JPS60159347A - Air-fuel ratio controlling method of internal-combustion engine - Google Patents

Air-fuel ratio controlling method of internal-combustion engine

Info

Publication number
JPS60159347A
JPS60159347A JP1285984A JP1285984A JPS60159347A JP S60159347 A JPS60159347 A JP S60159347A JP 1285984 A JP1285984 A JP 1285984A JP 1285984 A JP1285984 A JP 1285984A JP S60159347 A JPS60159347 A JP S60159347A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
transient
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1285984A
Other languages
Japanese (ja)
Inventor
Kimitaka Saito
公孝 斎藤
Tokio Kohama
時男 小浜
Tsuneyuki Egami
常幸 江上
Tsutomu Saito
斎藤 努
Masaru Takahashi
大 高橋
Kunihiko Sato
邦彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP1285984A priority Critical patent/JPS60159347A/en
Priority to US06/690,502 priority patent/US4633840A/en
Publication of JPS60159347A publication Critical patent/JPS60159347A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1487Correcting the instantaneous control value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1483Proportional component

Abstract

PURPOSE:To make highly accurate air-fuel ratio control come to fruition, by judging on whether an air-fuel ratio deviation valve at that time is effective or not on the basis of a fact that an adjustable speed variable is above the speccified adjustable speed variable boundary value or not at a time when a fuel compensation value in time of a transient is determined according to an adjustable speed state, and regulating the said compensation value. CONSTITUTION:A controlling method bearing the above caption seeks a fundamental fuel quantity at a control circuit CONT on the basis of each detection signal out of a suction air quantity detector 2, an engine speed sensor 3 and a water temperature sensor 4, and compensates the fuel quantity by a detection signal out of an air-fuel ratio sensor 6, thereby controlling valve opening time for a fuel injection valve 8. And, when an adjustable speed state is detected from output of a throttle sensor 91, fuel compensation in time of a transient takes place in this method. In this case, when an adjustable speed variable is more than the specified boundary value, an air-fuel ratio deviation to be found out in conformity with output of the air-fuel ratio sensor 6 is made available. On the other hand, when the adjustable speed variable is below the specified boundary value, the said air-fuel ratio deviation is made unavailable. Then, a compensation value for fuel compensation in time of a transient is regulated according to the air-fuel ratio deviation.

Description

【発明の詳細な説明】 技術分野 本発明は内燃機関の空燃比制御方法に関する。[Detailed description of the invention] Technical field The present invention relates to an air-fuel ratio control method for an internal combustion engine.

本発明による方法は自動車用エンジンに適用されるO 従来技術 従来、エンジン用の空燃比制御装置の一形式が知られて
いる。この形式の装置は、エンジンの燃料要求を表わす
エンジン温度を含む予め定められたエンジンの動作パラ
メータの値に応動して定常状態におけるエンジンの燃料
要求を表わす基本燃料信号を発生する手段と、出力増大
要求を表わす過渡的なエンジンの動作状態を検出する手
段と、エンジン温度の測定された値と検出された過渡的
なエンジンの動作状態に応動して、エンジン温度によっ
て決定される第1の値に等しく、検出されたエンジンの
過渡状態によって決定される初期値を有し、エンジンの
温度によって決定される速度で1に向って変化する因子
によって増大される補強促進信号を発生する手段と、基
本燃料信号および補強促進信号に従ってエンジンに燃料
を供給し、それによってエンジンの定常状態および過渡
状態のいずれにあっても、その要求に応じてエンジンに
燃料を供給する手段とを有する。この装置は、エンジン
の定常状態のみならず過渡状態において常に最適な空燃
比を確保して、エンジンの最適動作を得る燃料供給シス
テムを提供する(例えば、特開昭56−6034号参照
)。
The method according to the invention is applied to motor vehicle engines. Prior Art One type of air-fuel ratio control device for engines is known in the prior art. This type of device includes means for generating a basic fuel signal representative of the fuel demand of the engine at steady state in response to the values of predetermined engine operating parameters, including engine temperature, representative of the fuel demand of the engine; means for detecting a transient engine operating condition indicative of a demand; and in response to the measured value of engine temperature and the detected transient engine operating condition, a first value determined by the engine temperature; means for generating a reinforcement boosting signal having an initial value determined by the detected engine transient and increased by a factor varying towards unity at a rate determined by the engine temperature; and a base fuel. means for supplying fuel to the engine in accordance with the signal and the reinforcement promoting signal, thereby supplying fuel to the engine on demand during both steady state and transient conditions of the engine. This device provides a fuel supply system that always ensures an optimal air-fuel ratio not only in the steady state of the engine but also in the transient state, thereby obtaining the optimal operation of the engine (see, for example, Japanese Patent Laid-Open No. 56-6034).

前述の形式の装置においては、エンジンの経時変化、例
えば、パルプクリアランスやEFIにおけるインジェク
タ噴口部へのデポジット付着による特性変化、シリンダ
吸気弁の背面部等に付着するデポジット、すなわち、潤
滑油成分および燃焼生成物に由来する炭素微粒子等の粘
着物、にょる特性変化、ガソリン性状のバラツキによる
揮発性の変化が原因の特性変化等に対し考慮されておら
ず、これらエンジンの経時変化、ガソリンの性状変化に
よる加速時の空燃比の最適値からの変化を検出する手段
を有していないため、揮発性の悪いガソリンを使用した
シ、エンジンの経時変化によシ混合ガスの希薄化による
加速時のもたつき等のドライバビリティの悪化が生じた
り、逆に揮発性の良いガソリンを使用した場合には加速
時に混合ガスが濃くなることによる燃費悪化、エミッシ
目ン悪化が発生する可能性があるという問題点がある。
In the above-mentioned type of device, changes in the engine over time, such as changes in characteristics due to deposits on the injector nozzle in pulp clearance and EFI, and deposits on the back of the cylinder intake valve, i.e., lubricating oil components and combustion Changes in properties caused by stickiness such as carbon particles derived from products, changes in gas properties, and changes in volatility due to variations in gasoline properties are not taken into account, and changes in engine properties over time and changes in properties of gasoline are not considered. Since there is no means to detect changes in the air-fuel ratio from the optimum value during acceleration due to engine acceleration, sluggishness during acceleration due to engine aging and dilution of the mixed gas may occur. On the other hand, if gasoline with good volatility is used, the mixed gas becomes richer during acceleration, which may lead to poor fuel efficiency and poor emissions. be.

この場合の空燃比の変動状況特に吸気弁背面部にデポジ
ットが付着した場合の変動状況が第1図に図解されてい
る。第1図において、 A/F(01はデポジット付着
前の、 A/F (DEP)はデポジット付着後の空燃
比の変化状況をそれぞれあられす。
The fluctuations in the air-fuel ratio in this case, particularly when deposits are attached to the back surface of the intake valve, are illustrated in FIG. In Figure 1, A/F (01) shows the changes in the air-fuel ratio before deposits are attached, and A/F (DEP) shows the changes in the air-fuel ratio after deposits are attached.

NEはエンジン回転速度を、ACCは加速時点を、DE
Cは減速時点を、A/F′(OPT)は最適空燃比を、
A/F(LN)は希薄(リーン)側を、A/F (Re
 H)は濃厚(リッチ)側をそれぞれあられす。
NE is the engine rotation speed, ACC is the acceleration point, DE
C is the deceleration point, A/F' (OPT) is the optimum air-fuel ratio,
A/F (LN) is on the lean side, A/F (Re
H) is on the rich side.

また、インジェクタの目づまりについても定常において
は空燃比センサのフィードバックで補正できるが、加減
速時においては補正手段をもたないため同様の問題を生
ずる。また、エンジン、エアフローメータの製作時のば
らつきや経時変化によっても同様の問題を生ずる。
In addition, clogging of the injector can be corrected by feedback from the air-fuel ratio sensor in steady state, but the same problem occurs during acceleration and deceleration because there is no correction means. Similar problems also occur due to variations in the manufacturing process of the engine and air flow meter, and changes over time.

また内燃機関に使用するガソリンは一般に四季を通じ夏
用と冬用というように特性の異なったものが同一メーカ
から市販されている。ガソリンの揮発性を示す数値とし
てはリード蒸気圧とか蒸留特性とかが一般によく知られ
ているが、成るメーカーのガソリン性状を調べてもリー
ド蒸気圧は0.5 Q/Cll1〜0,86 即/cf
lまたlO%留出温度も40〜58℃とばらついておシ
、ガンリン性状の違いによる揮発性の変化によシ過渡時
の空燃比特性は大きく変化する。従来方式ではこうした
ガソリン性状のバラツキによる揮発性の変化が原因の空
燃比変動についても何ら考慮はなされていない。それゆ
え、この形式の装置においては、加減速時の空燃比を最
適化する手段を持っていないために、上記デポジット付
着等エンジンの経時変化や揮発性の悪いガソリンを使用
した場合には、加速時において杜、空燃比が希薄となシ
、もたつき等ドライバビリティの悪化を生じ、また減速
時においては、空燃比がよシ濃厚となシェミクシ曹ンの
悪化、燃費の悪化を招く。
Furthermore, gasoline used in internal combustion engines is generally commercially available from the same manufacturer with different characteristics for each season, such as for summer and winter use. The Reid vapor pressure and distillation characteristics are generally well known as numerical values that indicate the volatility of gasoline, but even if you look at the gasoline properties of the manufacturers, the Reid vapor pressure is 0.5 Q/Cll1~0.86 Immediate/ cf
Also, the 1O% distillation temperature varies from 40 to 58°C, and the air-fuel ratio characteristics during transient times vary greatly due to changes in volatility due to differences in the properties of the fuel. In the conventional system, no consideration is given to air-fuel ratio fluctuations caused by changes in volatility due to variations in gasoline properties. Therefore, this type of device does not have a means to optimize the air-fuel ratio during acceleration and deceleration, so if the engine changes over time such as deposits, or if low-volatility gasoline is used, acceleration may occur. During deceleration, the air-fuel ratio becomes lean, resulting in deterioration of drivability such as sluggishness, and during deceleration, the air-fuel ratio becomes rich, resulting in deterioration of driving performance and deterioration of fuel efficiency.

発明の目的 本発明の目的は、前述の従来形における問題点にかんが
み、空燃比偏差を検出する際に、加減速量が所定の加減
速境界値以上の時の空燃比偏差検出値を有効としたpま
た空燃比偏差を連続して成る回数以上検出した時の空燃
比偏差検出値において、その偏差方向が同一の時に有効
としそれ以外を無効とすることによシ安定かつ精度良く
空燃比偏差を検出し空燃比偏差を補うよう過渡時燃料補
正における補正量を調整するという着想にもとづき、よ
シ精度の高い過渡時空燃比学習制御を実現することにあ
る。
OBJECTS OF THE INVENTION In view of the problems with the conventional type described above, an object of the present invention is to make effective the detected air-fuel ratio deviation value when the amount of acceleration/deceleration is equal to or greater than a predetermined acceleration/deceleration boundary value when detecting the air-fuel ratio deviation. In addition, in the air-fuel ratio deviation detection value when the air-fuel ratio deviation is detected a number of consecutive times, the deviation direction is valid when the direction of deviation is the same, and invalid otherwise. The purpose of this invention is to realize highly accurate transient air-fuel ratio learning control based on the idea of detecting the air-fuel ratio deviation and adjusting the correction amount in the transient fuel correction to compensate for the air-fuel ratio deviation.

本発明においては、内燃機関の加減速状態に応じて、所
定間隔毎に過渡時燃料補正量を決定して該内燃機関に供
給される燃料量をこの補正量で補正するにあたシ、該内
燃機関の加減速量が所定の加減速量境界値以上のとき最
適空燃比からの空燃比偏差を有効として空燃比偏差を検
出し、所定の加減速量境界値以下のときは無効として空
燃比偏差を検出し、該有効として検出された空燃比偏差
に応じて過渡時燃料補正の補正量を調整する事を特徴と
する内燃機関の空燃比制御方法が提供されるO 前述の加減速量境界値としては1回転当シの吸入空気量
変化量、スロットル開度変化量、吸気管圧力変化量、エ
ンジン回転数変化量等を用いることができる。
In the present invention, when the transient fuel correction amount is determined at predetermined intervals according to the acceleration/deceleration state of the internal combustion engine and the amount of fuel supplied to the internal combustion engine is corrected using the correction amount, the When the acceleration/deceleration amount of the internal combustion engine is greater than or equal to a predetermined acceleration/deceleration amount boundary value, the air-fuel ratio deviation from the optimum air-fuel ratio is validated and the air-fuel ratio deviation is detected; when it is less than the predetermined acceleration/deceleration amount boundary value, the air-fuel ratio is determined to be invalid. There is provided an air-fuel ratio control method for an internal combustion engine, which is characterized by detecting a deviation and adjusting a correction amount of transient fuel correction according to the air-fuel ratio deviation detected as valid. As the value, the amount of change in intake air amount per revolution, the amount of change in throttle opening, the amount of change in intake pipe pressure, the amount of change in engine speed, etc. can be used.

実施例 本発明の一実施例としての内燃機関の空燃比制御方法を
行う装置が第2図に示される。第2図装置における制御
回路の構成が第3図に示される。
Embodiment An apparatus for performing an air-fuel ratio control method for an internal combustion engine as an embodiment of the present invention is shown in FIG. The configuration of the control circuit in the device shown in FIG. 2 is shown in FIG.

第2図装置において、lは自動車の動力源である公知の
電子制御燃料噴射式6気筒火花点火式エンジン、2はエ
ンジンlに吸入される空気量を検出する公知の吸入空気
量検出装置、3はエンジンlの回転数を検出する公知の
回転数センサS 4はエンジンlの冷却水温を測定する
公知の水温センサ、5はエンジンlの排気通路、6は排
気通路5に設けた公知の空燃比センナである。
In the device shown in FIG. 2, 1 is a known electronically controlled fuel injection 6-cylinder spark ignition engine that is the power source of the automobile, 2 is a known intake air amount detection device that detects the amount of air taken into the engine 1, and 3 is a known rotation speed sensor S that detects the rotation speed of the engine L; 4 is a known water temperature sensor that measures the cooling water temperature of the engine L; 5 is an exhaust passage of the engine L; 6 is a known air-fuel ratio provided in the exhaust passage 5 It's Senna.

7はエンジンlの吸気管、8は吸気管7に設けた公知の
電磁式燃料噴射弁、9はエンジンlに吸入される空気量
をコントロールするスロットル弁、91はスロットル弁
9の動きを検出する公知のスロットルセンナ、 C0N
Tはエンジンlに供給する燃料量を算出して燃料噴射弁
8を作動させる制御回路である。
7 is an intake pipe of the engine l, 8 is a known electromagnetic fuel injection valve provided in the intake pipe 7, 9 is a throttle valve that controls the amount of air taken into the engine l, and 91 detects the movement of the throttle valve 9. Known throttle sensor, C0N
T is a control circuit that calculates the amount of fuel to be supplied to the engine l and operates the fuel injection valve 8.

エンジンlに供給される燃料量は、エンジンが定常状態
の時は、制御回路C0NTが、吸入空気量検出装置2、
回転数センサ3、水温センサ4の各検出信号から基本燃
料量としてめ、さらに空燃比センサ6の信号からめたフ
ィードバック補正量を補正して、燃料噴射弁8の開弁時
間としてめる。
When the engine is in a steady state, the amount of fuel supplied to the engine 1 is determined by the control circuit C0NT, the intake air amount detection device 2,
The basic fuel amount is determined from the detection signals of the rotational speed sensor 3 and the water temperature sensor 4, and the feedback correction amount determined from the signal of the air-fuel ratio sensor 6 is further corrected to determine the opening time of the fuel injection valve 8.

また制御回路C0NTはスロットルセンサ91または吸
入空気量検出器2によりエンジンlの加減速状態が検出
された時は定常時にめた燃料量に対し過渡時燃料補正を
行う様に構成しである0第3図に示されるように、制御
回路C0NTは、入力系統として、吸気量センサ2およ
び水温センサ4からの信号を受けるマルチプレクサi0
1゜ADコンバータl 02%空燃比センサ6の信号を
受ける整形回路103、該整形回路およびスロットルセ
ンサ91からの信号を受ける入力ボート104、回転セ
ンサ3の信号を受ける入力カウンタ105を有する。制
御回路はまた、ノクス106、ROMl07、CPU1
08、RAM109. 出力カウンタ110、およびパ
ワー駆動部111を有する。
The control circuit C0NT is configured to perform transient fuel correction on the steady state fuel amount when the acceleration/deceleration state of the engine I is detected by the throttle sensor 91 or the intake air amount detector 2. As shown in FIG. 3, the control circuit C0NT includes a multiplexer i0 that receives signals from the intake air amount sensor 2 and the water temperature sensor 4 as an input system.
1° AD converter l 02% It has a shaping circuit 103 that receives the signal from the air-fuel ratio sensor 6, an input port 104 that receives the signal from the shaping circuit and the throttle sensor 91, and an input counter 105 that receives the signal from the rotation sensor 3. The control circuit also includes Nox 106, ROM107, CPU1
08, RAM109. It has an output counter 110 and a power driver 111.

パワー駆動部111の出力は燃料噴射弁8に供給される
The output of the power drive section 111 is supplied to the fuel injection valve 8.

制御回路C0NTとしては、マイクロコンビエータ形式
のものを用いることができ、例えばトヨタTCC8形式
のものを用いることができる。制御回路CONTには、
空燃比偏差検出機能および過渡時燃料補正機能が追加さ
れている。
As the control circuit C0NT, a micro combinator type circuit can be used, and for example, a Toyota TCC8 type circuit can be used. In the control circuit CONT,
An air-fuel ratio deviation detection function and a transient fuel correction function have been added.

第2図装置の動作原理が第4図〜第8図を参照しつつ説
明される。第4図は空燃比センサ信号に関する波形図、
第5図は空燃比センサ信号演算流れ図である。第6図は
加速判定の状況を説明する波形図、第7図はLIM(Δ
Q/N )と学習精度との関係を示す特性図、第8図は
LIM (ΔQ2イN)と学習頻度との関係を示す特性
図である。
The principle of operation of the device shown in FIG. 2 will be explained with reference to FIGS. 4-8. Figure 4 is a waveform diagram regarding the air-fuel ratio sensor signal.
FIG. 5 is an air-fuel ratio sensor signal calculation flowchart. Figure 6 is a waveform diagram explaining the situation of acceleration determination, and Figure 7 is LIM (Δ
FIG. 8 is a characteristic diagram showing the relationship between LIM (ΔQ2-N) and learning frequency.

エンジン排気ガス成分を検出する空燃比センサの信号を
基に、第4図、第5図に示す処理でめた基本噴射量補正
値vV)の挙動から過渡時空燃比学習制御を実施する場
合、第6図に示す様に過渡時空燃比変動D(A/F)を
DV(Ei5−Rカら検出し、前記変動が加速状態で発
生したのかを判定する必要がある。この加速判定におい
てQ/N (1回転当シの吸入空気量)の変化ΔΦ乍が
所定の加速境界値LIM(ΔQ/N )以上の状態を加
速と判定し学習を行う、すなわちΔQ/N≧LIM(Δ
Q2イN)の時加直と判定する、と第7図、第8図に示
す様にLIM渾Q/N)の増加に伴い学習精度が向上す
る。−I5LIM(ΔQ/N)の増加に伴い学習頻度が
低下す5ためLIM(jQ/N)を過大に大きい値とす
るこ=はできないが、学習誤動作によるエンジントラ−
′ルを考慮すると、学習時の加速量判定をある程tの加
速以上に限定し学習精度を向上させた方が良い。また、
本学習制御において増量過多判定時、または増量不足判
定時、すぐ学習値を変更してもいいが、学習精度向上の
為、同じ判定がn回(n≧2)連続した時に学習値を変
更することで、誤判定により学習値が変更されないなど
、大幅な制御精度向上を図ることができる@ 加減速時空燃比挙動、すなわち、加速時における最適空
燃比A/F(OPT)からの空燃比希薄側および濃厚側
へのそれぞれの最大偏差値D (A/F(LN) ) 
、 D (A/F (RCi() )、と加減速時空燃
比センサの挙動、すなわち、加減速時空燃比センサ6が
混合ガスの希薄および濃厚を検出している時間、″)ま
シ加速時リーン継続時間T(LN)および減速時リッチ
継続時間T (RCH) 、との関係が第9図の波形図
および第1O図の特性図に示される。
When performing transient air-fuel ratio learning control based on the behavior of the basic injection amount correction value vV) determined in the process shown in Figs. 4 and 5 based on the signal of the air-fuel ratio sensor that detects engine exhaust gas components, As shown in Figure 6, it is necessary to detect the transient air-fuel ratio fluctuation D (A/F) from DV (Ei5-R) and determine whether the fluctuation occurs during acceleration.In this acceleration determination, Q/N A state in which the change ΔΦ in (amount of intake air per revolution) is greater than or equal to a predetermined acceleration boundary value LIM (ΔQ/N) is determined to be acceleration, and learning is performed. In other words, ΔQ/N≧LIM(Δ
When it is determined that the adjustment is correct when Q2iN), the learning accuracy improves as the LIM arm Q/N) increases, as shown in FIGS. 7 and 8. - LIM (jQ/N) cannot be set to an excessively large value because the learning frequency decreases as LIM (ΔQ/N) increases, but engine trouble due to learning malfunctions
Considering this, it is better to limit the acceleration amount judgment during learning to a certain extent above the acceleration of t to improve the learning accuracy. Also,
In this learning control, when it is determined that the amount has increased too much or not enough, the learned value can be changed immediately, but in order to improve learning accuracy, the learned value must be changed when the same judgment is made n times in a row (n≧2). By doing so, it is possible to significantly improve control accuracy by preventing learning values from being changed due to erroneous judgments. and the respective maximum deviation values D (A/F(LN)) to the rich side
, D (A/F (RCi() ), and the behavior of the air-fuel ratio sensor during acceleration/deceleration, that is, the time during which the air-fuel ratio sensor 6 during acceleration/deceleration detects the leanness and richness of the mixed gas, ''). The relationship between the duration time T (LN) and the deceleration rich duration time T (RCH) is shown in the waveform diagram of FIG. 9 and the characteristic diagram of FIG. 1O.

第9図においてACCは加速を%DECは減速を、5(
6)は空燃比センサ信号を表わす。
In Figure 9, ACC is acceleration, %DEC is deceleration, and 5(
6) represents the air-fuel ratio sensor signal.

最適空燃比からの空燃比偏差の一例として、吸気系に付
着したデポジット量W(DEP)と加減速時における空
燃比置火偏差値D [A/F (LN) ) 。
An example of the air-fuel ratio deviation from the optimum air-fuel ratio is the deposit amount W (DEP) attached to the intake system and the air-fuel ratio firing deviation value D [A/F (LN)) during acceleration and deceleration.

DCνF (RCH) )の関係が第11図、第12図
に示される。第9図ないし第12図から加速時リーン継
続時間TL6るいは減速時リッチ継続時間TRを測定す
る事で、デポジット付着量対応値が検出可能である事が
判る。なお第9〜第12図のデータの調査にあたっては
、トヨタ自動車株式会社にて製作の5M−G型エンジン
が用いられた。
The relationship of DCνF (RCH) is shown in FIGS. 11 and 12. It can be seen from FIGS. 9 to 12 that by measuring the lean duration TL6 during acceleration or the rich duration TR during deceleration, the value corresponding to the deposit amount can be detected. In investigating the data shown in Figures 9 to 12, a 5M-G type engine manufactured by Toyota Motor Corporation was used.

制御回路CONTの制御プログラムの概略フローチャー
トが第13図に示される。このプログラムは、電子制御
燃料噴射を行うためのもので、ステップ5100〜81
08より成る。8100においてスタートし、8101
において、メモリー、l出力ボートの初期化を行う。8
102では、吸入空量のデータQとエンジン回転数デー
タNと水温センサのデータθ7から、基本燃料噴射量を
計算する。8103では、空燃比センサ6の信号を用い
空燃比が一定となる様にフィードバック制御を行って基
本燃料噴射量を補正する。
A schematic flowchart of the control program of the control circuit CONT is shown in FIG. This program is for performing electronically controlled fuel injection, and steps 5100 to 81
Consists of 08. Start at 8100, 8101
In this step, memory and output ports are initialized. 8
In step 102, the basic fuel injection amount is calculated from the intake air amount data Q, the engine rotation speed data N, and the water temperature sensor data θ7. At 8103, feedback control is performed using the signal from the air-fuel ratio sensor 6 so that the air-fuel ratio is constant, and the basic fuel injection amount is corrected.

8104で性、加速時空燃比偏差検出を行い、5ios
では過渡時燃料補正比の演算を行う。
8104 detects air-fuel ratio deviation during acceleration, and 5ios
Now, calculate the transient fuel correction ratio.

8106でエンジン1回転の判別をし、エンジン1回転
毎に8107において1回の燃料噴射弁8の開弁時間を
、フィードバック制御によシ補正された基本燃料量と過
渡時燃料補正比とから計算してめ、8108で燃料噴射
弁制御を行う@第13図のフローチャートにおける空燃
比偏差検出処理の詳細なフローチャートが第14図に、
過渡時燃料補正の詳細なフローチャートが第15図に示
される。
At 8106, one revolution of the engine is determined, and at 8107, for each revolution of the engine, the opening time of the fuel injection valve 8 is calculated from the basic fuel amount corrected by feedback control and the transient fuel correction ratio. Finally, a detailed flowchart of the air-fuel ratio deviation detection process in the flowchart of FIG. 13, which controls the fuel injection valve at 8108, is shown in FIG.
A detailed flowchart of transient fuel correction is shown in FIG.

第14図に示す様に、一定時間(例えば32.7ms+
)毎に処理を行う。空燃比偏差を検出する方法として、
空燃比センサ6の出力信号を一定電圧レベルと比較し、
混合ガスの希薄(リーン)状態および濃厚(リッチ)状
態の2値を検出し、加速時のリーン継続時間T(LN)
およびリッチ継続時間T(RCH)を測定する方法を用
いる。
As shown in Figure 14, for a certain period of time (for example, 32.7ms +
). As a method to detect air-fuel ratio deviation,
Comparing the output signal of the air-fuel ratio sensor 6 with a constant voltage level,
Detects the dilute (lean) state and rich (rich) state of the mixed gas, and calculates the lean duration T (LN) during acceleration.
and a method of measuring the rich duration time T (RCH).

例えばデポジット付着の影響は、冷却水温が低温時のみ
生じ、またデポジット付着量の推定を安定かつ精度良く
するため、8202.8202’。
For example, the influence of deposits occurs only when the cooling water temperature is low, and in order to make the estimation of the amount of deposits stable and accurate, 8202.8202'.

8203.5204で冷却水温80’C未満、一定の加
速以上加速後5秒以内、エンジン回転数90Orpm〜
2000rpmの場合のり−ン継続時間T(LN)、リ
ッチ継続時間T(RCH)を測定する。またリッチ、リ
ーンが交互に現われる様、8205で、フィーFバック
制御中に限定する。
8203.5204, cooling water temperature less than 80'C, acceleration above a certain level and within 5 seconds after acceleration, engine rotation speed 90 Orpm ~
In the case of 2000 rpm, the lean duration time T (LN) and the rich duration time T (RCH) are measured. Further, in 8205, it is limited to feedback control so that rich and lean appear alternately.

5206でリッチ、リーンを判別する。リーンの場合5
207において、リーンタイムカウンタを+1し、T(
LN)を32.7 ms年単位計数する。
In step 5206, it is determined whether it is rich or lean. For Lean 5
At 207, the lean time counter is incremented by 1 and T(
LN) is counted in units of 32.7 ms per year.

次に8208で、リッチタイムカウンタの値が一定値(
リッチタイムリミツト)を越えているか判断し、越えて
いればリッチとみなし8208−Aに進む。8208−
AでBC=1の時は前回判別がリッチである為5209
でリッチ補正カウンタを+1する。一方8208−Aで
Bc=+io時は前回判別がリッチでない為、リッチ補
正カウンタを更新することなく、8208−BでBC=
1とし、8210に進む。次にステップ8210でリッ
チタイムカウンタを0とする。8206でリッチと判別
した場合、同様に8211〜8214゜8212−A、
8212−Bでリッチタイムカウンタの+1と、リーン
タイムの判断を行う。
Next, in 8208, the value of the rich time counter is set to a constant value (
It is determined whether the rich time limit (rich time limit) has been exceeded, and if so, it is considered rich and the process proceeds to 8208-A. 8208-
When BC=1 in A, the previous discrimination is rich, so 5209
The rich correction counter is incremented by 1. On the other hand, when Bc=+io in 8208-A, since the previous determination was not rich, the rich correction counter is not updated and BC=+io in 8208-B.
1 and proceed to 8210. Next, in step 8210, the rich time counter is set to 0. If 8206 is determined to be rich, 8211 to 8214°8212-A,
At 8212-B, the rich time counter is increased by 1 and lean time is determined.

前述の8206〜5214−でめたリーン補正カウンタ
およびリッチ補正カウンタの値からデポジット付着およ
び剥離を推定できる。すなわち、エンジンの正常状態か
ら異常状態への変化および異常状態から正常状態への復
帰を推定できる。
Deposit adhesion and peeling can be estimated from the values of the lean correction counter and rich correction counter determined in steps 8206 to 5214- described above. That is, it is possible to estimate a change in the engine from a normal state to an abnormal state and a return from an abnormal state to a normal state.

第15図に示す過渡時燃料補正においては、8301で
吸入空気量検出装置2からの吸入空気量信号Qと、回転
数検出装置3からの回転数信号Nとからめたエンラフ1
回転当シの吸入空気量Q/Nをめる。5302で以下の
処理を一定時間毎、例えば32.7ms毎、に行うため
の判別を行う。
In the transient fuel correction shown in FIG.
Determine the amount of intake air Q/N for the rotation counter. At 5302, a determination is made to perform the following process at regular intervals, for example, every 32.7 ms.

5303において補正係数08およびなまし係数Cbを
リッチ補正カウンタおよびリーン補正カウンタ6関数と
してめる。っまシ補正係数ca、なまし係数Cbを加速
時の空燃比偏差に対応した値としてめる。
In 5303, the correction coefficient 08 and the smoothing coefficient Cb are determined as functions of the rich correction counter and the lean correction counter 6. The smoothing correction coefficient ca and the smoothing coefficient Cb are set as values corresponding to the air-fuel ratio deviation during acceleration.

5304においてΦ(ト)になましをかけた、(Q/N
)1を次式よ請求める。
In 5304, Φ(g) was smoothed, (Q/N
) 1 can be requested by the following formula.

(vN)i = (Q/N)i−1+ (Q/N−(Q
/N)i−t )/Cbただし32.7ms前に計算し
た(vN)lを(Q/N)i−1とする。
(vN)i = (Q/N)i-1+ (Q/N-(Q
/N)i-t)/Cb However, let (vN)l calculated 32.7 ms ago be (Q/N)i-1.

8305 K:j、−イテ前記Q/N 、 (’Q/N
)i 、 Ca、および冷却水温で定まる値によシ過渡
時燃料補正比f(AEW)の演算を次式にょシ行う。
8305 K:j, -ite Q/N, ('Q/N
) i, Ca, and the cooling water temperature, the transient fuel correction ratio f(AEW) is calculated using the following formula.

t (AEW) = (Q/N−(Q/N)x ) x
Ca XKここでKは、エンジン冷却に対する補正比で
あり予めマツプに記憶しておく。またf(AEW)は、
いの変化により正負両方の値をとる。上記過渡−時燃料
補正比f (AEW)を、基本燃料量に乗することによ
り、補正を行う。
t (AEW) = (Q/N-(Q/N)x) x
Ca XK Here, K is a correction ratio for engine cooling and is stored in the map in advance. Also, f(AEW) is
It takes both positive and negative values depending on the change in value. Correction is performed by multiplying the basic fuel amount by the transient fuel correction ratio f (AEW).

したがって、第16図に示すように、(リスロットルを
開けて加速した場合(THはスロットル開度)、C2)
PA記QlN値モ増加シ、(3)前記(Q/N)i 値
も徐々に増加し、(4)過渡時燃料補正比f (AIW
)が図示されるような波形をとって増量され、(5)燃
料噴射弁開弁時間Uが決定され、燃料を供給する。
Therefore, as shown in Fig. 16, (when accelerating by opening the rethrottle (TH is throttle opening), C2)
(3) The (Q/N)i value also gradually increases, and (4) the transient fuel correction ratio f (AIW
) is increased with the waveform shown, (5) the fuel injection valve opening time U is determined, and fuel is supplied.

また、(6)スロットルを閉じて減速した場合、(7)
前記ψ乍値は減少し、(8)前記(Q/N)l値も徐々
に減少し、(9)過渡時燃料補正比f(Aff)が図示
されるような波形をとって減量され、顛燃料噴射弁開弁
時間Uが決定され、燃料を供給する。 −第2図装置の
動作結果の一例が第17図Q、ω)に示される。第17
図(4)、(6)においては、エンジン回転数を110
0Orp、冷却水温を30℃とした。
Also, if (6) the throttle is closed to decelerate, (7)
The ψ value decreases, (8) the (Q/N)l value also gradually decreases, and (9) the transient fuel correction ratio f (Aff) decreases in a waveform as shown in the figure. Then the fuel injection valve opening time U is determined and fuel is supplied. - An example of the operation results of the device shown in FIG. 2 is shown in FIG. 17 Q, ω). 17th
In Figures (4) and (6), the engine speed is 110
0Orp, and the cooling water temperature was 30°C.

加速はスロットル操作によル行い、加速条件は吸気圧[
−400露lHgJから吸気圧[−100絽均dへの急
上昇とした。(4)はガソリンAを用いた場合の時間に
対する空燃比の状況をあられす。ω)はガソリンBを用
いた場合の時間に対する空燃比の状況t−iられし、第
2図装置によシ学習制御がなされた結果の状況をあられ
す。
Acceleration is performed by throttle operation, and the acceleration conditions are intake pressure [
The intake pressure suddenly increased from -400 lHgJ to -100 lHgJ. (4) shows the air-fuel ratio versus time when gasoline A is used. ω) shows the air-fuel ratio situation with respect to time when gasoline B is used, and shows the situation as a result of the learning control performed by the device in FIG.

第17図(4)、ω)に示されるように、加速時の空燃
比はガソリンA(10%留出温度47℃、リード蒸気圧
0.7211A)でほぼ最適空燃比になっていたが、ガ
ソリン性状の異なる揮発性の悪いガソリンB(10%留
出温度54℃、リード蒸気圧0.6KF15f)を用い
た場合には加速時の空燃比は希薄化してしまうが第2図
装置において学習がなされた結果、はぼ7回目でガソリ
ンAを用いたと同様の空燃比特性を得ることが可能とな
る。この際補正量を大きくすれば学習はさらに少ない回
数で達成できるのは当然である。
As shown in Figure 17 (4), ω), the air-fuel ratio during acceleration was almost the optimum air-fuel ratio for gasoline A (10% distillation temperature 47°C, Reid vapor pressure 0.7211A); If gasoline B with different gasoline properties and poor volatility is used (10% distillation temperature 54℃, Reid vapor pressure 0.6KF15f), the air-fuel ratio during acceleration will be diluted, but the learning in the device shown in Figure 2 is not possible. As a result, it becomes possible to obtain the same air-fuel ratio characteristics as when gasoline A is used for about the seventh time. At this time, it is natural that if the amount of correction is increased, learning can be accomplished in an even smaller number of times.

ここで、第7図、第8図をみると、第14図における空
燃比偏差を検出する際の限定条件であるステップ820
2−A17)加速量境界値LIM(ΔvN)と第2図装
置においてLA÷4モードコールド1山目を走行し学習
を行った時の学習精度と学習頻度を調べた結果を示す特
性図であフ、加速量は吸入空気量の変化量ΔQ/N(1
/reりから検出しΔΦ乍≧LIM(^しN)の時学習
を行なうものである。
Now, looking at FIGS. 7 and 8, step 820 is the limiting condition for detecting the air-fuel ratio deviation in FIG. 14.
2-A17) Acceleration amount boundary value LIM (ΔvN) and Figure 2 is a characteristic diagram showing the results of investigating the learning accuracy and learning frequency when learning was performed by driving the first mountain in LA ÷ 4 mode cold in the device. F, the amount of acceleration is the amount of change in intake air amount ΔQ/N (1
/re is detected and learning is performed when ΔΦ乍≧LIM (^ and N).

これらの特性図からもうかがえるように、LIM (^
しN)を0.04に設定することにより、学習精度が9
0%以上確保でき、学習頻度も7回と得られ安定して精
度良く学習をさせることができる。しかし本発明におい
てはLIM(ΔQ/N)を特に0.04に限定するもの
ではなく学習精度を優先させるなら、 0.04以上に
設定することも可能である。
As can be seen from these characteristic diagrams, LIM (^
By setting N) to 0.04, the learning accuracy is 9.
0% or more can be secured, and the learning frequency can be obtained as 7 times, making it possible to perform stable and accurate learning. However, in the present invention, LIM (ΔQ/N) is not particularly limited to 0.04, but can be set to 0.04 or more if learning accuracy is prioritized.

発明の効果 本発明によれば、空燃比偏差を検出する際に、一定の加
減速量以上の時の空燃比偏差検出値を有効とし、または
、空燃比偏差を連続しである回数以上検出した時の空燃
比偏差検出値においてその偏差方向が同一の時に有効と
しそれ以外を無効とすることが行われ、安定かつ精度良
く空燃比偏差を検出し空燃比偏差を補うよう過渡時燃料
補正における補正量の調整が行われ、より精度の高い過
渡時空燃比学習制御が実現する。
Effects of the Invention According to the present invention, when detecting an air-fuel ratio deviation, the air-fuel ratio deviation detection value when the acceleration/deceleration amount is a certain amount or more is made valid, or the air-fuel ratio deviation is detected continuously a certain number of times or more. In the air-fuel ratio deviation detected value, it is valid when the direction of the deviation is the same, and invalidated otherwise. Correction in the transient fuel correction is performed to stably and accurately detect the air-fuel ratio deviation and compensate for the air-fuel ratio deviation. The amount is adjusted, realizing more accurate transient air-fuel ratio learning control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、デポジット付着前後の加減速時空燃比変化を
示す波形図、 第2図は、本発明の一実施例としての内燃機関の空燃比
制御方法を行う装置を示す図、第3図は、第2図装置に
おける制御回路の構成を示す図、 第4図は空燃比センサ信号に関する波形を示す波形図。 第5図は空燃比センサ信号演算の流れ図。 第6図鉱加速判定の状況を説明する波形図、第7図はL
IM (ΔQ/N )と学習精度との関係を示す特性図
。 第8図はLIM(ΔQ/N)と学習頻度との関係を示す
特性図。 第9図、第10図は、加減速時空燃比挙動と。 、加減速時空燃比センサの挙動の関係を示す波形図およ
び特性図、 第11図、第12図は、吸気系に付着したデポジット量
と加減速時空燃比挙動の関係を示す構造図および特性図
、 第13図は第2図装置における演算流れを示す流れ図、 第14図はデポジット量対応値検出演算の詳細を示す流
れ図、 第15図は過渡時燃料補正の詳細を示す流れ図、第16
図は減速時の燃料噴射の状況を示す波形図、 第17図(4)、@は第2図装置の動作結果の1例を示
す図、である。 (符号の説明) ■・・・エンジン、2・・・吸入空気量検出装置、3・
・・回転数センサ、4・・・水温センサ、5・・・排気
通路、6・・・空燃比センサ、7・・・吸気管%8・・
・燃料噴射弁、9・・・スロットル弁、91・・・スロ
ットルセンサ、C0NT・・・制御回路。 特許出願人 株式会社日本自動車部品総合研究所 トヨタ自動車株式会社 特許出願代理人 弁理士 青 木 朗 弁理士 西 舘 和 之 弁理士 松 下 操 弁理士 山 口 昭 之 弁理士 西 山 雅 也 4S 6図 第7図 第8図 −LIM(−Q/N) −LIM(=Q/N)第9図 N510図 (sec) 第11図 工゛1し12 (2?1 −W(DEP) 第15図 第16図 T)−1 第1′ 〔ガ ソ リ ン A 〕 〔ガソリンB〕 学習制御前 3回目 5回目 学習終了(7回1コ)
FIG. 1 is a waveform diagram showing changes in air-fuel ratio during acceleration and deceleration before and after deposition of deposits, FIG. 2 is a diagram showing an apparatus for performing an air-fuel ratio control method for an internal combustion engine as an embodiment of the present invention, and FIG. , FIG. 2 is a diagram showing the configuration of a control circuit in the device, and FIG. 4 is a waveform diagram showing waveforms related to air-fuel ratio sensor signals. FIG. 5 is a flow chart of air-fuel ratio sensor signal calculation. Figure 6 is a waveform diagram explaining the situation of ore acceleration determination, Figure 7 is L
A characteristic diagram showing the relationship between IM (ΔQ/N) and learning accuracy. FIG. 8 is a characteristic diagram showing the relationship between LIM (ΔQ/N) and learning frequency. Figures 9 and 10 show air-fuel ratio behavior during acceleration and deceleration. , a waveform diagram and a characteristic diagram showing the relationship between the behavior of the air-fuel ratio sensor during acceleration and deceleration; FIGS. 13 is a flowchart showing the calculation flow in the device shown in FIG. 2; FIG. 14 is a flowchart showing details of the deposit amount corresponding value detection calculation; FIG. 15 is a flowchart showing details of transient fuel correction;
The figure is a waveform diagram showing the situation of fuel injection during deceleration, Figure 17 (4), @ is a diagram showing an example of the operation result of the device shown in Figure 2. (Explanation of symbols) ■...Engine, 2...Intake air amount detection device, 3.
... Rotation speed sensor, 4... Water temperature sensor, 5... Exhaust passage, 6... Air-fuel ratio sensor, 7... Intake pipe %8...
- Fuel injection valve, 9... Throttle valve, 91... Throttle sensor, C0NT... Control circuit. Patent Applicant Japan Auto Parts Research Institute Co., Ltd. Toyota Motor Corporation Patent Application Agent Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Masashi Matsushita Patent Attorney Akira Yamaguchi Masaya Nishiyama 4S Figure 6 Fig. 7 Fig. 8 -LIM (-Q/N) -LIM (=Q/N) Fig. 9 N510 (sec) Fig. 11 Figure 16 T)-1 1st ′ [Gasoline A] [Gasoline B] Before learning control 3rd time 5th time Learning completed (7 times 1)

Claims (1)

【特許請求の範囲】 1、内燃機関の加減速状態に応じて、所定間隔毎に過渡
時燃料補正量を決定して該内燃機関に供給される燃料蓋
をこの補正量で補正するにあたり、該内燃機関の加減速
量が所定の加減速量境界値以上のとき最適空燃比からの
空燃比偏差を有効とじ−て空燃比偏差を検出し、所定の
加減速量境界値以下のときは無効として空燃比偏差を検
出し、該有効として検出された空燃比偏差に応じて過渡
時燃料補正の補正量を調整する事を特徴とする内燃機関
の空燃比制御方法。 2、該過渡時燃料補正は、所定時間間隔毎に過渡時燃料
補正量を決定する過渡時燃料補正である、特許請求の範
囲第1項記載の方法。 3、該過渡時燃料補正は、該内燃機関の回転に同期して
過渡時燃料補正量を決定する過渡時燃料補正である、特
許請求の範囲第1項記載の方法。 4、該過渡時燃料補正は、補正量決定因子として吸入空
気量を用いる過渡時燃料補正である、特許請求の範囲第
1項記載の方法。 5、該過渡時燃料補正は、補正量決定因子としてスロッ
トル開度あるいは吸気管圧力を用いる過渡時燃料補正で
ある、特許請求の範囲第1項記載の方法。 6、該空燃比偏差検出は、空燃比センサによる空燃比偏
差検出である、特許請求の範囲第1項記載の方法。 7、該空燃比偏差は、該内燃機関の吸気系に付着するデ
ポジットによフ生ずる空燃比偏差である、特許請求の範
囲第1項記載の方法。 8、該空燃比偏差は、該内燃機関に燃料を供給するイン
ジェクタの噴口部に付着するデポジットによシ生ずる空
燃比偏差である、特許請求の範囲第1項記載の方法◇ 9、該空燃比偏差は、該内燃機関への吸入空気量を検出
する吸入空気量検出手段の製作時のばらつきまたは経時
変化による特性変化から生じた空燃比偏差である、特許
請求の範囲第1項記載の方法。 lO1該空燃比偏差は、該内燃機関の製作時のばらつき
または経時変化から生じた空燃比偏差である、特許請求
の範囲第1項記載の方法。 11、該空燃比偏差が該内燃機関で使用する燃料性状の
ばらつきまたは性状変化から生じた空燃比偏差である、
特許請求の範囲第1項記載の方法。
[Claims] 1. In determining the transient fuel correction amount at predetermined intervals according to the acceleration/deceleration state of the internal combustion engine and correcting the fuel lid supplied to the internal combustion engine with this correction amount, When the acceleration/deceleration amount of the internal combustion engine is above a predetermined acceleration/deceleration amount boundary value, the air-fuel ratio deviation from the optimum air-fuel ratio is considered valid and the air-fuel ratio deviation is detected, and when it is below the predetermined acceleration/deceleration amount boundary value, it is invalidated. An air-fuel ratio control method for an internal combustion engine, comprising: detecting an air-fuel ratio deviation; and adjusting a correction amount of transient fuel correction according to the air-fuel ratio deviation detected as valid. 2. The method according to claim 1, wherein the transient fuel correction is a transient fuel correction that determines a transient fuel correction amount at every predetermined time interval. 3. The method according to claim 1, wherein the transient fuel correction is a transient fuel correction that determines a transient fuel correction amount in synchronization with the rotation of the internal combustion engine. 4. The method according to claim 1, wherein the transient fuel correction is a transient fuel correction using an intake air amount as a correction amount determining factor. 5. The method according to claim 1, wherein the transient fuel correction is a transient fuel correction using throttle opening or intake pipe pressure as the correction amount determining factor. 6. The method according to claim 1, wherein the air-fuel ratio deviation detection is performed using an air-fuel ratio sensor. 7. The method according to claim 1, wherein the air-fuel ratio deviation is an air-fuel ratio deviation caused by deposits attached to the intake system of the internal combustion engine. 8. The method according to claim 1, wherein the air-fuel ratio deviation is an air-fuel ratio deviation caused by deposits attached to the nozzle part of an injector that supplies fuel to the internal combustion engine. 9. The air-fuel ratio 2. The method according to claim 1, wherein the deviation is an air-fuel ratio deviation resulting from variations in manufacturing of the intake air amount detection means for detecting the amount of intake air into the internal combustion engine or changes in characteristics due to changes over time. 10. The method of claim 1, wherein the air-fuel ratio deviation is an air-fuel ratio deviation resulting from manufacturing variations or changes over time of the internal combustion engine. 11. The air-fuel ratio deviation is an air-fuel ratio deviation resulting from variations or changes in the properties of the fuel used in the internal combustion engine;
A method according to claim 1.
JP1285984A 1984-01-14 1984-01-28 Air-fuel ratio controlling method of internal-combustion engine Pending JPS60159347A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1285984A JPS60159347A (en) 1984-01-28 1984-01-28 Air-fuel ratio controlling method of internal-combustion engine
US06/690,502 US4633840A (en) 1984-01-14 1985-01-10 Method for controlling air-fuel ratio in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1285984A JPS60159347A (en) 1984-01-28 1984-01-28 Air-fuel ratio controlling method of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60159347A true JPS60159347A (en) 1985-08-20

Family

ID=11817132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1285984A Pending JPS60159347A (en) 1984-01-14 1984-01-28 Air-fuel ratio controlling method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60159347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261629A (en) * 1986-04-30 1987-11-13 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261629A (en) * 1986-04-30 1987-11-13 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine

Similar Documents

Publication Publication Date Title
US4676215A (en) Method and apparatus for controlling the operating characteristic quantities of an internal combustion engine
US4646697A (en) Method and apparatus for controlling the operating characteristic quantities of an internal combustion engine
US4442812A (en) Method and apparatus for controlling internal combustion engines
US6505594B1 (en) Control apparatus for internal combustion engine and method of controlling internal combustion engine
US4616619A (en) Method for controlling air-fuel ratio in internal combustion engine
JPS60182333A (en) Fuel air mixture controller of internal combustion engine
US4499882A (en) System for controlling air-fuel ratio in internal combustion engine
US5003955A (en) Method of controlling air-fuel ratio
JPH0226053B2 (en)
EP0216111B1 (en) Fuel injection system and control method therefor
US5065716A (en) Fuel supply control system for internal combustion engine with improved engine acceleration characterisitcs after fuel cut-off operation
EP0535671A2 (en) Fuel injection control device for internal combustion engine
US4616618A (en) Apparatus for metering an air-fuel mixture to an internal combustion engine
JPS60159347A (en) Air-fuel ratio controlling method of internal-combustion engine
US5634449A (en) Engine air-fuel ratio controller
JPS6017237A (en) Air-fuel ratio control method for internal-combustion engine
JPH0251053B2 (en)
JPS601346A (en) Method of increasing fuel amount upon acceleration due to electronically controlled fuel injection of internal-combustion engine
JPH0425423B2 (en)
JP4186350B2 (en) Combustion state detection device for internal combustion engine
JPH10220270A (en) Fuel injection amount controller of internal combustion engine
JPH0623547B2 (en) Air-fuel ratio control method for internal combustion engine
JP2502598Y2 (en) Engine idle speed controller
JPS6027746A (en) Air-fuel ratio controlling method for internal- combustion engine
JP2962981B2 (en) Control method of air-fuel ratio correction injection time during transient