JPS6017237A - Air-fuel ratio control method for internal-combustion engine - Google Patents

Air-fuel ratio control method for internal-combustion engine

Info

Publication number
JPS6017237A
JPS6017237A JP12349783A JP12349783A JPS6017237A JP S6017237 A JPS6017237 A JP S6017237A JP 12349783 A JP12349783 A JP 12349783A JP 12349783 A JP12349783 A JP 12349783A JP S6017237 A JPS6017237 A JP S6017237A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
ratio deviation
during deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12349783A
Other languages
Japanese (ja)
Inventor
Tsuneyuki Egami
常幸 江上
Tsutomu Saito
斎藤 努
Tokio Kohama
時男 小浜
Kimitaka Saito
公孝 斎藤
Masaru Takahashi
大 高橋
Kunihiko Sato
邦彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP12349783A priority Critical patent/JPS6017237A/en
Publication of JPS6017237A publication Critical patent/JPS6017237A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration

Abstract

PURPOSE:To improve the drivability by detecting the differential air-fuel ratio from the optimal level under deceleration, then correcting the reduced fuel on the basis of said detected level thereby preventing deterioration of emission and fuel consumption. CONSTITUTION:Under steady state of engine, the amount of fuel to be fed to an engine 1 is determined by a control circuit CONT from signals from a suction air flow detector 2, rotation sensor 3 and water temperature sensor 4, then the feedback correction obtained from a signal from an air-fuel ratio sensor 6 is corrected to produce the valve-open time of a fuel injection valve 8. When the deceleration state of engine 1 is detected by a throttle sensor 91 or a suction air flow sensor 2, the control circuit CONT will further reduce the amount of fuel. Consequently, deterioration of emission and fuel consumption can be prevented resulting in improvement of the drivability.

Description

【発明の詳細な説明】 技術分野 本発明は内燃機関の空燃比制御方法に関する。[Detailed description of the invention] Technical field The present invention relates to an air-fuel ratio control method for an internal combustion engine.

本発明による方法は自動車用エンジンに適用される0 従来技術 従来、エンジン用の空燃比制御装置の一形式が知られて
いる。この形式の装置は、エンジンの燃料要求を表わす
エンジン温度を含む予め定められたエンジンの動作パラ
メータの値に応動して定常状態におけるエンジンの燃料
要求を表わす基本燃料信号を発生する手段と、出力増大
要求を表わす過渡的なエンジンの動作状態を検出する手
段と、エンジン温度の測定された値と検出された過渡的
なエンジンの動作状態に応動して、エンジン温度によっ
て決定される第1の値に等しく、検出されたエンジンの
過渡状態によって決定される初期値を有し、エンジンの
温度によって決定される速度で1に向かって変化する因
子によって増大される補強促進信号を発生する手段と、
基本燃料信号および補強促進信号に従ってエンジンに燃
料を供給し、それによってエンジンの定常状態および過
渡状態のいずれにあっても、その要求に応じてエンジン
に燃料を供給する手段とを有する。この装置は、エンジ
ンの定常状態のみならず過渡状態にお前述の形式の装置
においては、エンジンの経時変化、例えば、バルブクリ
アランスやEFIにおけるインジェクタ噴口部へのデポ
ジット付着による特性変化、シリンダ吸気弁の背面部等
に付着するデポジット、すなわち、潤滑油成分および燃
焼生成物に由来する炭素微粒子等の粘着物、による特性
変化等に対し考慮されておらず、これらエンジンの経時
変化による加速時の空燃比の希薄化を検出する手段を有
していないため、加速時の混合ガスの希薄化を避ける事
が困難であシ、加速時のもたつき等のドライバビリティ
の悪化を生ずる可能性があるという問題点があった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method according to the invention is applied to motor vehicle engines.Prior Art One type of air-fuel ratio control device for engines is known in the prior art. This type of device includes means for generating a basic fuel signal representative of the fuel demand of the engine at steady state in response to the values of predetermined engine operating parameters, including engine temperature, representative of the fuel demand of the engine; means for detecting a transient engine operating condition indicative of a demand; and in response to the measured value of engine temperature and the detected transient engine operating condition, a first value determined by the engine temperature; means for generating a reinforcing boost signal, which has an initial value determined by the detected engine transient and is increased by a factor that varies toward unity at a rate determined by the engine temperature;
and means for fueling the engine in accordance with the base fuel signal and the reinforcement boost signal, thereby fueling the engine on demand during both steady state and transient conditions of the engine. This device is used not only in the steady state of the engine but also in the transient state.In the above-mentioned type of device, changes in the engine over time, such as characteristic changes due to deposits on the injector nozzle in valve clearance and EFI, and changes in the cylinder intake valve. It does not take into account changes in characteristics due to deposits that adhere to the back surface, that is, sticky substances such as carbon particles derived from lubricating oil components and combustion products, and the air-fuel ratio during acceleration due to aging of the engine. Since there is no means to detect the dilution of the gas mixture, it is difficult to avoid dilution of the gas mixture during acceleration, and this may cause deterioration of drivability such as sluggishness during acceleration. was there.

この場合の空燃比の変動状況特に吸気弁背面部にデポジ
ットが刺着した場合の変動状況が第1図に図解されてい
る。第1図において、A/F (0)はデポジット付着
前の、A/F(DEP)はデポジット付着後の空燃比の
変化状況をそれぞれあられす。
The fluctuations in the air-fuel ratio in this case, particularly when deposits stick to the back surface of the intake valve, are illustrated in FIG. In Fig. 1, A/F (0) represents the change in air-fuel ratio before the deposit is deposited, and A/F (DEP) represents the change in the air-fuel ratio after the deposit is deposited.

ACCは加速時点を、DECは減速時点を、Iv’F(
OPT)は最適空燃比を、A/F(LN)は希薄(リー
ン)側を、A/F (RCH’)は濃厚(リッチ)側を
、それぞれあられす〇 また、インジェクタの目づまシについても定常において
は空燃比センサのフィードバックで補正できるが、加減
速時においては補正手段をもたないため同様の問題を生
じていた。また、エンジン、エアフローメータの製作時
のばらつきや経時変化によっても同様の問題を生じてい
た。
ACC is the acceleration point, DEC is the deceleration point, Iv'F (
OPT) indicates the optimum air-fuel ratio, A/F (LN) indicates the lean side, and A/F (RCH') indicates the rich side. Also, regarding the injector blinder. In steady state, it can be corrected by feedback from the air-fuel ratio sensor, but during acceleration and deceleration, the same problem occurs because there is no correction means. Further, similar problems have also occurred due to variations in manufacturing of the engine and air flow meter and changes over time.

また内燃機関に使用するガソリンは一般に四季を通じ夏
用と冬用というように特性の異なったものが同一メーカ
ーから市販されている。ガソリンの揮発性を示す数値と
してはリード蒸気圧とか蒸留性状とかが一般によく知ら
れているが成るメー゛カーのガソリン性状を調べてもリ
ード蒸気圧は0 、5 Kylcl 〜0 、86 K
91cr& 、また10%留出時温度も40〜58℃と
ばらついておシ、ガソリン性状の違いによる揮発性の変
化によシ過渡時の空燃比特性は大きく変化する。従来方
式ではこのガソリン性状のばらつきによる揮発性の変化
が原因の空燃比変化についても何ら考慮はなされていな
い。それゆえ、前述の形式の装置においては、減速時の
空燃比を最適化する手段を持っていないために、上記デ
ポジット付着等のエンジンの経時変化や揮発性の悪いガ
ソリンを使用した場合には、減速時に空燃比がよシ濃厚
となシエミッションの悪化、燃費の悪化を招いていた。
Furthermore, the gasoline used in internal combustion engines is generally commercially available from the same manufacturer with different characteristics for each season, such as summer and winter gasoline. Reed vapor pressure and distillation properties are generally well-known numerical values that indicate the volatility of gasoline, but when we look at the properties of gasoline from different manufacturers, the Reid vapor pressure is 0.5 Kylcl ~ 0.86 K.
91cr&, the temperature during 10% distillation also varies from 40 to 58°C, and the air-fuel ratio characteristics during transient changes greatly due to changes in volatility due to differences in gasoline properties. In the conventional system, no consideration is given to changes in air-fuel ratio caused by changes in volatility due to variations in gasoline properties. Therefore, since the above-mentioned type of device does not have a means to optimize the air-fuel ratio during deceleration, if the engine changes over time such as deposits, or if gasoline with poor volatility is used, During deceleration, the air-fuel ratio becomes too rich, leading to poor transmission and poor fuel efficiency.

発明の目的 本発明の主な目的は、前述の従来形における問題点にか
んがみ、減速時燃料減量補正により、減速時燃料減量を
調整するという構想にもとづき、減速時の空燃比の濃厚
化を防止し、エミッションおよび燃費の悪化を防止しつ
つドライバビリティの向上をはかることにある。
Purpose of the Invention The main purpose of the present invention is to prevent the enrichment of the air-fuel ratio during deceleration, based on the concept of adjusting the fuel loss during deceleration by correcting the fuel loss during deceleration, in view of the problems with the conventional type described above. The objective is to improve drivability while preventing deterioration of emissions and fuel efficiency.

また、本発明は、経時変化だけでなく、ガソリン性状の
違い、エンジンの製作時のバラツキやエアフローメータ
の製作時のばらつきによる減速時混合ガスの最適空燃比
からの空燃比ずれを防止することを付随的な目的とする
Furthermore, the present invention prevents air-fuel ratio deviation from the optimum air-fuel ratio of the mixed gas during deceleration due not only to changes over time but also to differences in gasoline properties, variations in engine manufacturing, and variations in airflow meter manufacturing. As an ancillary purpose.

発明の構成 本発明においては、内燃機関の減速を検出し減速時燃料
減量を行うにあたυ、咳内燃機関の減速時における最適
空燃比からの空燃比偏差を検出し、該空燃比偏差検出に
もとづき該減速時燃料減量の値を補正する、ことを特徴
とする内燃機関の空燃比制御方法が提供される。
Structure of the Invention In the present invention, in order to detect deceleration of the internal combustion engine and reduce fuel during deceleration, an air-fuel ratio deviation from an optimum air-fuel ratio during deceleration of the internal combustion engine is detected, and the air-fuel ratio deviation is detected. There is provided an air-fuel ratio control method for an internal combustion engine, which is characterized in that the value of the fuel reduction during deceleration is corrected based on the above.

実施例 本発明の一実施例としての内燃機関の空燃比制御方法を
行う装置が第2図に示される。第2図装置における制御
回路C0NTの構成が第3図に示される。第2図装置に
おいて、■は自動車の動力源である公知の電子制御燃料
噴射式6気筒火花点火式エンジン、2はエンジン1に吸
入される空気量を検出する公知の吸入空気量検出装置、
3はエンジン10回転数を検出する公知の回転数センサ
、4はエン、ジン1の冷却水温を測定する公知の水温セ
ンサ、5はエンジン1の排気通路、6は排気通路5に設
けた公知の空燃比センサである。
Embodiment An apparatus for performing an air-fuel ratio control method for an internal combustion engine as an embodiment of the present invention is shown in FIG. The configuration of the control circuit C0NT in the device shown in FIG. 2 is shown in FIG. In the device shown in FIG. 2, ■ is a known electronically controlled fuel injection 6-cylinder spark ignition engine that is the power source of the automobile; 2 is a known intake air amount detection device that detects the amount of air taken into the engine 1;
Reference numeral 3 denotes a known rotation speed sensor that detects the engine 10 rotation speed, 4 a known water temperature sensor that measures the cooling water temperature of the engine and engine 1, 5 a known exhaust passage of the engine 1, and 6 a known engine speed sensor installed in the exhaust passage 5. It is an air fuel ratio sensor.

7はエンジン1の吸気管、8は吸気管7に設けた公知の
電磁式燃料噴射弁、9はエンジン1に吸入される空気量
をコントロールするスロットル弁、91はスロットル弁
9の動きを検出する公知のスロットルセンサ、C0NT
はエンジン1に供給する燃料量を算出して燃料噴射弁8
を作動させる制御回路である。
7 is an intake pipe of the engine 1, 8 is a known electromagnetic fuel injection valve provided in the intake pipe 7, 9 is a throttle valve that controls the amount of air taken into the engine 1, and 91 detects the movement of the throttle valve 9. Known throttle sensor, C0NT
calculates the amount of fuel to be supplied to the engine 1 and injects the fuel injector 8.
This is a control circuit that operates the

エンジン1に供給される燃料量は、エンジンが定常状態
の時は、制御回路C0NTが、吸入空気量検出装置2、
回転数センサ3、水温センサ4の各検出信号から基本燃
料量としてめ、さらに空燃比センサ6の信号からめたフ
ィートノ(ツク補正量を補正して、燃料噴射弁8の開弁
時間としてめる。
When the engine is in a steady state, the amount of fuel supplied to the engine 1 is determined by the control circuit C0NT, the intake air amount detection device 2,
The basic fuel amount is determined from the detection signals of the rotation speed sensor 3 and the water temperature sensor 4, and the fuel injection amount is corrected based on the signal of the air-fuel ratio sensor 6, and the valve opening time of the fuel injection valve 8 is determined.

また、制御回路C0NTはスロットルセンサ91または
吸入空気量検出装置2によりエンジン1の減速状態が検
出された時は定常時にめた燃料量以上に減速時燃料減量
を行う様に構成しである。
Further, the control circuit C0NT is configured so that when the throttle sensor 91 or the intake air amount detection device 2 detects a deceleration state of the engine 1, the fuel amount during deceleration is reduced to a value greater than the amount of fuel determined during steady state.

第3図に示されるように、制御回路C0NTは、入力系
統として、吸気量センサ2および水温センサ4からの信
号を受けるマルチプレクサ101、ADコンバータ10
2、空燃比センサ6の信号を受ける整形回路工03、該
被形回路およびスロットルセンサ91からの信号を受け
る入力ポート104、回転センサ3の信号を受ける入力
カウンタ105を有する。制御回路はまた、バス106
、ROM107、CPU108、RAM109、出力カ
ウンタ110、およびパワー駆動部111を有する。パ
ワー駆動部111の出力は燃料噴射弁8に供給される。
As shown in FIG. 3, the control circuit C0NT includes, as an input system, a multiplexer 101 that receives signals from the intake air amount sensor 2 and the water temperature sensor 4, and an AD converter 10.
2. It has a shaping circuit 03 that receives the signal from the air-fuel ratio sensor 6, an input port 104 that receives the signal from the shaped circuit and the throttle sensor 91, and an input counter 105 that receives the signal from the rotation sensor 3. The control circuit also connects bus 106
, a ROM 107, a CPU 108, a RAM 109, an output counter 110, and a power driver 111. The output of the power drive section 111 is supplied to the fuel injection valve 8.

制御回路C0NTとしては、マイクロコンピュータ形式
のものを用いることができ、例えばトヨタTCC8形式
のものを用いることができる。制御回路C0NTには、
空燃比偏差検出機能および減速燃料減量補正機能が追加
されている。
As the control circuit C0NT, a microcomputer type circuit can be used, for example, a Toyota TCC8 type circuit can be used. In the control circuit C0NT,
An air-fuel ratio deviation detection function and a deceleration fuel reduction correction function have been added.

加減速時空燃比挙動、すなわち、加速時における最適空
燃比A/F (OP T )からの空燃比希薄側および
濃厚側へのそれぞれの最大偏差値D (A/FCLN>
E、D CA/F(RCH))、と加減速時空燃比セン
サの挙動、すなわち、加減速時空燃比センサ6が混合ガ
スの希薄および濃厚を検出している時間、つまシ加速時
リーン継続時間T(LN)および減速時リッチ継続時間
T(RCH)、との関係が第4図の波形図および第5図
の特性図に示されるO第4図においてACCは加速を、
DECは減速を、5(6)は空燃比センサ信号を表わす
。最適空燃比からの空燃比偏差の一例として、吸気系に
付着したデポジット量W(DEP)と加減速時における
空燃比最大偏差値DCA/F(LN))、D(A/F(
RCH))の関係が第6図、第7図に示される。
The air-fuel ratio behavior during acceleration/deceleration, that is, the maximum deviation value D (A/FCLN>
E, D CA/F (RCH)), and the behavior of the air-fuel ratio sensor during acceleration and deceleration, that is, the time during which the air-fuel ratio sensor 6 detects the lean and rich mixture gas during acceleration and deceleration, and the lean duration time during acceleration T (LN) and the rich continuation time T (RCH) during deceleration are shown in the waveform diagram in Figure 4 and the characteristic diagram in Figure 5.
DEC represents deceleration, and 5 (6) represents the air-fuel ratio sensor signal. As an example of the air-fuel ratio deviation from the optimum air-fuel ratio, the deposit amount W(DEP) attached to the intake system and the maximum air-fuel ratio deviation value DCA/F(LN)), D(A/F(
RCH)) is shown in FIGS. 6 and 7.

第4図ないし第7図から加速時リーン継続時間T(LN
)あるいは減速時リッチ継続時間T(RCH)を測定す
る事で、デポジット付着量対応値が検出可能である事が
判る。なお第4〜第7図のデータの調整にあたっては、
トヨタ自動車株式会社にて製作の5M−G型エンジンが
用いられた。
From Figures 4 to 7, lean duration time T (LN
) or by measuring the rich continuation time T (RCH) during deceleration, it is found that the value corresponding to the deposit amount can be detected. In addition, when adjusting the data in Figures 4 to 7,
A 5M-G type engine manufactured by Toyota Motor Corporation was used.

制御回路C0NTの制御プログラムの概略フローチャー
トが第8図に示される。このプログラムは、電子制御燃
料噴射を行うためのもので、ステップS1.00〜51
08よシ成る。5100においてスタートし、5101
において、メモリー、入出力ポートの初期化を行う。5
102では、吸入空気量のデータQとエンジン回転数デ
ータNと水温センサのデータθWから、基本燃料量を計
算する。5103では、ゆ燃比センサ6の信号を用い、
空燃比が一定となる様にフィードバック制御を行って基
本燃料量を補正する。5104,5105では、初期減
速時燃料減量とデポジット対応量検出と、初期減速時燃
料減量へのデポジット対応補正をする。5106でエン
ジン1回転の判別をし、5107でエンジン1回転毎に
1回の燃料噴射弁8の開弁時間を、フィードバック制御
によシ補正された基本燃料量と減速時燃料減量とから計
算してめ、5108で燃料噴射弁制御を行う。
A schematic flowchart of the control program of the control circuit C0NT is shown in FIG. This program is for performing electronically controlled fuel injection, and steps S1.00 to S51
It will be 08 years old. Start at 5100, 5101
Initialize memory and input/output ports. 5
In step 102, the basic fuel amount is calculated from the intake air amount data Q, the engine speed data N, and the water temperature sensor data θW. In 5103, using the signal of the fuel-fuel ratio sensor 6,
Feedback control is performed to correct the basic fuel amount so that the air-fuel ratio remains constant. In steps 5104 and 5105, the amount corresponding to the fuel loss during initial deceleration and the deposit is detected, and the amount corresponding to the deposit is corrected to the fuel loss during initial deceleration. In step 5106, one revolution of the engine is determined, and in step 5107, the valve opening time of the fuel injection valve 8 for each revolution of the engine is calculated from the basic fuel amount corrected by feedback control and the fuel loss during deceleration. Finally, in step 5108, fuel injection valve control is performed.

第9図に5104の空燃比備差検出処理の詳細なフロー
チャートを、また第10図に初期減速時燃料減量および
この減量に対する減速時燃料減量補正の計算処理の詳細
外フローチャートを示す。
FIG. 9 shows a detailed flowchart of the air-fuel ratio difference detection process 5104, and FIG. 10 shows a non-detailed flowchart of the calculation process of the initial deceleration fuel loss and the deceleration fuel loss correction for this loss.

第9図、第10図に示す減速時補正は、5201に示す
様に、一定時間、例えば32.7mS、毎に処理を行う
。空燃比偏差を検出する方法として、空燃比センサ6の
出力信号を一定電圧レベルと比較し、混合ガスの希薄(
リーン)状態および濃厚(リッチ)状態の2値を検出し
、減速時のリーン継続時間T(LN)およびリッチ継続
時間T (RCH)を測定する方法を用いる。
The deceleration correction shown in FIGS. 9 and 10 is performed every fixed period of time, for example, every 32.7 mS, as shown at 5201. As a method of detecting the air-fuel ratio deviation, the output signal of the air-fuel ratio sensor 6 is compared with a constant voltage level, and the leanness (
A method is used in which two values, a lean state and a rich state, are detected and the lean duration time T (LN) and rich duration time T (RCH) during deceleration are measured.

例えばデポジット付着の影響は、冷却水温が低温時のみ
生じ、またデポジット伺着最の推定を容易にするため、
8202 、8203 、5204で冷却水温80℃未
満、減速後5秒以内、エンジン回転数90Orpm〜2
000rpmの場合のり一ン継続時間T’(LN)、リ
ッチ継続時間T(RCH)を測定する。
For example, the influence of deposits only occurs when the cooling water temperature is low, and in order to make it easier to estimate the deposit arrival time,
For 8202, 8203, and 5204, the cooling water temperature is less than 80℃, within 5 seconds after deceleration, and the engine rotation speed is 90Orpm ~ 2
In the case of 000 rpm, the limp duration time T' (LN) and the rich duration time T (RCH) are measured.

またリッチ、リーンが交互に現われる様、5205で、
フィードバック制御中に限定する。
Also, in 5205, rich and lean appear alternately,
Limited to feedback control.

8206でリッチ、リーンを判別する。リーンの場合5
207において、リーンタイムカウンタを+1し、T(
LN)を32.7ms単位で計数する。次に8208で
、リッチタイムカウンタの値が一定値、すなわちリッチ
タイムリミツト、を越えているか判断し、越えていれば
、5209でリッチ補正カウンタを+1する。次にステ
ップ82.10でり、ツチタイムカウンタをOとする。
At 8206, rich and lean are determined. For Lean 5
At 207, the lean time counter is incremented by 1 and T(
LN) is counted in 32.7 ms units. Next, in 8208, it is determined whether the value of the rich time counter exceeds a fixed value, that is, the rich time limit. If it does, in 5209, the rich correction counter is incremented by 1. Next, in step 82.10, the time counter is set to O.

 5. . 8206でリッチと判別した場合、同様、に5211〜
5214でリッチタイムカウンタの+1と、 リーンタ
イムの判断を行う。前述の5206〜5214でめたリ
ーン補正カウンタおよびリッチ補正カウンタの値からデ
ポジット付着および剥離を推定できる。すなわち、エン
ジンの正常状態から異常状態への変化および異常状態か
ら正常状態への復帰を推定できる。
5. .. Similarly, if it is determined to be rich in 8206, 5211~
At 5214, the rich time counter is increased by 1 and lean time is determined. Deposit adhesion and peeling can be estimated from the values of the lean correction counter and rich correction counter determined in steps 5206 to 5214 described above. That is, it is possible to estimate a change in the engine from a normal state to an abnormal state and a return from an abnormal state to a normal state.

第10図では、8301で吸入空気量検出装置2からの
吸入空気量信号Qと、回転数検出装置3からの回転数信
号Nとからめたエンレフ1回転当シの吸入空気量Q/’
Nの変化率Δ(Q/N)をめる。
In FIG. 10, at 8301, the intake air amount Q/' per one engine revolution is obtained by combining the intake air amount signal Q from the intake air amount detection device 2 and the rotation speed signal N from the rotation speed detection device 3.
Calculate the rate of change Δ(Q/N) of N.

前記Δ(Q/N)が負の場合、エンジンは減速中である
。従って5302で、Δ(Q/N)が負で一定値以上で
あれば、減速とみなして、5303へ進む。
If the Δ(Q/N) is negative, the engine is decelerating. Therefore, in step 5302, if Δ(Q/N) is negative and equal to or greater than a certain value, it is regarded as deceleration, and the process proceeds to step 5303.

5303では、減速時燃料減量値を冷却水温、Δ(Q/
N)、 リーン補正カウンタ、リッチ補正カウンタの関
数としてめる。基本的には、冷却水温に対する単位Δ(
Q/N)尚シの減量比を、゛予めマツプに記憶しておき
、該水温に対する減量比を取9出し、Δ(Q/N ”)
を乗じ、リーン補正カウンタ、リッチ補正カウンタの値
によって補正を加え、減速時燃料減量値を計算する。こ
の減量値は、減速検出時の初期値とする。
5303, the fuel loss value during deceleration is expressed as the cooling water temperature, Δ(Q/
N), as a function of the lean correction counter and rich correction counter. Basically, the unit Δ(
Q/N) Naoshi's weight loss ratio is stored in the map in advance, and the weight loss ratio for the water temperature is taken out and Δ(Q/N'')
The value of fuel loss during deceleration is calculated by multiplying by the values of the lean correction counter and rich correction counter. This reduction value is the initial value at the time of deceleration detection.

5304 、5305でエンジン1回転毎に前記減速時
燃料減量値から一定値を減じて、0まで減衰するO 従って第11図に示すように、(1)スロットルを閉じ
て減速した場合(THはスロットル開度)、(2)前記
Q/N値も減少し、(3)減速時燃料減号比Rが図示さ
れるような波形をとって減量され、(4)燃料噴射弁開
弁時間Uが決定され、燃料を供給する。
At 5304 and 5305, a constant value is subtracted from the fuel loss value during deceleration every engine revolution, and the value is attenuated to 0. Therefore, as shown in FIG. (2) the Q/N value also decreases, (3) the fuel deceleration ratio R during deceleration is decreased in the waveform shown in the figure, and (4) the fuel injector opening time U increases. Determined and fueled.

本発明の実施にあたっては、前述の実施例のはか、種々
の変形形態をとることができる。例えば。
In carrying out the present invention, various modifications of the above-described embodiments can be made. for example.

前述の実施例ではデポジットの付着の際の、減速時燃料
減量値の初期値をリーン補正カウンタ、リッチ補正カウ
ンタの値によシ変化させたが、前述の実施例の代わシに
第12図のフローチャー1・に示すように、減速時減量
は、水温θWとΔ(Q/N ’)のみで、デポジットの
付着にかかわシなく決定し。
In the embodiment described above, the initial value of the fuel loss value during deceleration when a deposit is attached is changed depending on the values of the lean correction counter and the rich correction counter. As shown in Flowchart 1, the weight loss during deceleration is determined only by the water temperature θW and Δ(Q/N'), regardless of deposit adhesion.

それに加えて、デポジットが付着した場合のみ作動する
デポジット付着時の補正減速減量を行うこともできる。
In addition, it is also possible to perform a correction deceleration reduction when a deposit is deposited, which is activated only when a deposit is deposited.

第12図において、5402において、減速が検出され
ると8403で減速時減量値を冷却水温とΔ(Q/N)
のみからめる。次に8404で、デポジット付着時の補
正減速燃料減量値を計算する。
In FIG. 12, when deceleration is detected in 5402, the deceleration weight loss value is calculated as the cooling water temperature and Δ(Q/N) in 8403.
To confuse. Next, in step 8404, a corrected deceleration fuel loss value at the time of deposit is calculated.

この計算においては、冷却水温、リーン補正カウンタ値
、リッチ補正カウンタ値、Δ(Q/N)の4変数の関数
として、デポジット付着量対応値に応じた減速燃料減量
補正値を計算する。エンジン1回転毎に、減速時減量値
およびデポジット付着時の減速減量補正値からそれぞれ
一定値(’It + 3’t )を減じてOまで減衰す
る。この減速減量比とデポジット付着時の減速減量補正
減量比を基本噴射量にかけあわせることにより減量を行
う。
In this calculation, a deceleration fuel reduction correction value corresponding to the deposit amount is calculated as a function of four variables: cooling water temperature, lean correction counter value, rich correction counter value, and Δ(Q/N). Each rotation of the engine, a constant value ('It + 3't) is subtracted from each of the deceleration loss value and the deceleration loss correction value at the time of deposit deposition, and the deceleration is attenuated to O. Reduction is performed by multiplying this deceleration reduction ratio by the deceleration reduction correction reduction ratio at the time of deposit adhesion to the basic injection amount.

前述においてはデポジット付着による空燃比ずれの補正
について説明したが、EFIのインジェクタの目づまり
やエアフローメータの特性ずれやスピードデンシティ方
式の圧力センザの特性ずれ、揮発性の異なるガソリンを
用いた場合の特性ずれについても対応できる。
In the above, we have explained how to correct air-fuel ratio deviations due to deposits, but there are also problems such as clogging of EFI injectors, deviations in air flow meter characteristics, deviations in speed density pressure sensor characteristics, and characteristics when using gasoline with different volatility. It is also possible to deal with deviations.

第2図装置においては、冷間時吸気パルプ背面部へのデ
ポジット付着やインジェクタの目づ−1やエアフローメ
ータの特性変化およびガソリンの性状変化による減速時
混合ガスの最適空燃比からの空燃比ずれが防止され、エ
ンジンの排気ガスのエミッション低下、燃費の低下が防
止される。また、第2図装置においては上記経時変化だ
けでなく、エンジンの製作時のばらつきやエアフローメ
ータの製作時のばらつき、ガソリン性状のばらつきによ
る減速時混合ガスの最適空燃比からの空燃比ずれが防止
できる。
In the device shown in Figure 2, the air-fuel ratio deviates from the optimum air-fuel ratio of the mixed gas during deceleration due to deposits on the back of the intake pulp during cold, changes in the characteristics of the injector and air flow meter, and changes in the properties of gasoline. This prevents a decrease in engine exhaust gas emissions and fuel efficiency. In addition, the device shown in Figure 2 prevents air-fuel ratio deviation from the optimum air-fuel ratio of the mixed gas during deceleration due to not only the above-mentioned changes over time, but also variations in engine manufacturing, air flow meter manufacturing, and gasoline properties. can.

発明の効果 本発明によれば、減速時の空燃比の濃厚化が防止され、
エミッションおよび燃費の悪化が防止され、ドライバビ
リティを向上させることができる。
Effects of the Invention According to the present invention, enrichment of the air-fuel ratio during deceleration is prevented,
Deterioration of emissions and fuel efficiency is prevented, and drivability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、デポジット付着前後の加減速時空燃比変化を
示す波形図、 第2図は、本発明の一実施例としての内燃機関の空燃比
制御方法を行う装置を示す図、第3図は、第2図装置に
おける制御回路の構成を示す図、 第4図、第5図は、加減速時空燃比挙動と、加減速時空
燃比センサの挙動の関係を示す波形図および特性図、 第6図、第7図は、吸気系に付着したデポジット量と加
減速時空燃比挙動の関係を示す構造図および!特性図、 第8図は第2図装置における演算流れを示す流れ図、 第9図はデポジット量対応値検出演算の詳細を示す流れ
図、 f、 16図は初期減速時燃料減量の演算の詳細を示す
流れ図、 第11図は減速時の燃料噴射の状況を示す波形図、 第12図は他の実施例における加速時増量およびデポジ
ット付着時補正の演算流れを示す流れ図である。 (符号の説明) ■・・・エンジン、2・・・吸入空気量検出装置、3・
・・回転数センサ、4・・・水温センサ、5・・・排気
通路、6・・・空燃比センサ、7・・・吸気管、8・・
・燃料噴射弁、9・・・スロットル弁、91・・・スロ
ットルセンサ、C0NT・・・制御回路。 第6図 竿7旨1 →W(DEP) 第10図 第11図 T)( 第1頁の続き 0発 明 者 佐藤邦彦 豊田型トヨタ町1番地トヨタ自 動車株式会社内 ■出 願 人 トヨタ自動車株式会社 豊田市トヨタ町1番地
FIG. 1 is a waveform diagram showing changes in air-fuel ratio during acceleration and deceleration before and after deposition of deposits, FIG. 2 is a diagram showing an apparatus for performing an air-fuel ratio control method for an internal combustion engine as an embodiment of the present invention, and FIG. , Fig. 2 is a diagram showing the configuration of the control circuit in the device, Figs. 4 and 5 are waveform diagrams and characteristic diagrams showing the relationship between the air-fuel ratio behavior during acceleration/deceleration and the behavior of the air-fuel ratio sensor during acceleration/deceleration, and Fig. 6. , Figure 7 is a structural diagram showing the relationship between the amount of deposits attached to the intake system and the behavior of the air-fuel ratio during acceleration and deceleration. Characteristic diagram, Figure 8 is a flowchart showing the calculation flow in the device shown in Figure 2, Figure 9 is a flowchart showing details of the deposit amount corresponding value detection calculation, f, Figure 16 is a flowchart showing details of the calculation of fuel loss at initial deceleration. Flowcharts: FIG. 11 is a waveform chart showing the state of fuel injection during deceleration, and FIG. 12 is a flowchart showing the calculation flow of the increase during acceleration and the correction when deposits are attached in another embodiment. (Explanation of symbols) ■...Engine, 2...Intake air amount detection device, 3.
... Rotation speed sensor, 4... Water temperature sensor, 5... Exhaust passage, 6... Air-fuel ratio sensor, 7... Intake pipe, 8...
- Fuel injection valve, 9... Throttle valve, 91... Throttle sensor, C0NT... Control circuit. Figure 6 Rod 7 1 → W (DEP) Figure 10 Figure 11 T) (Continued from page 1 0 Inventor: Kunihiko Sato Toyota Motor Corporation, 1 Toyota-cho Toyota Town, Japan Applicant: Toyota Motor Corporation Company 1 Toyota-cho, Toyota City

Claims (1)

【特許請求の範囲】 1、内燃機関の減速を検出し減速時燃料減量を行うにあ
たυ、該内燃機関の減速時における最適空燃比からの空
燃比偏差を検出し、該空燃比偏差検出にもとづき該減速
時燃料減量の値を補正する、ことを特徴とする内燃機関
の空燃比制御方法。 2、該空燃比偏差の検出が、空燃比センサによる空燃比
偏差検出の形態で行われる、特許請求の範囲第1項記載
の方法◎ 3、該減速時燃料減量値の補正は、該減速時燃料減量を
決定する1つまたは複数のパラメータを該空燃比偏差検
出によ請求めた空燃比偏差に応じて補正を行うことによ
る減速時燃料減量値の補正である、特許請求の範囲第1
項記載の方法。 4、該減速時燃料減量値の補正は、該減速時燃料減量値
の補正値を決定するパラメータのうち1つまたは複数の
パラメータを該空燃比偏差検出によ請求めた空燃比偏差
に応じて変化させ該内燃機関の減速時に該減速時減量と
該減速時燃料減員値補正が施された減量とを同時に作動
させることによる減速時燃料減量値の補正である、特許
請求の範囲第1項記載の方法。 5、咳空燃比偏差は、該内燃機関の吸気系に伺着するデ
ポジットによシ生ずる空燃比偏差である、特許請求の範
囲第1項記載の方法。 6、該空燃比偏差は、該内燃機関に燃料を供給するイン
ジェクタの噴口部に付着するデポジットにより生ずる空
燃比偏差である、特許請求の範囲第1項記載の方法。 7、該空燃比偏差は、該内燃機関への吸入空気量を検出
する吸入空気量検出手段の製作時のばらつきまたは経時
変化による特性変化から生じた空燃比偏差である、特許
請求の範囲第1項記載の方法0 8、該空燃比偏差は、該内燃機関の製作時のばらつきま
たは経時変化から生じた空燃比偏差である、特許請求の
範囲第1項記載の方法。 9、該空燃比偏差は、該内燃機関で使用する燃料性状の
ばらつきまたは性状変化から生じた空燃比側差である、
特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. In detecting deceleration of the internal combustion engine and reducing fuel during deceleration, υ detects an air-fuel ratio deviation from the optimum air-fuel ratio during deceleration of the internal combustion engine, and detects the air-fuel ratio deviation. 1. A method for controlling an air-fuel ratio of an internal combustion engine, comprising: correcting a value of the fuel reduction during deceleration based on the value of the fuel reduction during deceleration. 2. The method according to claim 1, wherein the air-fuel ratio deviation is detected in the form of air-fuel ratio deviation detection using an air-fuel ratio sensor. Claim 1, which is a correction of the fuel loss value during deceleration by correcting one or more parameters that determine the fuel loss according to the air-fuel ratio deviation determined by the air-fuel ratio deviation detection.
The method described in section. 4. The correction of the fuel loss value during deceleration is performed by adjusting one or more parameters among the parameters that determine the correction value of the fuel loss value during deceleration according to the air-fuel ratio deviation requested by the air-fuel ratio deviation detection. Claim 1 is a correction of the fuel reduction value during deceleration by simultaneously operating the reduction during deceleration and the reduction to which the fuel reduction value during deceleration has been corrected during deceleration of the internal combustion engine. the method of. 5. The method according to claim 1, wherein the air-fuel ratio deviation is an air-fuel ratio deviation caused by deposits arriving in the intake system of the internal combustion engine. 6. The method according to claim 1, wherein the air-fuel ratio deviation is an air-fuel ratio deviation caused by deposits attached to a nozzle of an injector that supplies fuel to the internal combustion engine. 7. Claim 1, wherein the air-fuel ratio deviation is an air-fuel ratio deviation resulting from variations in the manufacturing process of the intake air amount detection means for detecting the amount of intake air into the internal combustion engine or changes in characteristics due to changes over time. 8. The method according to claim 1, wherein the air-fuel ratio deviation is an air-fuel ratio deviation resulting from manufacturing variations or changes over time of the internal combustion engine. 9. The air-fuel ratio deviation is an air-fuel ratio difference resulting from variations or changes in the properties of the fuel used in the internal combustion engine;
A method according to claim 1.
JP12349783A 1983-07-08 1983-07-08 Air-fuel ratio control method for internal-combustion engine Pending JPS6017237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12349783A JPS6017237A (en) 1983-07-08 1983-07-08 Air-fuel ratio control method for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12349783A JPS6017237A (en) 1983-07-08 1983-07-08 Air-fuel ratio control method for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6017237A true JPS6017237A (en) 1985-01-29

Family

ID=14862086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12349783A Pending JPS6017237A (en) 1983-07-08 1983-07-08 Air-fuel ratio control method for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6017237A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976242A (en) * 1989-01-27 1990-12-11 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine
US4981122A (en) * 1989-01-27 1991-01-01 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine
US4991559A (en) * 1989-01-24 1991-02-12 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine
US6799565B2 (en) * 2001-11-22 2004-10-05 Hyundai Motor Company Method and system for controlling fuel for an engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718440A (en) * 1980-07-08 1982-01-30 Nippon Denso Co Ltd Air-fuel ratio control method
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine
JPS5828568A (en) * 1981-08-13 1983-02-19 Toyota Motor Corp Fuel supply control of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718440A (en) * 1980-07-08 1982-01-30 Nippon Denso Co Ltd Air-fuel ratio control method
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine
JPS5828568A (en) * 1981-08-13 1983-02-19 Toyota Motor Corp Fuel supply control of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991559A (en) * 1989-01-24 1991-02-12 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine
US4976242A (en) * 1989-01-27 1990-12-11 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine
US4981122A (en) * 1989-01-27 1991-01-01 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine
US6799565B2 (en) * 2001-11-22 2004-10-05 Hyundai Motor Company Method and system for controlling fuel for an engine

Similar Documents

Publication Publication Date Title
EP1178203B1 (en) Fuel volatility detection and compensation during cold engine start
US5001645A (en) Adaptive control system for an engine
US20090030588A1 (en) Controller for internal combustion engine
US20090178656A1 (en) Controller for internal combustion engine
US5157613A (en) Adaptive control system for an engine
US4616619A (en) Method for controlling air-fuel ratio in internal combustion engine
JPS59128944A (en) Air-fuel ratio controller for internal-combustion engine
JPH0226053B2 (en)
JPH0557420B2 (en)
EP0216111B1 (en) Fuel injection system and control method therefor
US5517970A (en) Fuel feeding system and method for internal combustion engine
JPS6017237A (en) Air-fuel ratio control method for internal-combustion engine
JPH0251053B2 (en)
JPS601346A (en) Method of increasing fuel amount upon acceleration due to electronically controlled fuel injection of internal-combustion engine
JP4325511B2 (en) Method for controlling fuel injection during transition of internal combustion engine
US7140351B2 (en) Method and device for operating an internal combustion engine
JPS60150447A (en) Air-fuel control method of internal-combustion engine
JPH03233151A (en) Fuel supply control device for internal combustion engine
JPS60159347A (en) Air-fuel ratio controlling method of internal-combustion engine
JPH0623547B2 (en) Air-fuel ratio control method for internal combustion engine
JP2827491B2 (en) Fuel injection amount control device for internal combustion engine
JPH06146961A (en) Fuel supply controlling device of internal combustion engine
JP2910562B2 (en) Internal combustion engine fuel supply apparatus and internal combustion engine fuel supply method
JPS6027746A (en) Air-fuel ratio controlling method for internal- combustion engine
JP2712556B2 (en) Fuel injection amount control device for internal combustion engine