention is shown in FIG. The configuration of the control circuit in the device shown in FIG. 2 is shown in FIG.

第2図装置において、1は自動車の動力源である公知の
電子制御燃料噴射式6気筒火花点火式エンジン、2はエ
ンジン1に吸入される空気量を検出する公知の吸入突気
量検出装置、6はエンジン1の回転数を検出する公知の
回’kA kセンサ、4はエンジン1の冷却水温を測定
する公知の水温センサ、5はエンジン1の排気通路、6
は排気通路5に設けた公知の荒;i:1i比センサであ
る。
In the device shown in FIG. 2, 1 is a known electronically controlled fuel injection 6-cylinder spark ignition engine that is the power source of the automobile, 2 is a known intake thrust amount detection device that detects the amount of air taken into the engine 1, Reference numeral 6 denotes a known speed sensor for detecting the rotation speed of the engine 1, 4 a known water temperature sensor for measuring the cooling water temperature of the engine 1, 5 an exhaust passage for the engine 1, 6
is a known rough;i:1i ratio sensor provided in the exhaust passage 5.

7はエンジン1の1.1.う気・1(゛、8ζJ1吸気
什7に設けl:公知の電磁式ij:i打6′(射弁、9
はエンジン1に吸入されるζ・!気(、(をコントロー
ルするスロットル弁、9Njスロツトル弁9の彦1きを
検出する公知のスロットルセンサ、C0IJTはエンジ
ン1に(J!;給する燃料量を算出して燃5(コ)噴射
弁8を作動させる制御回路である。
7 is 1.1 of engine 1. Air intake 1 (゛, 8ζ
is inhaled into engine 1 ζ・! A throttle valve that controls air (, (), 9Nj, a well-known throttle sensor that detects the rise of throttle valve 9, and C0IJT calculates the amount of fuel to be supplied to engine 1 (J!; This is a control circuit that operates 8.

エンジン1に供給される燃料量は、エンジンが定常状態
の時は、制御回路00 N Tが、吸入空気量検出装置
2、回・1云数センサ3、水温センサ4の各検出信号か
ら基本y;、v h量としてめ、さらに?Lシ燃比セン
サ6の信号からめたフィードバックfftt正量を補正
して、燃料1:12射弁8の開弁時間としてめる。
When the engine is in a steady state, the amount of fuel supplied to the engine 1 is determined by the control circuit 00NT based on the detection signals of the intake air amount detection device 2, the number of revolutions per minute sensor 3, and the water temperature sensor 4. ;, v h quantity, and more? The feedback fftt correct amount obtained from the signal of the L fuel ratio sensor 6 is corrected and determined as the valve opening time of the fuel 1:12 injection valve 8.

また制御回路0ONTはスロットルセンサ91または吸
入空気m検出器2によりエンジン1の加減i:(状態が
検出された時は定常時にめた夕(2j PI’ Mに対
し過渡時燃料補正を行う(第に枯成しである。
In addition, the control circuit 0ONT performs a transient fuel correction on PI' M when the throttle sensor 91 or the intake air m detector 2 detects the adjustment of the engine 1. It has withered away.

第6図に示されるように、制御回路c ON T Ca
t、入力系統とルで、吸気量センサ2および水温センサ
4からの信号を受けるマルチプレクサ101゜ADコン
バータ102、空燃比センサ6の信号を受ける整形回路
106、該整形回路およびスロットルセンサ91からの
信号を受ける入力ボート104、回転センサ6の信号を
受ける入力カウンタ105を有する。制御回路はまた、
バス106、ROM107.0PU10’8、RA M
 109 、出力カウンタ110、およびパワー駆動部
111を有する。パワー駆動部111の出力は惚料噴u
」弁8に供給される。
As shown in FIG. 6, the control circuit c ON T Ca
t, an input system and a multiplexer 101 which receives signals from the intake air amount sensor 2 and the water temperature sensor 4; an AD converter 102; a shaping circuit 106 which receives the signal from the air-fuel ratio sensor 6; a signal from the shaping circuit and the throttle sensor 91; It has an input boat 104 that receives a signal from the rotation sensor 6, and an input counter 105 that receives a signal from the rotation sensor 6. The control circuit also
Bus 106, ROM107.0PU10'8, RAM
109 , an output counter 110 , and a power driver 111 . The output of the power drive unit 111 is
” is supplied to valve 8.

制御回路0ONTとしては、マイクロコンピュータ形式
のものを用いることができ、例えばトヨタTOOS形式
のものを用いることができる。制御回路0ONTには、
空燃比偏差、(づ2出様能および過渡時燃料補正槓能が
追加されている。
As the control circuit 0ONT, a microcomputer type one can be used, for example, a Toyota TOOS type one can be used. In the control circuit 0ONT,
Air-fuel ratio deviation, output mode function and transient fuel correction function have been added.

加減速時空燻比単動、すなわち、加速時における最適空
燃比A/F(OFT)からの空燃比希l(7個および濃
厚側へのそれぞれの最大偏差値D (A/F(LN))
、D(A/F(ROH)) 、と加減速時空燃比センサ
の単動、すなわち、加減速時空燃比センサ6が混合ガス
の希薄および濃厚を検IJ8シている11S?間、つま
り加速時リーンた;9続+r4間T(1,IN)および
減速時リッチ継続時間T(ROH)、との関係が第4図
の波形図および第5図の特性図に示される。第4図にお
いてA、 OOは加速を、DECは減速を、5(6)は
空燃比センサ信号を表わす。
Air-fuel ratio single action during acceleration/deceleration, that is, air-fuel ratio rare l (7) from the optimum air-fuel ratio A/F (OFT) during acceleration and each maximum deviation value D (A/F (LN)) to the rich side
, D(A/F(ROH)), and the single-acting air-fuel ratio sensor during acceleration/deceleration, that is, the air-fuel ratio sensor 6 during acceleration/deceleration detects the leanness and richness of the mixed gas 11S? The relationship between lean time during acceleration, T (1, IN) during acceleration and rich continuation time T (ROH) during deceleration is shown in the waveform diagram of FIG. 4 and the characteristic diagram of FIG. 5. In FIG. 4, A and OO represent acceleration, DEC represents deceleration, and 5 (6) represents the air-fuel ratio sensor signal.

最適空燃比からの蔓燃比偏差の一例として、吸気系に付
着したデポジット量W(、DF!P) と加減浬時にお
ける空燃比最大偏差値D(A/F(LN))、D(A/
F(ROH))のし“J係が第6図、第7図に示される
。第4図ないし第7図から加速時リーンjl’!i a
EM時間TLあるいは減速時リッチ8K kpja時間
TRを、111j定する事で、デボジット付オ)量対応
値か検出角ttl:である事が判る。なお第4〜第71
1のデータのd・・J査にあたっては、トヨタ自動車株
式会社にて製作の5M−G型エンジンが用いられた。
As an example of the deviation of the fuel-fuel ratio from the optimum air-fuel ratio, the amount of deposits attached to the intake system W (, DF!P) and the maximum deviation of the air-fuel ratio at the time of adjustment D (A/F (LN)), D (A/
F(ROH))'s J section is shown in Figs. 6 and 7. From Figs. 4 to 7, lean jl'!ia during acceleration
By determining the EM time TL or the deceleration rich 8K kpja time TR as 111j, it can be seen that the value corresponding to the amount with deposit or the detection angle ttl: is. In addition, the 4th to 71st
For the d...J examination of the data in No. 1, a 5M-G type engine manufactured by Toyota Motor Corporation was used.

制御回路0.ON Tの制御プログラムの概略フローチ
ャートが第8図に示される。このプログラムは、電子制
御燃料噴射を行うためのもので、ステ2プ5100〜5
108より成る。5100においてスタートし、510
1において、メモリー、入出力ボートの初期化を行う。
Control circuit 0. A schematic flowchart of the ONT control program is shown in FIG. This program is for performing electronically controlled fuel injection, and includes steps 5100 to 5.
It consists of 108 pieces. Start at 5100, 510
In step 1, memory and input/output ports are initialized.

5102では、吸入空気量のデータQとエンジン回転数
データNと水温センサのデータθ7から、基本(、:9
料噴則量を計算する。5103では、空燃比センサ6の
Ii、’? 乞。
5102, basic (,:9
Calculate the amount of fuel injection. In 5103, Ii,'? of the air-fuel ratio sensor 6? Beg.

を用い、空燃比が一定となる様にフィードバック制御を
行って基本燃料噴射量を補正する。
Using this, feedback control is performed to correct the basic fuel injection amount so that the air-fuel ratio remains constant.

5104では、加速時空燃比偏差検出を行い、5105
では過渡時々、(ミ利捕正比の演XXを行う。
At 5104, the air-fuel ratio deviation during acceleration is detected, and at 5105
Then, from time to time, we will perform the operation XX of the mili correction ratio.

8106でエンジン1回転の判別をし、エンジン1回転
毎に8107において1回の燃利叫則弁8の開弁時間を
、フィードバック制御により補正された基本燃料′j−
i、lと過渡113燃イ:4補正比とから泪算してめ、
5108で燃料1償射弁制御を行う。第8図のフローチ
ャートにおける空燃比偏差構出処理の詳細なフローチャ
ートが第9図に、過渡時燃判補正の詳細なフローチャー
トが第10図に示される。
At 8106, one revolution of the engine is determined, and for every one revolution of the engine, at 8107, the opening time of the fuel scream control valve 8 is determined by the basic fuel 'j-' corrected by feedback control.
Calculate from i, l and the transient 113 combustion i:4 correction ratio,
At 5108, fuel 1 compensation injection valve control is performed. A detailed flowchart of the air-fuel ratio deviation setting process in the flowchart of FIG. 8 is shown in FIG. 9, and a detailed flowchart of the transient fuel judgment correction is shown in FIG.

第9図に示す空燃比偏差検出処理においては、5201
に示す様に、一定時間(例えば32.7m5)毎に処理
を行う。全燃比i’li6差を検出する方法として、空
燃比センサ6の出力1.粁けを一定電圧レベルと比較し
、混合ガスの涌γ、<4 (!J−ン)状j(jH4お
よびり老厚(リッチ)状yz亨の2値を検出し、加速時
のリーン継:’)’li時間時間LN)およびリッチ継
jj、rt時間T(ROM) を測定する方法を用いる
In the air-fuel ratio deviation detection process shown in FIG.
As shown in the figure, processing is performed at fixed intervals (for example, 32.7 m5). As a method of detecting the total fuel ratio i'li6 difference, the output 1. of the air-fuel ratio sensor 6 is used. By comparing the voltage level with a constant voltage level, the two values of the mixed gas γ, <4 (!J-n)-like j (jH4) and the rich-type :')' A method is used to measure the li time LN) and the rich time T(ROM).

例えばデポジット付;i:fのt 猟′は、冷却水f!
+4が低温時のみ生じ、またデポジット何着、:扶の推
定を容易にするため、5202.5206.5204て
冷却水温80C未濶、加j里後5秒以内、エンジン回転
’13i900rTi〜2 D 00rIllIlの場
合のリーン8flj 糺二時間T(LN)、リッチに1
1:経時間T(ROH) を#ii口定する。またリッ
チ、リーンが交互に現われるi、l2.5205で、フ
ィードバック制イユIII中に限定する。
For example, with a deposit; i: f's t hunting' is cooling water f!
+4 occurs only at low temperatures, and in order to make it easier to estimate the deposit, 5202.5206.5204, cooling water temperature 80C, within 5 seconds after heating, engine rotation '13i900rTi~2D 00rIllIl In the case of lean 8 flj Tadasuji time T (LN), rich 1
1: Determine elapsed time T (ROH) #ii. In addition, rich and lean appear alternately at i and l2.5205, which is limited to the feedback system III.

5206でリッチ、リーンを判別する。リーンの場合5
207において、リーンタイムカウンタを+1し、T(
LN)を32.7ms単(!I4で計〉、((する。
In step 5206, it is determined whether it is rich or lean. For Lean 5
At 207, the lean time counter is incremented by 1 and T(
LN) for 32.7ms single (!Total with I4), ((.

次に8208で、す、チタイムカウンタの値が一定(f
! (リッチタイムリミツト)をノラえているか判断し
、越えていれば、5209でリッチ補正カウンタを+1
する。次にステップ5210でリッチタイムカウンタを
0とする。5206でリッチと判別した場合、同様に8
211〜5214でリッチタイムカウンタの+1と、リ
ーンタイムの判断を行う。
Next, at 8208, the value of the time counter is constant (f
! (Rich Time Limit) is judged, and if it is exceeded, the rich correction counter is increased by 1 at 5209.
do. Next, in step 5210, the rich time counter is set to 0. If it is determined to be rich with 5206, similarly 8
In steps 211 to 5214, the rich time counter is increased by 1 and lean time is determined.

[)IJ述の5206〜5214でめたリーン補正カウ
ンタおよびリッチ補正カウンタの値からデポジット付着
および剥然を推定できる。すなわち、エンジンの正常状
態から異常状態への変化および異常状態から正常状態へ
の復帰を推定できる。
[) Deposit adhesion and peeling can be estimated from the values of the lean correction counter and rich correction counter determined in steps 5206 to 5214 described in IJ. That is, it is possible to estimate a change in the engine from a normal state to an abnormal state and a return from an abnormal state to a normal state.

第10図に示す過渡時燃料補正においては、5601で
吸入空気量検出装置2からの吸入空気量信号Qと、回転
数検出装置6からの回転数信号Nとからめたエンジン1
回転当りの吸入空気量Q/N をめる。5602で以下
の処理を一定詩間毎、例えば32.7ms毎、に行うた
めの判別を行う。
In the transient fuel correction shown in FIG. 10, at 5601, the engine 1
Calculate the amount of intake air per revolution Q/N. At 5602, a determination is made to perform the following process at a fixed interval, for example, every 32.7 ms.

Sろ0乙において補正係数Oa およびなまし係数Cb
をリッチ補正カウンタおよびリーン補正カウンタの関数
としてめる。つまり補正係数Oa %なまし係数abを
加速時の空燃比(j、M差に対応した値としてめる。
Correction coefficient Oa and smoothing coefficient Cb at S00B
Let be a function of the rich correction counter and the lean correction counter. In other words, the correction coefficient Oa% and the smoothing coefficient ab are taken as values corresponding to the air-fuel ratio (j, M difference) during acceleration.

5504においてQ/Nになましをかけた、(ct/w
 ) iを次式よりめる。
In 5504, Q/N was smoothed (ct/w
) Find i from the following formula.

(Q/N) i = (Q/N) i−1+ (Q/N
−(Q/N) 1−1)/abただし32.7ms前に
計算した(q/Itを(Q/N)t−1とする。
(Q/N) i = (Q/N) i-1+ (Q/N
-(Q/N) 1-1)/ab However, let (q/It calculated 32.7 ms ago be (Q/N)t-1.

5605において前記ct/N、 (Q/N) i 、
aa %および冷却水温で定まる値により過渡時燃料補
正比f (AEe) の演算を次式により行う。
In 5605, the ct/N, (Q/N) i ,
The transient fuel correction ratio f (AEe) is calculated using the following equation based on the value determined by aa % and the cooling water temperature.

f (AEW) = (Q/N −(Q、/N ) i
 ) X0aXKここでKは、エンジン冷却に対するi
’flj正比であり予めマツプに記憶しておく。また/
(AKW) は、Q、/Hの変化により正負両方の値を
とる。上記過渡時燃料補正比f(AEW) を、基本燃
料j’+(に来することにより、補正を行う。
f (AEW) = (Q/N - (Q, /N) i
) X0aXK where K is i for engine cooling
'flj is a direct ratio and is stored in the map in advance. Also/
(AKW) takes both positive and negative values depending on changes in Q and /H. Correction is performed by changing the transient fuel correction ratio f(AEW) to the basic fuel j'+(.

したがって、第11図に示すように、(1)スロットル
を開けて加速した場合(THはスル2トル開度)、(2
)前記Q/N 値も増加し、(3)前記(Q/N)z値
も序々に増加し、(4)過渡時燃料補正比f(4gw)
が図示されるような波形をとって増量され、(5)燃料
噴射弁開弁時間Uが決定され、燃料を供給する。
Therefore, as shown in FIG.
) The Q/N value also increases, (3) the (Q/N)z value also gradually increases, and (4) the transient fuel correction ratio f (4gw).
(5) The fuel injection valve opening time U is determined and fuel is supplied.

また、(6)スロットルを閉じて減速した場合、(7)
前記Q/N値は減少し、(8)前記(Q/N)z値も徐
々に減少し、(9)過渡時燃f1補正比f(AEw)が
図示されるような波形をとって減量され、(10燃利噴
射弁開弁時間Uが決定され、燃料を供給する。
Also, if (6) the throttle is closed to decelerate, (7)
The Q/N value decreases, (8) the (Q/N)z value also gradually decreases, and (9) the transient fuel f1 correction ratio f (AEw) decreases with a waveform as shown in the diagram. (10) The fuel injection valve opening time U is determined and fuel is supplied.

第2図装置の動作結果の一例が第12は1(〜、(B)
に示される。第12図(A>、(B)においては、エン
ジン回転数を1[100聯、冷却水温を51]tZ’と
した。
An example of the operation results of the device in FIG.
is shown. In FIG. 12 (A>, (B)), the engine speed was set to 1[100 yen], and the cooling water temperature was set to 51]tZ'.

加速はスロットル操作により行い、加速条件は吸気圧1
−−401−−4O0がら吸気圧J−100+nm H
g J への急上昇とした。(A)はガソリンAを用い
た場合の時間に対する空燃比の状況をあらゎす。
Acceleration is performed by throttle operation, and the acceleration condition is intake pressure 1
--401--4O0 while intake pressure J-100+nm H
It was assumed that there was a sudden rise to g J. (A) shows the air-fuel ratio versus time when gasoline A is used.

(B)はガソリンBを用いた場合の時間に対する空燃比
の状況をあられし、第2図装置により学ガ制御がなされ
た結果の状況をあらゎす。
(B) shows the situation of the air-fuel ratio with respect to time when gasoline B is used, and shows the situation as a result of the control performed by the device shown in FIG.

第12図(A)、(B)に示されるように、加速時の空
燃比はガソリンA(10%留出温度47c、リード蒸気
圧0.72 k!、/cnl )でほぼF:適窒燃比に
なっていたが、ガソリン性状のyl−なるJり1発性の
悪いガソリンB(10%留出温度54C1リード蒸気0
.6ky/m)を用いた場合には加速時の空燃比は希)
117化してしまうが第2図:しi置において学j+i
がなされた結果、はぼ7回目でガソリンAを用いたと同
イ、夜の突燃比特性を得ることが可能となる。この1:
[1゛脣1:1正量を大きくすれば学冑はさらに少ない
回数で達成できるのは当然である。
As shown in Figures 12 (A) and (B), the air-fuel ratio during acceleration is approximately F: suitable nitrogen for gasoline A (10% distillation temperature 47c, Reid vapor pressure 0.72 k!, /cnl). The fuel ratio was the same, but the gasoline properties were yl-, and gasoline B (10% distillation temperature 54C1 lead vapor 0) had poor combustion performance.
.. 6ky/m), the air-fuel ratio during acceleration is rare)
Although it becomes 117, Fig. 2: In the position i, learning j + i
As a result, it becomes possible to obtain the same sudden fuel ratio characteristics at night as when gasoline A is used for about the seventh time. This 1:
[1゛脣1:1 It goes without saying that if you increase the positive amount, you can achieve Gakuchu in even fewer times.

本発明の実施にあたっては、前述の実gri例のほか種
々の変形形1:翳をとることが可能である。イブIIえ
ば、前述の実施例においては、ステップ5302に示す
様に(Q/N )iの計璋を一定116間(32,7m
5)毎に行ったが、その代りに、第13図のフローヂャ
ートに示す様に、(Q/N)iの計S>をエンジン回転
に同期させ例えばエンジン11i14W毎に行うことも
できる。
In implementing the present invention, it is possible to take various modifications other than the above-mentioned practical example. For example, in the above embodiment, as shown in step 5302, the calculation of (Q/N)i is performed for a fixed period of 116 (32,7 m
5), but instead, as shown in the flowchart of FIG. 13, it is also possible to synchronize the total S> of (Q/N)i with the engine rotation and perform it, for example, every engine 11i14W.

幽′S13図において、5401においてo、/N 奈
計算し、54D2でエンジン1回転毎の判別を?jう。
In the figure S13, 5401 calculates o, /N, and 54D2 determines each rotation of the engine? Yes.

5403において補正係% Oaおよびなまし係MOb
をリッチ補正カウンタおよびリーン4)11正カウンタ
の関数としてめる。つまり補正係数Oa、なまし係数o
bを加速時の空燃比偏差に対応した値としてめる。
In 5403, correction coefficient % Oa and smoothing coefficient MOb
Let be a function of the rich correction counter and the lean 4)11 positive counter. In other words, the correction coefficient Oa, the smoothing coefficient o
Let b be a value corresponding to the air-fuel ratio deviation during acceleration.

5404においてQ/N になましをかけた(Q/n 
>)を次式よりめる。
In 5404, Q/N was smoothed (Q/n
>) from the following formula.

(Q/N、))−(Q/N)’−1+ (Q/N−(Q
/N)ノ’−1)/cbノ ただしエンジン1回’FA前に計′g>ニジたC Q/
W ) )を(Q/N )ノー1とする。
(Q/N,))-(Q/N)'-1+ (Q/N-(Q
/N)ノ'-1)/cbノHowever, the engine was ignited once before the FA.C Q/
W )) is (Q/N) No 1.

5405におし)て+xj tI己Q/L (Q/’ 
))’t Ca1および冷却水温で定まる値に′より、
過渡時空燃比補正比f’(Axw)の演算を次式により
行う。
5405) +xj tIselfQ/L (Q/'
))'t Based on the value determined by Ca1 and cooling water temperature,
The transient air-fuel ratio correction ratio f' (Axw) is calculated using the following equation.

f’(Aiw) −(Q/N−(Q/N )))x C
aXIζ′このf’(AFliW)を基本燃料量に乗す
ることにより、補正を行う。
f'(Aiw) −(Q/N−(Q/N )))x C
aXIζ'Correction is performed by multiplying the basic fuel amount by this f'(AFliW).

前記(Q/IJ >)をエンジン回転に同期してめるこ
とにより、過渡時空燃比n11正比f’(AmW)によ
る増量減量が寄与するエンジンの燃焼サイクル教は、エ
ンジン回転数にかかわりなく、同一の加速条件ではほぼ
同一となる。従って各種のエンジン状態において、過渡
時の空燃比の変動を防ぐことができる。
By setting the above (Q/IJ >) in synchronization with the engine rotation, the combustion cycle of the engine in which the increase and decrease due to the transient air-fuel ratio n11 direct ratio f' (AmW) contributes is the same regardless of the engine rotation speed. They are almost the same under acceleration conditions. Therefore, it is possible to prevent the air-fuel ratio from fluctuating during transient periods under various engine conditions.

また前述の実MLi例では、空燃比(:、jf r、イ
’52 tJ、’tを5206において加速後5秒間に
1涙定しているが、これは第4図、第5図よりわかる様
に、減?i4時におけるT(LN)、T(ROH)を1
i(ll定してもイ・jミ出できる。
In addition, in the above-mentioned actual MLi example, the air-fuel ratio (:, jf r, i'52 tJ, 't is constant at 5206 for 5 seconds after acceleration, and this can be seen from Figures 4 and 5. As in, T(LN) and T(ROH) at 4 o'clock are 1
Even if i(ll) is determined, i/jmi can be produced.

また前述の実施例では、補正172決定因子として吸入
空気量Q/N とそのなまし量に基づいて増−:1;を
行っているが、これは池の吸気背負1’E f′f :
スロットルl;jJ度絽・のLIiと、そのなまし社G
こ)11.づいてノ胃量を行ってもよい。
Furthermore, in the above-mentioned embodiment, an increase of 1 is performed based on the intake air amount Q/N and its smoothing amount as the determining factor for the correction 172, but this is based on the intake air amount Q/N and its smoothing amount.
Throttle l;jJ degree LIi and its namesha G
)11. Subsequently, a stomach test may be performed.

また前述の実施例ではilh正量決定因子量とぞのなま
し量との差に基づいて増量を行っているが所定間固毎に
めたbit正、l+、4:決定因子’r+、Lとその前
回の値との差を用いてもよい。
In addition, in the above embodiment, the amount is increased based on the difference between the ilh positive amount determining factor amount and the respective smoothing amount, but the bit positive, l+, 4: determining factor 'r+, L The difference between the current value and the previous value may be used.

発明の効果 本発明によれば、吸気弁背面部へのデポジットの付着や
インジェクタの目づまり、エンジンや1iI1人空気量
検出装置σtの経時変化による、7JII減速II♂【
16合ガスの最適空燃比からのずれを防止することによ
り加速時の空燃比の希薄化が防止され、エミッションお
よび燃費の悪化を防止しつつドライバビリティの向上を
実現することができる。
Effects of the Invention According to the present invention, 7JII deceleration II♂[
By preventing deviation from the optimum air-fuel ratio of the 16 mixture gas, dilution of the air-fuel ratio during acceleration is prevented, and drivability can be improved while preventing deterioration of emissions and fuel efficiency.

4、 図面の17ij 、(iltな説明第1図は、デ
ポジット何着前後の加減速時空燃比挙動を示す波形図、 第2図は、本発明の一実施例としての内燃機関の空燃比
制御方法を行う装置を示す図、第6図は、第2図装置に
おける5曲部回h!rのに成を示す図、 第4図、第5図は、加減速時空燃比挙動と、加減速時空
燃比挙動サの挙動の関係を示す波形(ス;および特性図
、 第6図、第7図は、吸気系に付着したデポジット量と加
減Δ(時空燃比挙動の13゛J係を示すオjr造図およ
び特性図、 第8図は第2図装置における演I′1)流れを示ず渭i
れ図、 第9図はデボジット量対応値検出演算の詳細を示す流れ
図、 第10図は過渡時燃イ;・ト補正のEP K11lを示
ず流れ図、第111’J+は減辻時の燃丹噴射の状況を
示す波形は]、 第12図(A)、(B)は第2図装置トtの動作結果の
1例を示す図、 第13図は第10図の演U流れの変形を示す演算流れ図
である。
4. Drawing 17ij, (Illustrated explanation) Fig. 1 is a waveform diagram showing air-fuel ratio behavior during acceleration and deceleration before and after deposit, Fig. 2 is an air-fuel ratio control method for an internal combustion engine as an embodiment of the present invention. Figure 6 is a diagram showing the formation of the five-turn section h!r in the equipment shown in Figure 2. Figures 4 and 5 are the air-fuel ratio behavior during acceleration/deceleration and the The waveforms (S) and characteristic diagrams showing the relationship between fuel ratio behavior and characteristic diagrams, Figures 6 and 7, show the relationship between the amount of deposits attached to the intake system and the adjustment Fig. 8 does not show the flow of performance in the device shown in Fig. 2.
Figure 9 is a flowchart showing the details of the deposit amount corresponding value detection calculation, Figure 10 is a flowchart showing the transient fuel consumption correction EP K11l, and No. 111'J+ is the flowchart showing the fuel consumption at the time of depletion. 12(A) and 12(B) are diagrams showing an example of the operation results of the apparatus shown in FIG. It is a calculation flowchart shown.

(符号の説明) 1・・・エンジン、2・・・吸入附気トを検出装絡f 
−、3・・・回転数センサ、4・・・水湿センサ、5・
・・j非気通路、6・・・空燃比センサ、7・・・吸%
哲、8・・償J、; 1・1噴射J1−9・・・スロッ
トル弁、91・・・スロットルセンサ、0ONT・・・
制御回路。
(Explanation of symbols) 1...Engine, 2...Intake air detection equipment f
-, 3... Rotation speed sensor, 4... Water humidity sensor, 5.
...j non-air passage, 6... air-fuel ratio sensor, 7... suction %
Tetsu, 8... Compensation J,; 1.1 injection J1-9... Throttle valve, 91... Throttle sensor, 0ONT...
control circuit.

畠4図 帛6図 )7 図 W(DEP) 弔8図 第11図 第12図 格13図 第1頁の続き 0発 明 者 佐藤邦彦 豊田型トヨタ町1番地トヨタ自 動車株式会社内 ■出 願 人 トヨタ自動車株式会社 豊田市トヨタ町1番地Hatake 4 Figure 6 )7 Figure W(DEP) Funeral diagram 8 Figure 11 Figure 12 case 13 figure Continuation of page 1 0 shots clear person Kunihiko Sato Toyota Type Toyota Town No. 1 Toyota Motor Corporation Inside Dosha Co., Ltd. ■Applicant: Toyota Motor Corporation 1 Toyotacho, Toyota City

Claims (1)

【特許請求の範囲】 1、 内燃機関の加減速状態に応じて、所定間隔毎に過
渡時燃料補正飢を決定して該内燃機関に供給される燃料
量をこの補正量で補正するにあたり、該内燃機関の加減
速時における最適空燃比からの空燃比偏差を検出し、該
検出された空燃比偏差に! 応じて過渡時燃料補正の補正量を調整する事を特徴とす
る内燃機関の空燃比制御方法。 2、該過渡時燃料補正は、所定時間間償毎に過渡時燃料
補正量を決定する過渡時燃利補正である、特Fl’ 請
求の範囲第1項記載の方法。 乙。該過渡時燃料補正は、該内燃11.閏の回転に同期
して過渡時燃料補正量を決定する過渡時燃別補正である
、特s’l’ 請求の範囲第1項記載の方法。 4、該過渡時燃料もli正は、補正量決定因子として吸
入空気h1を用いる過渡時燃別補正である、特許請求の
範囲第1項記載の方法。 5、 該過渡時燃料補正は、補正量決定因子としてス四
ットル開度あるいは吸気管圧力を用いる過γ反時燃料補
正である、特許請求の範囲第1項記載の方法。 6゜該空燃比偏差検出は、空燃比センサによる空燃比偏
差検出である、特許請求の範囲第1〜9項記載の方法。 Z 該空燃比偏差は、該内燃機μi4の吸気糸に付着す
るデポジットにより生ずる至燃比偏差である、特許請求
の範囲第1項記載の方法。 8、該空燃比偏差は、該内燃(82閃に燃イ°1を供給
するインジェクタの噴口部に付第1するデポジットによ
り生ずる空燃比偏差である、特許請求のη・ikl;D
第1項記載の方法。 9 該空燃比偏差は、該内燃偲じjへの吸入空気鍬を検
出する吸入空気星検出手段の製作II8のばらつきまた
は経時変化による特性変化から生じた空燃比偏差である
、特許請求の範囲第1項記小jつの方法。 10 該空燃比偏差は、該内燃機関の製作時のばらつき
または経時変化から生じた空燃比偏差である、特許請求
の範囲第1項記載の方法。 11、該空燃比偏差が該内燃(幾関で使用する燃料性状
のばらつきまたは性状変化から生じた空燃比偏差である
、特許請求の範囲第1項記載の方法。 12、該過渡[1を燃料補正は、補正量決定因子量とこ
の量をなましたなまし量とから、補正量を決定する過渡
時燃料補正である、特許請求の範囲第1項記載の方法。 13、 ii&+’+iJ正量を補正A1に決定因子量
となまし姐との差よりめる補正量の決定である、特許請
求の範囲第12項記載の方法。 14、該補正量決定因子、緻のなまし演↓yは、加減速
によって変化する量のなまし演算を一定時間間隔で行う
補正量決定因子量のなまし演算である、特許請求の範囲
第12項または第16項記載の方法。 15、該補正量決定因子;、+、i:とこの11シのな
まし演Ωは、加減速によって変化するけのなまし演算を
該内灼機閾の機関回転に同期して行う補正量決定因子量
のなまし演3γである、特許請求の範囲第12項または
第16項記屯12の方法。
[Claims] 1. In determining the transient fuel correction value at predetermined intervals according to the acceleration/deceleration state of the internal combustion engine and correcting the amount of fuel supplied to the internal combustion engine with this correction amount, Detects the air-fuel ratio deviation from the optimum air-fuel ratio during acceleration and deceleration of the internal combustion engine, and uses the detected air-fuel ratio deviation! An air-fuel ratio control method for an internal combustion engine, the method comprising adjusting the amount of transient fuel correction accordingly. 2. The method according to claim 1, wherein the transient fuel correction is a transient fuel correction that determines a transient fuel correction amount every predetermined period of time. Otsu. The transient fuel correction is based on the internal combustion 11. 2. The method according to claim 1, wherein the transient fuel correction amount is determined in synchronization with the rotation of the leapfrog. 4. The method according to claim 1, wherein the transient fuel li positive is a transient fuel-specific correction using intake air h1 as a correction amount determining factor. 5. The method according to claim 1, wherein the transient fuel correction is an over-gamma reaction fuel correction using throttle opening or intake pipe pressure as a correction amount determining factor. 6. The method according to any one of claims 1 to 9, wherein the air-fuel ratio deviation detection is performed using an air-fuel ratio sensor. Z. The method according to claim 1, wherein the air-fuel ratio deviation is a fuel-to-fuel ratio deviation caused by deposits attached to the intake thread of the internal combustion engine μi4. 8. The air-fuel ratio deviation is the air-fuel ratio deviation caused by the first deposit attached to the nozzle part of the injector that supplies 1° of fuel to the internal combustion (82 flashes).
The method described in paragraph 1. 9. The air-fuel ratio deviation is an air-fuel ratio deviation resulting from variations in the production of the intake air star detection means II8 for detecting intake air to the internal combustion sensor or changes in characteristics due to changes over time. Item 1: 1 small method. 10. The method according to claim 1, wherein the air-fuel ratio deviation is an air-fuel ratio deviation resulting from manufacturing variations or changes over time of the internal combustion engine. 11. The method according to claim 1, wherein the air-fuel ratio deviation is an air-fuel ratio deviation resulting from variations or changes in the properties of the fuel used in the internal combustion. 12. The method according to claim 1, wherein the correction is a transient fuel correction in which the correction amount is determined from the correction amount determining factor amount and the annealing amount of this amount. 13. ii&+'+iJ correct The method according to claim 12, wherein the correction amount is determined by determining the amount of correction A1 based on the difference between the determining factor amount and the annealing factor.14. The method according to claim 12 or claim 16, wherein y is a smoothing calculation of the correction amount determining factor amount, which is a smoothing calculation of the amount that changes due to acceleration/deceleration at fixed time intervals. 15. The correction Quantity determining factor; The method according to claim 12 or claim 16, wherein the smoothing operation is 3γ.
JP12949783A 1983-07-18 1983-07-18 Air-fuel ratio controlling method for internal- combustion engine Granted JPS6022033A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12949783A JPS6022033A (en) 1983-07-18 1983-07-18 Air-fuel ratio controlling method for internal- combustion engine
US06/630,682 US4616619A (en) 1983-07-18 1984-07-13 Method for controlling air-fuel ratio in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12949783A JPS6022033A (en) 1983-07-18 1983-07-18 Air-fuel ratio controlling method for internal- combustion engine

Publications (2)

Publication Number Publication Date
JPS6022033A true JPS6022033A (en) 1985-02-04
JPH0251053B2 JPH0251053B2 (en) 1990-11-06

Family

ID=15010939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12949783A Granted JPS6022033A (en) 1983-07-18 1983-07-18 Air-fuel ratio controlling method for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS6022033A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234242A (en) * 1985-04-10 1986-10-18 Fujitsu Ten Ltd Fuel supply device for internal-combustion engine
JPH04101035A (en) * 1990-08-17 1992-04-02 Mitsubishi Electric Corp Air/fuel ratio control device for engine
JP2016514800A (en) * 2013-04-12 2016-05-23 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for adapting transient correction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection
JPS54108125A (en) * 1978-02-15 1979-08-24 Toyota Motor Corp Air fuel ratio controller for internal combustion engine
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine
JPS5848725A (en) * 1981-09-18 1983-03-22 Toyota Motor Corp Fuel-injection engine
JPS58106150A (en) * 1981-12-11 1983-06-24 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Ramda control method and apparatus of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection
JPS54108125A (en) * 1978-02-15 1979-08-24 Toyota Motor Corp Air fuel ratio controller for internal combustion engine
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine
JPS5848725A (en) * 1981-09-18 1983-03-22 Toyota Motor Corp Fuel-injection engine
JPS58106150A (en) * 1981-12-11 1983-06-24 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Ramda control method and apparatus of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234242A (en) * 1985-04-10 1986-10-18 Fujitsu Ten Ltd Fuel supply device for internal-combustion engine
JPH04101035A (en) * 1990-08-17 1992-04-02 Mitsubishi Electric Corp Air/fuel ratio control device for engine
JP2016514800A (en) * 2013-04-12 2016-05-23 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for adapting transient correction
US9926869B2 (en) 2013-04-12 2018-03-27 Robert Bosch Gmbh Method for adapting transition compensation

Also Published As

Publication number Publication date
JPH0251053B2 (en) 1990-11-06

Similar Documents

Publication Publication Date Title
US4442812A (en) Method and apparatus for controlling internal combustion engines
US5586537A (en) Fuel property detecting apparatus for internal combustion engines
JPS58192947A (en) Controlling method of internal-combustion engine
JPS59128944A (en) Air-fuel ratio controller for internal-combustion engine
JPH08232745A (en) Control device for internal combustion engine
JPH09287507A (en) Throttle valve controller for internal combustion engine
JPH0226053B2 (en)
US6951205B2 (en) Method and arrangement for correcting a fuel quantity which is supplied to an internal combustion engine
JPS6022033A (en) Air-fuel ratio controlling method for internal- combustion engine
JPS60122244A (en) Fuel injector of eingine
JPH04279742A (en) Fuel injection control device of internal combustion engine
JPS6017237A (en) Air-fuel ratio control method for internal-combustion engine
JPH07310570A (en) Lean burn controller for internal combustion engine
JP3311099B2 (en) Method and apparatus for controlling idle speed of internal combustion engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JP3489204B2 (en) Control device for internal combustion engine
JP2000087766A (en) Control unit for variable valve engine
JP3095326B2 (en) Electronic control fuel injection system
JPS603455A (en) Fuel feed controlling method for internal-combustion engine
JPS6026132A (en) Air-fuel ratio controlling method in internal-combustion engine
JPS60150447A (en) Air-fuel control method of internal-combustion engine
JPS6027746A (en) Air-fuel ratio controlling method for internal- combustion engine
JPS60159347A (en) Air-fuel ratio controlling method of internal-combustion engine
JPH04252835A (en) Fuel injection controller for internal combustion engine
JPH02264135A (en) Fuel feed control device for internal combustion engine