JPH0251053B2 - - Google Patents

Info

Publication number
JPH0251053B2
JPH0251053B2 JP58129497A JP12949783A JPH0251053B2 JP H0251053 B2 JPH0251053 B2 JP H0251053B2 JP 58129497 A JP58129497 A JP 58129497A JP 12949783 A JP12949783 A JP 12949783A JP H0251053 B2 JPH0251053 B2 JP H0251053B2
Authority
JP
Japan
Prior art keywords
air
amount
correction
fuel
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58129497A
Other languages
Japanese (ja)
Other versions
JPS6022033A (en
Inventor
Tsutomu Saito
Tsuneyuki Egami
Tokio Kohama
Kimitaka Saito
Masaru Takahashi
Kunihiko Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP12949783A priority Critical patent/JPS6022033A/en
Priority to US06/630,682 priority patent/US4616619A/en
Publication of JPS6022033A publication Critical patent/JPS6022033A/en
Publication of JPH0251053B2 publication Critical patent/JPH0251053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration

Description

【発明の詳細な説明】 技術分野 本発明は内燃機関の空燃比制御方法に関する。
本発明による方法は自動車用エンジンに適用され
る。
TECHNICAL FIELD The present invention relates to an air-fuel ratio control method for an internal combustion engine.
The method according to the invention is applied to motor vehicle engines.

従来技術 従来、エンジン用の空燃比制御装置の一形式が
知られている。この形式の装置は、エンジンの燃
料要求を表わすエンジン温度を含む予め定められ
たエンジンの動作パラメータの値に応動して定常
状態におけるエンジンの燃料要求を表わす基本燃
料信号を発生する手段と、出力増大要求を表わす
過渡的なエンジンの動作状態を検出する手段と、
エンジン温度の測定された値と検出された過渡的
なエンジンの動作状態に応動して、エンジン温度
によつて決定される第1の値に等しく、検出され
たエンジンの過渡状態によつて決定される初期値
を有し、エンジンの温度によつて決定される速度
で1に向つて変化する因子によつて増大される補
強促進信号を発生する手段と、基本燃料信号およ
び補強促進信号に従つてエンジンに燃料を供給
し、それによつてエンジンの定常状態および過渡
状態のいずれにあつても、その要求に応じてエン
ジンに燃料を供給する手段とを有する。この装置
は、エンジンの定常状態のみならず過渡状態にお
いて常に最適な空燃比を確保して、エンジンの最
適動作を得る燃料供給システムを提供する(例え
ば、特開昭56―6034号参照)。
BACKGROUND OF THE INVENTION One type of air-fuel ratio control device for an engine is known in the art. This type of device includes means for generating a basic fuel signal representative of the fuel demand of the engine at steady state in response to the values of predetermined engine operating parameters, including engine temperature, representative of the fuel demand of the engine; means for detecting transient engine operating conditions indicative of demand;
responsive to the measured value of engine temperature and the detected transient engine operating condition, the first value being equal to the first value determined by the engine temperature and determined by the detected transient engine condition; means for generating a reinforcement boost signal having an initial value of 1 and increasing by a factor that varies toward unity at a rate determined by the temperature of the engine; and means for supplying fuel to the engine, thereby supplying fuel to the engine on demand during both steady state and transient conditions of the engine. This device provides a fuel supply system that always ensures an optimal air-fuel ratio not only in the steady state of the engine but also in the transient state, thereby obtaining the optimal operation of the engine (see, for example, Japanese Patent Laid-Open No. 56-6034).

前述の形式の装置においては、エンジンの経時
変化、例えば、バルブクリアランスやEFIにおけ
るインジエクタ噴口部へのデポジツト付着による
特性変化、シリンダ吸気弁の背面部等に付着する
デポジツト、すなわち、潤滑油成分および燃焼生
成物に由来する炭素徴粒子等の粘着物、による特
性変化、ガソリン性状のバラツキによる揮発性の
変化が原因の特性変化等に対し考慮されておら
ず、これらエンジンの経時変化、ガソリンの性状
変化による加速時の空燃比の最適値からの変化を
検出する手段を有していないため、揮発性の悪い
ガソリンを使用したり、エンジンの経時変化によ
り混合ガスの希薄化による加速時のもたつき等の
ドライバビリテイの悪化が生じたり、逆に揮発性
の良いガソリンを使用した場合には加速時に混合
ガスが濃くなることによる燃費悪化、エミツシヨ
ン悪化が発生する可能性があるという問題点があ
つた。
In the above-mentioned type of device, changes in the engine over time, such as changes in characteristics due to deposits on the injector nozzle in valve clearance and EFI, and deposits on the back of the cylinder intake valve, such as lubricating oil components and combustion Changes in characteristics due to sticky substances such as carbon particles derived from products, changes in characteristics due to changes in volatility due to variations in gasoline properties, etc. are not taken into consideration, and these changes over time of the engine and changes in the properties of gasoline are not considered. Since there is no means to detect changes in the air-fuel ratio from the optimum value during acceleration due to There is a problem that drivability may deteriorate, or conversely, if highly volatile gasoline is used, the mixed gas becomes rich during acceleration, resulting in poor fuel efficiency and poor emissions.

この場合の空燃比の変動状況特に吸気弁背面部
にデポジツトが付着した場合の変動状況が第1図
に図解されている。第1図において、A/F(O)
はデポジツト付着前の、A/F(DEP)はデポジ
ツト付着後の空燃比の変化状況をそれぞれあらわ
す。ACCは加速時点を、DECは減速時点を、
A/F(OPT)は最適空燃比を、A/F(LN)は
希薄(リーン)側を、A/F(RCH)は濃厚(リ
ツチ)側をそれぞれあらわす。
FIG. 1 illustrates the fluctuations in the air-fuel ratio in this case, particularly when deposits are attached to the back surface of the intake valve. In Figure 1, A/F(O)
A/F (DEP) represents the change in the air-fuel ratio before the deposit is deposited, and A/F (DEP) represents the change in the air-fuel ratio after the deposit is deposited. ACC is the acceleration point, DEC is the deceleration point,
A/F (OPT) represents the optimum air-fuel ratio, A/F (LN) represents the lean side, and A/F (RCH) represents the rich side.

また、インジエクタの目づまりについても定常
においては空燃比センサのフイードバツクで補正
できるが、加減速時においては補正手段をもたな
いため同様の問題を生じていた。また、エンジ
ン、エアフローメータの製作時のばらつきや経時
変化によつても同様の問題を生じていた。
In addition, clogging of the injector can be corrected by feedback from the air-fuel ratio sensor in steady state, but the same problem occurs during acceleration and deceleration because there is no correction means. Further, similar problems have also occurred due to variations in manufacturing of the engine and air flow meter and changes over time.

また内燃機関に使用するガソリンは一般に四季
を通じ夏用と冬用というように特性の異なつたも
のが同一メーカから市販されている。ガソリンの
揮発性を示す数値としてはリード蒸気圧とか蒸留
特性とかが一般によく知られているが、或るメー
カーのガソリン性状を調べてもリード蒸気圧は
0.5Kg/cm2〜0.86Kg/cm2また10%留出温度も40〜
58℃とばらついており、ガソリン性状の違いによ
る揮発性の変化により過渡時の空燃比特性は大き
く変化する。従来方式ではこうしたガソリン性状
のバラツキによる揮発性の変化が原因の空燃比変
動についても何ら考慮はなされていない。
Furthermore, the gasoline used in internal combustion engines is generally commercially available from the same manufacturer with different characteristics for each season, such as for summer and winter use. Reed vapor pressure and distillation characteristics are generally well-known numerical values that indicate the volatility of gasoline, but even when examining the properties of gasoline from a certain manufacturer, the Reid vapor pressure cannot be determined.
0.5Kg/cm 2 ~ 0.86Kg/cm 2 Also, the 10% distillation temperature is 40 ~
It varies widely at 58℃, and the air-fuel ratio characteristics during transient times change greatly due to changes in volatility due to differences in gasoline properties. In the conventional system, no consideration is given to air-fuel ratio fluctuations caused by changes in volatility due to variations in gasoline properties.

それゆえ、前述の形式の装置においては、加減
速時の空燃比を最適化する手段を持つていないた
めに、上記デポジツト付着等エンジンの経時変化
や揮発性の悪いガソリンを使用した場合には、加
速時においては、空燃比が希薄となり、もたつき
等ドライバビリテイの悪化を生じ、また減速時に
おいては、空燃比がより濃厚となりエミツシヨン
の悪化、燃費の悪化を招いていた。
Therefore, since the above-mentioned type of device does not have a means to optimize the air-fuel ratio during acceleration and deceleration, if the engine changes over time such as deposits, or if gasoline with poor volatility is used, During acceleration, the air-fuel ratio becomes lean, resulting in poor drivability such as sluggishness, and during deceleration, the air-fuel ratio becomes richer, resulting in poor emissions and poor fuel efficiency.

発明の目的 本発明の一つの目的は、一回転当りの吸入空気
量、吸気管負圧、スロツトル開度等の吸気状態に
対応する補正量決定因子とそのなまし値との差を
所定間隔毎にとることにより減衰率が徐々に小さ
くなる過渡補正パターンを形成させ、リツチ・リ
ーンスパイクの無い最適な補正が行われる空燃比
制御を行うことにある。
Object of the Invention One object of the present invention is to calculate the difference between correction amount determining factors corresponding to intake conditions such as intake air amount per revolution, intake pipe negative pressure, throttle opening, etc. and their smoothed values at predetermined intervals. The purpose is to form a transient correction pattern in which the damping rate gradually decreases by taking the following values, and to perform air-fuel ratio control in which optimum correction is performed without rich/lean spikes.

本発明の他の目的は、この最適な補正が行われ
る空燃比制御を行うことにより経時変化等により
過渡状態が変化した場合のリツチ・リーンスパイ
クを感度良く検出し、学習を迅速に行い、過渡時
空燃比の制御性を向上させることにある。
Another object of the present invention is to detect rich/lean spikes with high sensitivity when transient conditions change due to changes over time, etc. by performing air-fuel ratio control that performs this optimal correction, to quickly learn, and to The objective is to improve the controllability of the temporal air-fuel ratio.

発明の構成 本発明においては、内燃機関の加速時または減
速時において、該内燃機関の加減速状態に応じて
所定間隔毎に過渡時燃料補正量を決定し、該過渡
時燃料補正量により該内燃機関に供給される燃料
量を補正する内燃機関の空燃比制御方法におい
て、 該内燃機関の加減速時における最適空燃比から
の空燃比偏差を内燃機関に設けた空燃比センサの
出力を用いて検出し、 該検出された空燃比偏差に応じて内燃機関の吸
気状態に対応する補正量決定因子量とそのなまし
量との差より求められる過渡時燃料補正量を修正
し、 それにより加減速時における混合ガス燃料の最
適空燃比からのずれを防止するようにした、 ことを特徴とする内燃機関の空燃比制御方法が提
供される。
Structure of the Invention In the present invention, when an internal combustion engine is accelerating or decelerating, a transient fuel correction amount is determined at predetermined intervals according to the acceleration/deceleration state of the internal combustion engine, and the transient fuel correction amount is used to determine the internal combustion engine. In an air-fuel ratio control method for an internal combustion engine that corrects the amount of fuel supplied to the engine, the air-fuel ratio deviation from the optimum air-fuel ratio during acceleration and deceleration of the internal combustion engine is detected using the output of an air-fuel ratio sensor provided in the internal combustion engine. Then, in accordance with the detected air-fuel ratio deviation, the transient fuel correction amount obtained from the difference between the correction amount determining factor amount corresponding to the intake state of the internal combustion engine and its smoothing amount is corrected, and thereby the transient fuel correction amount is adjusted during acceleration and deceleration. Provided is an air-fuel ratio control method for an internal combustion engine, characterized in that the air-fuel ratio of the mixed gas fuel is prevented from deviating from the optimum air-fuel ratio.

実施例 本発明の一実施例としての内燃機関の空燃比制
御方法を行う装置が第2図に示される。第2図装
置における制御回路の構成が第3図に示される。
第2図装置において、1は自動車の動力源である
公知の電子制御燃料噴射式6気筒火花点火式エン
ジン、2はエンジン1に吸入される空気量を検出
する公知の吸入空気量検出装置、3はエンジン1
の回転数を検出する公知の回転数センサ、4はエ
ンジン1の冷却水温を測定する公知の水温セン
サ、5はエンジン1の排気通路、6は排気通路5
に設けた公知の空燃比センサである。
Embodiment An apparatus for performing an air-fuel ratio control method for an internal combustion engine as an embodiment of the present invention is shown in FIG. The configuration of the control circuit in the device shown in FIG. 2 is shown in FIG.
In the device shown in FIG. 2, 1 is a known electronically controlled fuel injection 6-cylinder spark ignition engine that is the power source of the automobile, 2 is a known intake air amount detection device that detects the amount of air taken into the engine 1, and 3 is engine 1
4 is a known water temperature sensor that measures the cooling water temperature of the engine 1; 5 is an exhaust passage of the engine 1; 6 is an exhaust passage 5;
This is a well-known air-fuel ratio sensor installed in the

7はエンジン1の吸気管、8は吸気管7に設け
た公知の電磁式燃料噴射弁、9はエンジン1に吸
入される空気量をコントロールするスロツトル
弁、91はスロツトル弁9の動きを検出する公知
のスロツトルセンサ、CONTはエンジン1に供
給する燃料量を算出して燃料噴射弁8を作動させ
る制御回路である。
7 is an intake pipe of the engine 1, 8 is a known electromagnetic fuel injection valve provided in the intake pipe 7, 9 is a throttle valve that controls the amount of air taken into the engine 1, and 91 is a sensor that detects the movement of the throttle valve 9. A well-known throttle sensor CONT is a control circuit that calculates the amount of fuel to be supplied to the engine 1 and operates the fuel injection valve 8.

エンジン1に供給される燃料量は、エンジンが
定常状態の時は、制御回路CONTが、吸入空気
量検出装置2、回転数センサ3、水温センサ4の
各検出信号から基本燃料量として求め、さらに空
燃比センサ6の信号から求めたフイードバツク補
正量を補正して、燃料噴射弁8の開弁時間として
求める。
When the engine is in a steady state, the amount of fuel supplied to the engine 1 is determined by the control circuit CONT as a basic fuel amount from the detection signals of the intake air amount detection device 2, the rotation speed sensor 3, and the water temperature sensor 4. The feedback correction amount obtained from the signal of the air-fuel ratio sensor 6 is corrected to obtain the valve opening time of the fuel injection valve 8.

また制御回路CONTはスロツトルセンサ91
または吸入空気量検出器2によりエンジン1の加
減速状態が検出された時は定常時に求めた燃料量
に対し過渡時燃料補正を行う様に構成してある。
Also, the control circuit CONT is the throttle sensor 91
Alternatively, when the acceleration/deceleration state of the engine 1 is detected by the intake air amount detector 2, a transient fuel correction is performed on the fuel amount determined during the steady state.

第3図に示されるように、制御回路CONTは、
入力系統として、吸気量センサ2および水温セン
サ4からの信号を受けるマルチプレクサ101,
ADコンバータ102、空燃比センサ6の信号を
受ける整形回路103、該整形回路およびスロツ
トルセンサ91からの信号を受ける入力ポート1
04、回転センサ3の信号を受ける入力カウンタ
105を有する。制御回路はまた、バス106、
ROM107,CPU108,RAM109,出力
カウンタ110、およびパワー駆動部111を有
する。パワー駆動部111の出力は燃料噴射弁8
に供給される。
As shown in FIG. 3, the control circuit CONT is
As an input system, a multiplexer 101 receives signals from the intake air amount sensor 2 and the water temperature sensor 4;
AD converter 102 , shaping circuit 103 that receives signals from air-fuel ratio sensor 6 , input port 1 that receives signals from the shaping circuit and throttle sensor 91
04, has an input counter 105 that receives a signal from the rotation sensor 3. The control circuit also connects the bus 106,
It has a ROM 107, a CPU 108, a RAM 109, an output counter 110, and a power driver 111. The output of the power drive unit 111 is the fuel injection valve 8
supplied to

制御回路CONTとしては、マイクロコンピユ
ータ形式のものを用いることができ、例えばトヨ
タTCCS形式のものを用いることができる。制御
回路CONTには、空燃比偏差検出機能および過
渡時燃料補正機能が追加されている。
As the control circuit CONT, a microcomputer type circuit can be used, for example, a Toyota TCCS type circuit can be used. The control circuit CONT has an air-fuel ratio deviation detection function and a transient fuel correction function added.

加減速時空燃比挙動、すなわち、加速時におけ
る最適空燃比A/F(OPT)からの空燃比希薄側
および濃厚側へのそれぞれの最大偏差値D〔A/
F(LN)〕、D〔A/F(RCH)〕、と加減速時空燃
比センサの挙動、すなわち、加減速時空燃比セン
サ6が混合ガスの希薄および濃厚を検出している
時間、つまり加速時リーン継続時間T(LN)お
よび減速時リツチ継続時間T(RCH)、との関係
が第4図の波形図および第5図の特性図に示され
る。第4図においてACCは加速を、DECは減速
を、S(6)は空燃比センサ信号を表わす。
The air-fuel ratio behavior during acceleration/deceleration, that is, the maximum deviation value D[A/
F(LN)], D[A/F(RCH)], and the behavior of the air-fuel ratio sensor during acceleration/deceleration, that is, the time during which the air-fuel ratio sensor 6 detects the leanness and richness of the mixed gas during acceleration/deceleration, that is, during acceleration. The relationship between the lean duration time T (LN) and the deceleration rich duration time T (RCH) is shown in the waveform diagram of FIG. 4 and the characteristic diagram of FIG. 5. In FIG. 4, ACC represents acceleration, DEC represents deceleration, and S(6) represents the air-fuel ratio sensor signal.

最適空燃比からの空燃比偏差の一例として、吸
気系に付着したデポジツト量W(DEP)と加減速
時における空燃比最大偏差値D〔A/F(LN)〕、
D〔A/F(RCH)〕の関係が第6図,第7図に示
される。第4図ないし第7図から加速時リーン継
続時間TLあるいは減速時リツチ継続時間TRを
測定する事で、デポジツト付着量対応値が検出可
能である事が判る。なお第4〜第7図のデータの
調査にあたつては、トヨタ自動車株式会社にて製
作の5M―G型エンジンが用いられた。
As an example of the air-fuel ratio deviation from the optimum air-fuel ratio, the amount of deposits attached to the intake system W (DEP) and the maximum air-fuel ratio deviation value D [A/F (LN)] during acceleration and deceleration,
The relationship between D [A/F (RCH)] is shown in FIGS. 6 and 7. It can be seen from FIGS. 4 to 7 that by measuring the lean duration TL during acceleration or the rich duration TR during deceleration, it is possible to detect the value corresponding to the deposit amount. In investigating the data shown in Figures 4 to 7, a 5M-G type engine manufactured by Toyota Motor Corporation was used.

制御回路CONTの制御ブログラムの概略フロ
ーチヤートが第8図に示される。このプログラム
は、電子制御燃料噴射を行うためのもので、ステ
ツプS100〜S108より成る。S100にお
いてスタートし、S101において、メモリー、
入出力ポートの初期化を行う。S102では、吸
入空気量のデータQとエンジン回転数データNと
水温センサのデータθWから、基本燃料噴射量を
計算する。S103では、空燃比センサ6の信号
を用い、空燃比が一定となる様にフイードバツク
制御を行つて基本燃料噴射量を補正する。
A schematic flowchart of the control program of the control circuit CONT is shown in FIG. This program is for performing electronically controlled fuel injection and consists of steps S100 to S108. Starts in S100, and in S101, memory,
Initialize the input/output ports. In S102, a basic fuel injection amount is calculated from intake air amount data Q, engine rotation speed data N, and water temperature sensor data θ W. In S103, the basic fuel injection amount is corrected by performing feedback control using the signal from the air-fuel ratio sensor 6 so that the air-fuel ratio remains constant.

S104では、加速時空燃比偏差検出を行い、
S105では過渡時燃料補正比の演算を行う。S
106でエンジン1回転の判別をし、エンジン1
回転毎にS107において1回の燃料噴射弁8の
開弁時間を、フイードバツク制御により補正され
た基本燃料量と過渡時燃料補正比とから計算して
求め、S108で燃料噴射弁制御を行う。第8図
のフローチヤートにおける空燃比偏差検出処理の
詳細なフローチヤートが第9図に、過渡時燃料補
正の詳細なフローチヤートが第10図に示され
る。
In S104, the air-fuel ratio deviation during acceleration is detected,
In S105, a transient fuel correction ratio is calculated. S
106, it is determined that the engine is rotating once, and the engine 1
For each rotation, in S107, the opening time of the fuel injection valve 8 is calculated from the basic fuel amount corrected by the feedback control and the transient fuel correction ratio, and the fuel injection valve is controlled in S108. A detailed flowchart of the air-fuel ratio deviation detection process in the flowchart of FIG. 8 is shown in FIG. 9, and a detailed flowchart of the transient fuel correction is shown in FIG. 10.

第9図に示す空燃比偏差検出処理においては、
S201に示す様に、一定時間(例えば32・
7ms)毎に処理を行う。空燃比偏差を検出する方
法として、空燃比センサ6の出力信号を一定電圧
レベルと比較し、混合ガスの希薄(リーン)状態
および濃厚(リツチ)状態の2値を検出し、加速
時のリーン継続時間T(LN)およびリツチ継続
時間T(RCH)を測定する方法を用いる。
In the air-fuel ratio deviation detection process shown in FIG.
As shown in S201, for a certain period of time (for example, 32.
Processing is performed every 7ms). As a method of detecting the air-fuel ratio deviation, the output signal of the air-fuel ratio sensor 6 is compared with a constant voltage level, and two values of a lean state and a rich state of the mixed gas are detected, and lean continuation during acceleration is detected. A method of measuring time T (LN) and rich duration T (RCH) is used.

例えばデポジツト付着の影響は、冷却水温が低
温時のみ生じ、またデポジツト付着量の推定を容
易にするため、S202,S203,S204で
冷却水温80℃未満、加速後5秒以内、エンジン回
転数900rpm〜2000rpmの場合のリーン継続時間
T(LN)、リツチ継続時間T(RCH)を測定する。
またリツチ、リーンが交互に現われる様、S20
5で、フイードバツク制御中に限定する。
For example, the influence of deposits occurs only when the cooling water temperature is low, and in order to make it easier to estimate the amount of deposits, in S202, S203, and S204, the cooling water temperature is less than 80°C, within 5 seconds after acceleration, and the engine speed is 900 rpm or more. Measure lean duration time T (LN) and rich duration time T (RCH) at 2000 rpm.
Also, rich and lean appear alternately, S20
5, it is limited to during feedback control.

S206でリツチ、リーンを判別する。リーン
の場合S207において、リーンタイムカウンタ
を+1し、T(LN)を32.7ms単位で計数する。
次にS208で、リツチタイムカウンタの値が一
定値(リツチタイムリミツト)を越えているか判
断し、越えていれば、S209でリツチ補正カウ
ンタを+1する。次にステツプS210でリツチ
タイムカウンタを0とする。S206でリツチと
判別した場合、同様にS211〜S214でリツ
チタイムカウンタの+1と、リーンタイムの判断
を行う。
Rich or lean is determined in S206. In the case of lean, in S207, the lean time counter is incremented by 1 and T (LN) is counted in units of 32.7 ms.
Next, in S208, it is determined whether the value of the rich time counter exceeds a certain value (rich time limit), and if it does, the rich correction counter is incremented by 1 in S209. Next, in step S210, the rich time counter is set to 0. If it is determined in S206 that the time is rich, the rich time counter is incremented by 1 and lean time is determined in the same manner in S211 to S214.

前述のS206〜S214で求めたリーン補正
カウンタおよびリツチ補正カウンタの値からデポ
ジツト付着および剥離を推定できる。すなわち、
エンジンの正常状態から異常状態への変化および
異常状態から正常状態への復帰を推定できる。
Deposit adhesion and peeling can be estimated from the values of the lean correction counter and rich correction counter obtained in S206 to S214 described above. That is,
It is possible to estimate the change of the engine from a normal state to an abnormal state and a return from an abnormal state to a normal state.

第10図に示す過渡時燃料補正においては、S
301で吸入空気量検出装置2からの吸入空気量
信号Qと、回転数検出装置3からの回転数信号N
とから求めたエンジン1回転当りの吸入空気量
Q/Nを求める。S302で以下の処理を一定時
間毎、例えば32.7ms毎、に行うための判別を行
う。
In the transient fuel correction shown in FIG.
At 301, the intake air amount signal Q from the intake air amount detection device 2 and the rotation speed signal N from the rotation speed detection device 3 are detected.
The intake air amount Q/N per engine revolution is determined from . In S302, a determination is made to perform the following process at regular intervals, for example, every 32.7 ms.

S303において補正係数Caおよびなまし係
数Cbをリツチ補正カウンタおよびリーン補正カ
ウンタの関数として求める。つまり補正係数Ca
なまし係数Cbを加速時の空燃比偏差に対応した
値として求める。
In S303, the correction coefficient C a and the smoothing coefficient C b are determined as functions of the rich correction counter and the lean correction counter. In other words, the correction coefficient C a ,
Find the smoothing coefficient C b as a value corresponding to the air-fuel ratio deviation during acceleration.

S304においてQ/Nになましをかけた、 (Q/N)iを次式より求める。 In S304, (Q/N) i , which is obtained by smoothing Q/N, is obtained from the following formula.

(Q/N)i=(Q/N)i-1+ {Q/N−(Q/N)i-1}/Cbただし
32.7ms前に計算した(Q/N)iを(Q/N)i-1
する。
(Q/N) i = (Q/N) i-1 + {Q/N-(Q/N) i-1 }/ Cb However
Let (Q/N) i calculated 32.7ms ago be (Q/N) i-1 .

S305において前記Q/N,(Q/N)i,Ca、
および冷却水温で定まる値Kより過渡時燃料補正
比f(AEW)の演算を次式により行う。
In S305, the Q/N, (Q/N) i , Ca,
The transient fuel correction ratio f (AEW) is calculated from the value K determined by the cooling water temperature and the cooling water temperature using the following equation.

f(AEW)={Q/N−(Q/N)i}×Ca×K ここでKは、エンジン冷却に対する補正比であ
り予めマツプに記憶しておく、またf(AEW)
は、Q/Nの変化により正負両方の値をとる。上
記過渡時燃料補正比f(AEW)を、基本燃料量に
乗ずることにより、補正を行う。
f(AEW) = {Q/N-(Q/N) i }×Ca×K Here, K is the correction ratio for engine cooling, which is stored in the map in advance, and f(AEW)
takes both positive and negative values depending on the change in Q/N. Correction is performed by multiplying the basic fuel amount by the transient fuel correction ratio f (AEW).

したがつて、第11図に示すように、(1)スロツ
トルを開けて加速した場合(THはスロツトル開
度)、(2)前記Q/N値も増加し、(3)前記(Q/N)
i値も序々に増加し、(4)過渡時燃料補正比f
(AEW)が図示されるような波形をとつて増量さ
れ、(5)燃料噴射弁開弁時間Uが決定され、燃料を
供給する。
Therefore, as shown in Fig. 11, (1) when the throttle is opened and the engine is accelerated (TH is the throttle opening), (2) the above Q/N value also increases, and (3) the above (Q/N )
The i value also gradually increases, and (4) transient fuel correction ratio f
(AEW) is increased with the waveform shown, (5) the fuel injection valve opening time U is determined, and fuel is supplied.

また、(6)スロツトルを閉じて減速した場合、(7)
前記Q/N値は減少し、(8)前記(Q/N)i値も
徐々に減少し、(9)過渡時燃料補正比f(AEW)が
図示されるような波形をとつて減量され、(10)燃料
噴射弁開弁時間Uが決定され、燃料を供給する。
Also, if (6) the throttle is closed to decelerate, (7)
The Q/N value decreases, (8) the (Q/N) i value also gradually decreases, and (9) the transient fuel correction ratio f (AEW) decreases with a waveform as shown in the figure. , (10) The fuel injection valve opening time U is determined and fuel is supplied.

第2図装置の動作結果の一例が12図A,Bに
示される。第12図A,Bにおいては、エンジン
回転数を1000rpm、冷却水温を30℃とした。加速
はスロツトル操作により行い、加速条件は吸気圧
「−400mmHg」から吸気圧「−100mmHg」への急
上昇とした。AはガソリンAを用いた場合の時間
に対する空燃比の状況をあらわす。Bはガソリン
Bを用いた場合の時間に対する空燃比の状況をあ
らわし、第2図装置により学習制御がなされた結
果の状況をあらわす。
An example of the operation results of the device shown in FIG. 2 is shown in FIGS. 12A and 12B. In FIGS. 12A and 12B, the engine speed was 1000 rpm and the cooling water temperature was 30°C. Acceleration was performed by throttle operation, and the acceleration condition was a sudden increase in intake pressure from ``-400mmHg'' to ``-100mmHg.'' A represents the air-fuel ratio over time when gasoline A is used. B represents the state of the air-fuel ratio with respect to time when gasoline B is used, and represents the state as a result of learning control performed by the device in FIG.

第12図A,Bに示されるように、加速時の空
燃比はガソリンA(10%留出温度47℃、リード蒸
気圧0.72Kg/cm3)でほぼ最適空燃比になつていた
が、ガソリン性状の異なる揮発性の悪いガソリン
B(10%留出温度54℃、リード蒸気0.6Kg/cm3)を
用いた場合には加速時の空燃比は希薄化してしま
うが第2図装置において学習がなされた結果、ほ
ぼ7回目でガソリンAを用いたと同様の空燃比特
性を得ることが可能となる。この際補正量を大き
くすれば学習はさらに少ない回数で達成できるの
は当然である。
As shown in Figure 12A and B, the air-fuel ratio during acceleration was almost the optimum air-fuel ratio for gasoline A (10% distillation temperature 47°C, Reid vapor pressure 0.72 kg/cm 3 ); If gasoline B with different properties and poor volatility is used (10% distillation temperature 54℃, lead vapor 0.6Kg/cm 3 ), the air-fuel ratio during acceleration will be diluted, but the learning in the device shown in Figure 2 is not possible. As a result, it becomes possible to obtain air-fuel ratio characteristics similar to those obtained when gasoline A is used for about the seventh time. At this time, it is natural that if the amount of correction is increased, learning can be accomplished in an even smaller number of times.

本発明の実施にあたつては、前述の実施例のほ
か種々の変形形態をとることが可能である。例え
ば、前述の実施例においては、ステツプS302
に示す様に(Q/N)iの計算を一定時間
(32.7ms)毎に行つたが、その代りに、第13図
のフローチヤートに示す様に、(Q/N)iの計算
をエンジン回転に同期させ例えばエンジン1回転
毎に行うこともできる。
In carrying out the present invention, various modifications can be made in addition to the above-described embodiments. For example, in the embodiment described above, step S302
As shown in Figure 13, the calculation of (Q/N) i was performed at regular intervals (32.7ms), but instead, as shown in the flowchart of Figure 13, the calculation of (Q/N) i was performed by the engine. It can also be performed synchronized with the rotation, for example, every rotation of the engine.

第13図において、S401においてQ/Nを
計算し、S402でエンジン1回転毎の判別を行
う。S403において補正係数Caおよびなまし
係数Cbをリツチ補正カウンンタおよびリーン補
正カウンタの関数として求める。つまり補正係数
Ca、なまし係数Cbを加速時の空燃比偏差に対応
した値として求める。
In FIG. 13, Q/N is calculated in S401, and determination is made for each rotation of the engine in S402. In S403, the correction coefficient Ca and the smoothing coefficient Cb are determined as functions of the rich correction counter and the lean correction counter. In other words, the correction coefficient
Calculate Ca and smoothing coefficient Cb as values corresponding to the air-fuel ratio deviation during acceleration.

S404においてQ/Nになましをかけた
(Q/N)jを次式より求める。
In S404, (Q/N) j obtained by smoothing Q/N is obtained from the following equation.

(Q/N)j=(Q/N)j-1+{Q/N−(Q/N)
j
−1}/Cbただしエンジン1回転前に計算した
(Q/N)jを(Q/N)j-1とする。
(Q/N) j = (Q/N) j-1 + {Q/N-(Q/N)
j
-1 }/Cb However, (Q/N) j calculated before one revolution of the engine is set as (Q/N) j-1 .

S405において前記Q/N,(Q/N)j,Ca、
および冷却水温で定まる値K′より、過渡時空燃
比補正比f′(AEW)の演算を次式により行う。
In S405, the Q/N, (Q/N) j , Ca,
The transient air-fuel ratio correction ratio f' (AEW) is calculated using the following equation from the value K' determined by the temperature and the cooling water temperature.

f′(AEW)={Q/N−(Q/N)j}×Ca×K′ このf′(AEW)を基本燃料量に乗ずることによ
り、補正を行う。
f'(AEW)={Q/N-(Q/N) j }×Ca×K' Correction is performed by multiplying the basic fuel amount by this f'(AEW).

前記(Q/N)jをエンジン回転に同期して求め
ることにより、過渡時空燃比補正比f′(AEW)に
よる増量減量が寄与するエンジンの燃焼サイクル
数は、エンジン回転数にかかわりなく、同一の加
速条件ではほぼ同一となる。従つて各種のエンジ
ン状態において、過渡時の空燃比の変動を防ぐこ
とができる。
By determining the above (Q/N) j in synchronization with the engine rotation, the number of engine combustion cycles to which the increase/decrease due to the transient air-fuel ratio correction ratio f' (AEW) contributes is the same regardless of the engine rotation speed. They are almost the same under acceleration conditions. Therefore, it is possible to prevent the air-fuel ratio from fluctuating during transient periods under various engine conditions.

また前述の実施例では、空燃比偏差検出をS2
03において加速後5秒間に限定しているが、こ
れは第4図,第5図よりわかる様に、減速時にお
けるT(LN),T(RCH)を測定しても検出でき
る。
Furthermore, in the above-mentioned embodiment, air-fuel ratio deviation detection is performed in S2.
In 03, the period is limited to 5 seconds after acceleration, but as can be seen from FIGS. 4 and 5, this can be detected by measuring T (LN) and T (RCH) during deceleration.

また前述の実施例では、補正量決定因子として
吸入空気量Q/Nとそのなまし量に基づいて増量
を行つているが、これは他の吸気管負圧値:スロ
ツトル開度等の量と、そのなまし量に基づいて増
量を行つてもよい。
Furthermore, in the above-mentioned embodiment, the amount is increased based on the intake air amount Q/N and its smoothing amount as the correction amount determining factor, but this is based on other intake pipe negative pressure values, throttle opening, etc. , the amount may be increased based on the amount of annealing.

発明の効果 本発明によれば、一回転当りの吸入空気量、吸
気管負圧、スロツトル開度等の吸気状態に対応す
る補正量決定因子とそのなまし値との差を所定間
隔毎にとることにより減衰率が徐々に小さくなる
過渡補正パターンが形成され、リツチ・リーンス
パイクの無い最適な補正が行われる空燃比制御を
行うことができる。
Effects of the Invention According to the present invention, the difference between correction amount determining factors corresponding to intake conditions such as intake air amount per revolution, intake pipe negative pressure, throttle opening, etc. and its smoothed value is calculated at predetermined intervals. As a result, a transient correction pattern in which the damping rate gradually decreases is formed, and air-fuel ratio control can be performed in which optimum correction is performed without rich/lean spikes.

また本発明によれば、この最適な補正が行われ
る空燃比制御が行われることにより経時変化等に
より過渡状態が変化した場合のリツチ・リーンス
パイクが感度良く検出され、学習が迅速に行わ
れ、過渡時空燃比の制御性を向上させることがで
きる。
Further, according to the present invention, by performing air-fuel ratio control that performs this optimal correction, rich/lean spikes when the transient state changes due to changes over time etc. are detected with high sensitivity, and learning is performed quickly. Controllability of the transient air-fuel ratio can be improved.

また、本発明によれば、吸気弁背面部へのデポ
ジツトの付着やインジエクタの目づまり、エンジ
ンや吸入空気量検出装置の経時変化による、加減
速時混合ガスの最適空燃比からのずれを防止する
ことにより加速時の空燃比の希薄化が防止され、
エミツシヨンおよび燃費の悪化を防止しつつドラ
イバビリテイの向上を実現することができる。
Furthermore, according to the present invention, deviations from the optimum air-fuel ratio of the mixed gas during acceleration and deceleration due to deposits on the back surface of the intake valve, clogging of the injector, and changes over time in the engine and intake air amount detection device are prevented. This prevents the air-fuel ratio from diluting during acceleration,
It is possible to improve drivability while preventing deterioration in emissions and fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、デポジツト付着前後の加減速時空燃
比変化を示す波形図、第2図は、本発明の一実施
例としての内燃機関の空燃比制御方法を行う装置
を示す図、第3図は、第2図装置における制御回
路の構成を示す図、第4図,第5図は、加減速時
空燃比挙動と、加減速時空燃比センサの挙動の関
係を示す波形図および特性図、第6図,第7図
は、吸気系に付着したデポジツト量と加減速時空
燃比挙動の関係を示す構造図および特性図、第8
図は第2図装置における演算流れを示す流れ図、
第9図はデポジツト量対応値検出演算の詳細を示
す流れ図、第10図は過渡時燃料補正の詳細を示
す流れ図、第11図は減速時の燃料噴射の状況を
示す波形図、第12図A,Bは第2図装置の動作
結果の1例を示す図、第13図は第10図の演算
流れの変形を示す演算流れ図である。 符号の説明、1……エンジン、2……吸入空気
量検出装置、3……回転数センサ、4……水温セ
ンサ、5……排気通路、6……空燃比センサ、7
……吸気管、8……燃料噴射弁、9……スロツト
ル弁、91……スロツトルセンサ、CONT……
制御回路。
FIG. 1 is a waveform diagram showing changes in air-fuel ratio during acceleration and deceleration before and after deposition of deposits, FIG. 2 is a diagram showing an apparatus for performing an air-fuel ratio control method for an internal combustion engine as an embodiment of the present invention, and FIG. , Fig. 2 is a diagram showing the configuration of the control circuit in the device, Figs. 4 and 5 are waveform diagrams and characteristic diagrams showing the relationship between the air-fuel ratio behavior during acceleration/deceleration and the behavior of the air-fuel ratio sensor during acceleration/deceleration, and Fig. 6 , Figure 7 is a structural diagram and characteristic diagram showing the relationship between the amount of deposits attached to the intake system and the behavior of the air-fuel ratio during acceleration and deceleration.
The figure is a flowchart showing the calculation flow in the device shown in FIG.
Fig. 9 is a flowchart showing the details of the deposit amount corresponding value detection calculation, Fig. 10 is a flowchart showing the details of transient fuel correction, Fig. 11 is a waveform chart showing the fuel injection situation during deceleration, and Fig. 12A. , B are diagrams showing an example of the operation results of the apparatus shown in FIG. 2, and FIG. 13 is a calculation flowchart showing a modification of the calculation flow in FIG. 10. Explanation of symbols, 1... Engine, 2... Intake air amount detection device, 3... Rotation speed sensor, 4... Water temperature sensor, 5... Exhaust passage, 6... Air-fuel ratio sensor, 7
...Intake pipe, 8...Fuel injection valve, 9...Throttle valve, 91...Throttle sensor, CONT...
control circuit.

Claims (1)

【特許請求の範囲】 1 内燃機関の加速時または減速時において、該
内燃機関の加減速状態に応じて所定間隔毎に過渡
時燃料補正量を決定し、該過渡時燃料補正量によ
り該内燃機関に供給される燃料量を補正する内燃
機関の空燃比制御方法において、 該内燃機関の加減速時における最適空燃比から
の空燃比偏差を内燃機関に設けた空燃比センサの
出力を用いて検出し、 該検出された空燃比偏差に応じて内燃機関の吸
気状態に対応する補正量決定因子量とそのなまし
量との差より求められる過渡時燃料補正量を修正
し、 それにより加減速時における混合ガス燃料の最
適空燃比からのずれを防止するようにした、こと
を特徴とする内燃機関の空燃比制御方法。 2 該過渡時燃料補正は、所定時間間隔毎に過渡
時燃料補正量を決定する過渡時燃料補正である、
特許請求の範囲第1項記載の方法。 3 該過渡時燃料補正は、該内燃機関の回転に同
期して過渡時燃料補正量を決定する過渡時燃料補
正である、特許請求の範囲第1項記載の方法。 4 該過渡時燃料補正は、補正量決定因子として
吸入空気量を用いる過渡時燃料補正である、特許
請求の範囲第1項記載の方法。 5 該過渡時燃料補正は、補正量決定因子として
スロツトル開度あるいは吸気管圧力を用いる過渡
時燃料補正である、特許請求の範囲第1項記載の
方法。 6 該補正量決定因子量のなまし演算は、加減速
によつて変化する量のなまし演算を一定時間間隔
で行う補正量決定因子量のなまし演算である、特
許請求の範囲第1項記載の方法。 7 該補正量決定因子量とこの量のなまし演算
は、加減速によつて変化する量のなまし演算を該
内燃機関の機関回転に同期して行う補正量決定因
子量のなまし演算である、特許請求の範囲第1項
記載の方法。
[Claims] 1. During acceleration or deceleration of the internal combustion engine, a transient fuel correction amount is determined at predetermined intervals according to the acceleration/deceleration state of the internal combustion engine, and the transient fuel correction amount is used to control the internal combustion engine. An air-fuel ratio control method for an internal combustion engine that corrects the amount of fuel supplied to an internal combustion engine, which detects an air-fuel ratio deviation from an optimal air-fuel ratio during acceleration and deceleration of the internal combustion engine using the output of an air-fuel ratio sensor provided in the internal combustion engine. , Corrects the transient fuel correction amount obtained from the difference between the correction amount determining factor amount corresponding to the intake state of the internal combustion engine and its smoothing amount in accordance with the detected air-fuel ratio deviation, and thereby corrects the transient fuel correction amount during acceleration and deceleration. An air-fuel ratio control method for an internal combustion engine, characterized in that the air-fuel ratio of a mixed gas fuel is prevented from deviating from an optimum air-fuel ratio. 2. The transient fuel correction is a transient fuel correction that determines a transient fuel correction amount at each predetermined time interval.
A method according to claim 1. 3. The method according to claim 1, wherein the transient fuel correction is a transient fuel correction that determines a transient fuel correction amount in synchronization with the rotation of the internal combustion engine. 4. The method according to claim 1, wherein the transient fuel correction is a transient fuel correction using an intake air amount as a correction amount determining factor. 5. The method according to claim 1, wherein the transient fuel correction is a transient fuel correction using throttle opening or intake pipe pressure as a correction amount determining factor. 6. Claim 1, wherein the smoothing calculation of the correction amount determining factor amount is a smoothing calculation of the correction amount determining factor amount, in which a smoothing calculation of the amount that changes due to acceleration/deceleration is performed at fixed time intervals. Method described. 7 The correction amount determining factor amount and the smoothing calculation of this amount are the smoothing calculations of the correction amount determining factor amount in which a smoothing calculation of the amount that changes due to acceleration and deceleration is performed in synchronization with the engine rotation of the internal combustion engine. A method according to claim 1.
JP12949783A 1983-07-18 1983-07-18 Air-fuel ratio controlling method for internal- combustion engine Granted JPS6022033A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12949783A JPS6022033A (en) 1983-07-18 1983-07-18 Air-fuel ratio controlling method for internal- combustion engine
US06/630,682 US4616619A (en) 1983-07-18 1984-07-13 Method for controlling air-fuel ratio in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12949783A JPS6022033A (en) 1983-07-18 1983-07-18 Air-fuel ratio controlling method for internal- combustion engine

Publications (2)

Publication Number Publication Date
JPS6022033A JPS6022033A (en) 1985-02-04
JPH0251053B2 true JPH0251053B2 (en) 1990-11-06

Family

ID=15010939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12949783A Granted JPS6022033A (en) 1983-07-18 1983-07-18 Air-fuel ratio controlling method for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS6022033A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234242A (en) * 1985-04-10 1986-10-18 Fujitsu Ten Ltd Fuel supply device for internal-combustion engine
JP2517699B2 (en) * 1990-08-17 1996-07-24 三菱電機株式会社 Engine air-fuel ratio control device
DE102013206551A1 (en) 2013-04-12 2014-10-16 Robert Bosch Gmbh Method for adapting the transition compensation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection
JPS54108125A (en) * 1978-02-15 1979-08-24 Toyota Motor Corp Air fuel ratio controller for internal combustion engine
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine
JPS5848725A (en) * 1981-09-18 1983-03-22 Toyota Motor Corp Fuel-injection engine
JPS58106150A (en) * 1981-12-11 1983-06-24 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Ramda control method and apparatus of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection
JPS54108125A (en) * 1978-02-15 1979-08-24 Toyota Motor Corp Air fuel ratio controller for internal combustion engine
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine
JPS5848725A (en) * 1981-09-18 1983-03-22 Toyota Motor Corp Fuel-injection engine
JPS58106150A (en) * 1981-12-11 1983-06-24 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Ramda control method and apparatus of internal combustion engine

Also Published As

Publication number Publication date
JPS6022033A (en) 1985-02-04

Similar Documents

Publication Publication Date Title
US4886030A (en) Method of and system for controlling fuel injection rate in an internal combustion engine
EP0589517B1 (en) Method of predicting air flow into a cylinder
JP3498817B2 (en) Exhaust system failure diagnosis device for internal combustion engine
US4616619A (en) Method for controlling air-fuel ratio in internal combustion engine
JPH0737789B2 (en) Electronic control unit for multi-cylinder engine
US20060235604A1 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
US4499882A (en) System for controlling air-fuel ratio in internal combustion engine
JPH0226053B2 (en)
JPH0557420B2 (en)
JP3186250B2 (en) Air-fuel ratio control device for internal combustion engine
US6951205B2 (en) Method and arrangement for correcting a fuel quantity which is supplied to an internal combustion engine
JPH0251053B2 (en)
JPH0512539B2 (en)
JPH0425423B2 (en)
JPH0623547B2 (en) Air-fuel ratio control method for internal combustion engine
JP3138533B2 (en) Engine fuel control device
JPH08121221A (en) Deterioration detection device for oxygen concentration sensor
JP4186350B2 (en) Combustion state detection device for internal combustion engine
JPS60159347A (en) Air-fuel ratio controlling method of internal-combustion engine
JPH0425424B2 (en)
JPS61157741A (en) Detecting device of intake air quantity
JPH11159376A (en) Air-fuel ratio control device for internal combustion engine
JPS6027746A (en) Air-fuel ratio controlling method for internal- combustion engine
JPH0323330A (en) Fuel injection amount control device for internal combustion engine
JP2590941B2 (en) Fuel injection amount learning control device for internal combustion engine