JPS601346A - Method of increasing fuel amount upon acceleration due to electronically controlled fuel injection of internal-combustion engine - Google Patents

Method of increasing fuel amount upon acceleration due to electronically controlled fuel injection of internal-combustion engine

Info

Publication number
JPS601346A
JPS601346A JP10795183A JP10795183A JPS601346A JP S601346 A JPS601346 A JP S601346A JP 10795183 A JP10795183 A JP 10795183A JP 10795183 A JP10795183 A JP 10795183A JP S601346 A JPS601346 A JP S601346A
Authority
JP
Japan
Prior art keywords
air
fuel
fuel ratio
acceleration
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10795183A
Other languages
Japanese (ja)
Other versions
JPH0512539B2 (en
Inventor
Tsutomu Saito
斎藤 努
Tsuneyuki Egami
常幸 江上
Tokio Kohama
時男 小浜
Kimitaka Saito
公孝 斎藤
Masaru Takahashi
大 高橋
Susumu Nogami
野上 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP10795183A priority Critical patent/JPS601346A/en
Publication of JPS601346A publication Critical patent/JPS601346A/en
Publication of JPH0512539B2 publication Critical patent/JPH0512539B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration

Abstract

PURPOSE:To control the variation of air-fuel ratio upon acceleration, by compensating an initial value which is selected in accordance with the engine operating condition, in view of a deiviation of air-fuel ratio with respect to an air-fuel ratio upon acceleration, and by carrying out the increment of fuel upon acceleration in accordance with the increment characteristic having the compensated initial value. CONSTITUTION:An electronically controlled fuel injection device compensates a fuel injection amount which is obtained by a control circuit 1 based upon the outputs of an intake-air amount detecting device 2, a rotational speed sensor 3, etc., in accordance with the output of an air-fuel ratio sensor 6, and therefore, the valve-opening time of a fuel injection valve 8 is calculated. In this case, upon acceleration the output of the air-fuel ratio sensor 6 is compared with a predetermined voltage level, and both lean and rich values of mixture are detected so that a deviation of the air-fuel ratio is detected by measuring the duration times of the lean and ritch upon acceleration. Next the initial value of a fuel increment upon acceleration which is determined by the engine operating condition including, for example, a cooling water temperature, is compensated by the above-mentioned deviation of air-fuel ratio to be converted into an increment characteristic having a damping characteristic varying its incrination, and thereafter, the valve-opening time of the fuel injection valve 8 is conpensated to the increment side.

Description

【発明の詳細な説明】 技術分野 本発明は内燃機関の電子制御燃料噴射による加速時燃料
増置方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for adding fuel to an internal combustion engine during acceleration by electronically controlled fuel injection.

従来技術 一般に、内燃機関の電子制御燃料噴射方式(EFI )
においては、第1図に示される燃料噴射部構成が用いら
れる。第1図においてEは電子制御燃料噴射式6気筒火
花点火式エンジン、7はエンジンEの吸気管、8は吸気
管7に設けた電磁式燃料噴射弁、9はエンジンEに吸入
される空気量をコントロールするスロットル弁、11は
エンジンEの吸気弁である。
Prior Art Generally, electronically controlled fuel injection (EFI) for internal combustion engines
In this case, the fuel injection section configuration shown in FIG. 1 is used. In Fig. 1, E is an electronically controlled fuel injection 6-cylinder spark ignition engine, 7 is an intake pipe of engine E, 8 is an electromagnetic fuel injection valve installed in the intake pipe 7, and 9 is the amount of air taken into engine E. 11 is the intake valve of the engine E.

EFIでは、燃料噴射弁8よ多燃料は噴射供給されるが
ほとんど液体の状態で供給される。液状の場合には吸気
管7の管壁に燃料は付着する。この結果スロットル弁9
を急操作するようなエンジン1の過渡時には燃料付着に
よジエンジン1の燃焼室への燃料吸入が遅れ、急加速時
ACC(S)にはIJ−ン・スフ4イク状のまた逆に急
減速時DEC但)にはリッチ・スパイク状の空燃比変動
が発生する(第2図参照)。
In the EFI, a large amount of fuel is injected and supplied from the fuel injection valve 8, but most of it is supplied in a liquid state. When the fuel is in liquid form, it adheres to the wall of the intake pipe 7. As a result, the throttle valve 9
When the engine 1 is in a transient state such as sudden operation of the engine 1, fuel adhesion delays the intake of fuel into the combustion chamber of the engine 1, and during sudden acceleration, the ACC (S) During deceleration, rich spike-like air-fuel ratio fluctuations occur during deceleration (see Figure 2).

との空燃比変動をなくする方法として特公昭55−10
9733、特公昭56−6034の如き空燃比変動の補
正法が提案されているが、前記空燃比変動の補正は充分
とは言えなかった。
As a method to eliminate air-fuel ratio fluctuations with
9733 and Japanese Patent Publication No. 56-6034, methods for correcting air-fuel ratio fluctuations have been proposed, but the correction of air-fuel ratio fluctuations cannot be said to be sufficient.

また吸気弁11は燃焼室の熱によシ加熱されていること
によシ、吸気弁11の傘部を燃料の加熱装置として使用
することで(第1図の如く吸気弁11の傘部に向かって
燃料を噴射)燃料の気化を促進しこれら空燃比変動を小
さくするということもなされているが吸匁弁11の傘部
での完全な燃料気化はむずかしく、また第1図に示す如
く燃料はすべて吸気弁11の傘部に噴射できるのではな
く一部は吸気管7の管壁に付着するため、空燃比変動は
小さくできたものの充分とは言えないという問題点があ
る。
In addition, since the intake valve 11 is heated by the heat of the combustion chamber, by using the umbrella portion of the intake valve 11 as a fuel heating device (as shown in Fig. 1, the umbrella portion of the intake valve 11 Although attempts have been made to reduce these air-fuel ratio fluctuations by promoting the vaporization of fuel (injecting fuel toward Since not all of the fuel can be injected into the head portion of the intake valve 11, but some of it adheres to the wall of the intake pipe 7, there is a problem that although the air-fuel ratio fluctuation can be reduced, it is still not sufficient.

また、前述の形式の加速時増量方法においては、エンジ
ンの経時変化、例えば、パルプクリアランスやEFIに
おけるインジェクタ噴口部へのデポジット付着による特
性変化、シリンダ吸気弁の背面部等に付着するデIジッ
ト(潤滑油成分および燃焼生成物に由来する炭素微粒子
等の粘着物)による特性変化や、ガソリンの揮発性など
の性状変化等に対し考慮されておらず、これらエンジン
の経時変化および燃料の性状変化による加速時の空燃比
の#J薄化を検出する手段を有していないため、加速時
の混合ガスの希薄化を避ける事が困難であシ、加速時の
もたつき等のドライバビリティの悪化を生ずる可能性が
あるという問題点がありた。
In addition, in the above-mentioned method of increasing the amount during acceleration, changes in the engine over time, such as changes in characteristics due to pulp clearance and EFI deposits attached to the injector nozzle, and digits (I) attached to the back surface of the cylinder intake valve, etc. It does not take into account changes in properties due to lubricating oil components and sticky substances such as carbon particles derived from combustion products, and changes in properties such as gasoline volatility. Since there is no means to detect #J thinning of the air-fuel ratio during acceleration, it is difficult to avoid dilution of the mixed gas during acceleration, resulting in deterioration of drivability such as sluggishness during acceleration. The problem was that there was a possibility.

前述の場合の空燃比の変動状況特に吸気弁背面部にデポ
ジットが付着した場合の変動状況が第3図に図解されて
いる。第3図において、1VF(0)はデポジット付着
前の、A/F (DEP )はデポジット付着後の空燃
比の変化状況をそれぞれあられす。
FIG. 3 illustrates the fluctuations in the air-fuel ratio in the above-mentioned case, particularly when deposits are attached to the back surface of the intake valve. In FIG. 3, 1VF(0) represents the change in the air-fuel ratio before the deposit is deposited, and A/F (DEP) represents the change in the air-fuel ratio after the deposit is deposited.

ACCは加速時点を、A/F (Qp’i’ )は最適
空燃比を、A/’F (L N )は希薄(リーン)側
を、A/F (RCH)は濃厚(リッチ)側を、それぞ
れあられす。
ACC indicates the acceleration point, A/F (Qp'i') indicates the optimum air-fuel ratio, A/'F (L N ) indicates the lean side, and A/F (RCH) indicates the rich side. , respectively.

また、インジェクタの目づまりについても定常において
は空燃比センサのフィードパ、りで補正できるが、加速
時においては補正手段をもたないため同様の問題を生じ
ていた。また、エンジン。
In addition, clogging of the injector can be corrected by the air-fuel ratio sensor feeder in steady state, but the same problem occurs during acceleration because there is no correction means. Also, the engine.

エアフローメータの製作時のばらつきや経時変化によっ
ても同様の問題が生じていた・ また、ガソリンの揮発性の異なる物を使用した時も同様
の問題が生じていた。
Similar problems occurred due to variations in the manufacturing process of air flow meters and changes over time.Similar problems also occurred when gasoline with different volatility was used.

発明の目的 本発明の目的は、前述の従来形における問題点にかんが
み、加速時における空燃比の変動を抑制し、トルクのも
たつきを減少させ、それによジエンジンのドライノぐビ
リティを向上させることにある。
Purpose of the Invention The purpose of the present invention is to suppress fluctuations in the air-fuel ratio during acceleration, reduce torque sluggishness, and thereby improve dry rungability of the engine, in view of the problems with the conventional type described above. be.

発明の構成 本発明においては一つの形態として内燃機関の加速時に
おける最適空燃比からの空燃比偏差を検出する空燃比偏
差検出手段を用い、内燃機関の運転状態に対応して選択
される初期値に対し、該空燃比偏差検出手段によシ検出
された空燃比偏差に対応して補正を加え、該補正が加え
られた初期値をもち、傾斜が変化する減衰特性をもつ増
量特性とし、内燃機関の加速を検出し加速時供給燃料を
増量することを特徴とする内燃機関の電子制御燃料噴射
による加速時燃料増量方法が提供される。
Structure of the Invention In one embodiment of the present invention, an air-fuel ratio deviation detection means is used to detect an air-fuel ratio deviation from an optimum air-fuel ratio during acceleration of the internal combustion engine, and an initial value is selected in accordance with the operating state of the internal combustion engine. , a correction is made corresponding to the air-fuel ratio deviation detected by the air-fuel ratio deviation detection means, and the internal combustion Provided is a method for increasing the amount of fuel during acceleration using electronically controlled fuel injection for an internal combustion engine, which is characterized by detecting acceleration of the engine and increasing the amount of fuel supplied during acceleration.

また本発明においては他の形態として内燃機関の運転状
態に対応して選択される初期値をもち、傾斜が変化する
減衰特性をもつ増量特性を有し、内燃機関の加速を検出
し加速時供給燃料を増量することを特徴とする内燃機関
の電子制御燃料噴射による加速時燃料増量方法が提供さ
れる。
In addition, the present invention has an initial value selected in accordance with the operating state of the internal combustion engine, and has an increasing characteristic with a damping characteristic whose slope changes, and detects the acceleration of the internal combustion engine and supplies it during acceleration. Provided is a method for increasing fuel during acceleration using electronically controlled fuel injection for an internal combustion engine, which is characterized by increasing the amount of fuel.

本発明は、本発明者の行った研究結果にもとづく下記の
知見に基礎をおいている。すなわち、空燃比変動を小さ
くする補正方法について検討が行われたが、管壁に付着
している燃料は吸気弁傘部のDEP(4)層と、吸気管
管壁のDEP(B)層の2層があり(第1図)、シかも
補正要求特性が異なっていることが明らかとなった。
The present invention is based on the following findings based on the results of research conducted by the present inventor. In other words, studies have been conducted on correction methods to reduce air-fuel ratio fluctuations, but the fuel adhering to the pipe wall is the DEP (4) layer on the intake valve head and the DEP (B) layer on the intake pipe wall. It has become clear that there are two layers (Fig. 1), and that the characteristics required for correction are different between the layers.

具体的な補正モードが第4図に示される。第1加速時燃
料増量はエア・フロ・メータ2.空燃比センサ6、制御
回路1.エンジンE等遅れニヨって生ずる空燃比変動の
補正ノ?ターンであシ、補正量は最も大きく、シかも時
間は短時間である。第2加速時燃料増量は吸気パルプ傘
部に付着した燃料DEP(4)層の補正パターンであシ
補正時間は前記第1加速時燃料増量よりもゆっくシでよ
い。また第3加速時燃料増量は吸気管7の管壁に付着し
た燃料DEP(B)層の補正ノJ?ターンであシ、補正
時間は最もゆりくシした特性であシ、しかもその補正量
も小さい。またこの第1加速時燃別増量は前記の如く系
の遅れから決まる値ゆえに水温(燃焼室温度)に関係し
ない値でおる。とれに対し第2および第3加速時燃料増
量は水温変化によシ管壁、吸気パルプ傘部温度が変化し
気化状態が変化することからエンジンの燃焼室温度(水
温)で変化する値となっている。
A specific correction mode is shown in FIG. The fuel increase during the first acceleration is determined by the air flow meter 2. Air-fuel ratio sensor 6, control circuit 1. Is there a correction for air-fuel ratio fluctuations that occur when engine E etc. lag? If you take a turn, the amount of correction is the largest, and the amount of correction is the shortest. The fuel increase during the second acceleration is a correction pattern of the fuel DEP (4) layer attached to the intake pulp umbrella, and the correction time may be slower than the fuel increase during the first acceleration. Also, the fuel increase during the third acceleration is due to the correction of the fuel DEP (B) layer adhering to the wall of the intake pipe 7. When it comes to turns, the correction time is the most flexible characteristic, and the amount of correction is also small. Further, this increase in amount by fuel during the first acceleration is a value that is determined from the system delay as described above, and therefore is a value that is not related to the water temperature (combustion chamber temperature). On the other hand, the increase in fuel amount during the second and third accelerations is a value that changes with the combustion chamber temperature (water temperature) of the engine because the temperature of the pipe wall and the intake pulp umbrella changes due to changes in water temperature, and the vaporization state changes. ing.

実施例 本発明の一実施例としての内燃機関の電子制御燃料噴射
による加速時燃料増量方法を行う装置が第5図に示され
る。第5図装置において、Eは自動車の動力源である公
知の電子制御燃料噴射式6気筒火花点火式エンジン、2
はエンジンEに吸入される空気量を検出する公知の吸入
空気量検出装置、3はエンジンEの回転数を検出する公
知の回転数センサ、4はエンジンEの冷却水温を測定す
る公知の水温センサである。
Embodiment FIG. 5 shows an apparatus for carrying out a method for increasing fuel during acceleration by electronically controlled fuel injection for an internal combustion engine as an embodiment of the present invention. In the device shown in FIG. 5, E is a known electronically controlled fuel injection 6-cylinder spark ignition engine which is the power source of the automobile;
3 is a known rotational speed sensor that detects the rotational speed of the engine E; 4 is a known water temperature sensor that measures the cooling water temperature of the engine E; It is.

5はエンジンEの排気通路、6は排気通路5に設けた公
知の空燃比センサ、7はエンジンEの吸気管、8は吸気
管7に設けた公知の電磁式燃料噴射弁である。9はエン
ジンEに吸入される空気量をコントロールするスロット
ル弁、91はスロットル弁9の動きを検出する公知のス
ロットルセンサである。1はエンジンEに供給する燃料
量を算出して燃料噴射弁8を作動させる制御回路である
5 is an exhaust passage of the engine E, 6 is a known air-fuel ratio sensor provided in the exhaust passage 5, 7 is an intake pipe of the engine E, and 8 is a known electromagnetic fuel injection valve provided in the intake pipe 7. 9 is a throttle valve that controls the amount of air taken into the engine E, and 91 is a known throttle sensor that detects the movement of the throttle valve 9. 1 is a control circuit that calculates the amount of fuel to be supplied to the engine E and operates the fuel injection valve 8.

エンジンEに供給される燃料量は、エンジンが定常状態
の時は、制御回路1が、吸入空気量検出装置21回回転
数センサ、水温センサ4の各検出信号から基本燃料量と
してめ、さらに空燃比センサ6の信号からめたフィード
バック補正量を補正して、燃料噴射弁8の開弁時間とし
てめる。
When the engine is in a steady state, the amount of fuel supplied to the engine E is determined by the control circuit 1 as the basic fuel amount from each detection signal of the intake air amount detection device 21 rotation speed sensor and the water temperature sensor 4. The feedback correction amount obtained from the signal of the fuel ratio sensor 6 is corrected and set as the valve opening time of the fuel injection valve 8.

また、制御回路1はスロットルセンサ91または吸入空
気量検出装置2によジエンジンEの加速状態が検出され
た時は定常時にめた燃料量以上に加速時燃料増量を行う
様に構成しである。
Further, the control circuit 1 is configured to increase the amount of fuel during acceleration to more than the amount of fuel set during steady state when the acceleration state of the engine E is detected by the throttle sensor 91 or the intake air amount detection device 2. .

第5図装置における制御回路1の構成が第6図に示され
る。制御回路1は、入力系統として、吸気量センサ2お
よび水温センサ4からの信号を受ケルマルチフレクサ1
01.ADコンバータ102゜空燃比センサ6の信号を
受ける整形回路103゜該整形回路およびスロットルセ
ンサ91からの信号を受ける入カポ−)104.回転セ
ンサ3の信号を受ける入力カウンタ105を有する。制
御回路1はまた、バス106 、 ROMI 07 、
 CPU108゜RAM109.出力カウンタ110.
およびパワー駆動部111を有する。パワー駆動部11
1の出力は燃料噴射弁8に供給される。
The configuration of the control circuit 1 in the device shown in FIG. 5 is shown in FIG. The control circuit 1 receives signals from the intake air amount sensor 2 and the water temperature sensor 4 as an input system, and connects the multiflexor 1 to the input system.
01. AD converter 102; shaping circuit 103 which receives the signal from the air-fuel ratio sensor 6; input capo which receives the signal from the shaping circuit and the throttle sensor 91) 104. It has an input counter 105 that receives a signal from the rotation sensor 3. The control circuit 1 also includes a bus 106, ROMI07,
CPU108°RAM109. Output counter 110.
and a power drive section 111. Power drive section 11
The output of 1 is supplied to the fuel injection valve 8.

制御回路1としては、マイクロコンピュータ形式のもの
を用いることができ、例えばトヨタTCC8形式のもの
を用いることができる。制御回路1には、空燃比偏差検
出手段および加速燃料増量補正手段が追加されている。
As the control circuit 1, a microcomputer type circuit can be used, for example, a Toyota TCC8 type circuit can be used. The control circuit 1 is additionally provided with an air-fuel ratio deviation detection means and an acceleration fuel increase correction means.

第7図(A)(B)に加速時空燃比挙動(加速時におけ
る最適空燃比A/F (OPT )からの空燃比希薄側
への最大偏差値D (A/F ) )と加速時空燃比セ
ンサの挙動(加速時空燃比センサ6が混合ガスの希薄状
態を検出している時間、つまシ加速時リーン継続時間T
L)の関係を回転数をパラメータにプロ、トシたものが
示される。第7図(ト)において1Aceは加速を、5
(6)は空燃比センサ信号を、LNはリーンを、RCH
はリッチをあられす。
Figure 7 (A) and (B) show the air-fuel ratio behavior during acceleration (maximum deviation value D (A/F) to the air-fuel ratio lean side from the optimal air-fuel ratio A/F (OPT) during acceleration) and the air-fuel ratio sensor during acceleration. behavior (time during which the air-fuel ratio sensor 6 detects the lean state of the mixed gas during acceleration, lean duration time during acceleration T)
The relationship L) is shown in detail using the rotational speed as a parameter. In Figure 7 (G), 1Ace represents acceleration, and 5Ace represents acceleration.
(6) is the air-fuel ratio sensor signal, LN is lean, RCH
Hail Rich.

第8図(A)ω)は、最適空燃比からの空燃比偏差の一
例として、吸気系に付着したデポジット量W(DEP 
)と加速時における空燃比最大偏差値D(AIF )の
関係を示したものであ)、第7図および第8図から加速
時リーン継続時間TLを測定する事でデ醪ジ、ト付着量
対応値が検出可能であることが判る。なお、第7図、第
8図のデータを調査するに当シ用いたエンジンは、排気
量2800ccのダブル・オーバー・ヘッド・カムシャ
フト型エンジンである。
Figure 8 (A) ω) shows an example of the air-fuel ratio deviation from the optimum air-fuel ratio, the amount W (DEP
) and the maximum air-fuel ratio deviation value D (AIF) during acceleration). From Figures 7 and 8, by measuring the lean duration time TL during acceleration, It can be seen that the corresponding values are detectable. The engine used to investigate the data shown in FIGS. 7 and 8 was a double overhead camshaft engine with a displacement of 2800 cc.

第9図に制御回路1の制御プログラムの概略フローチャ
ートが示される。このプログラムは、電子制御燃料噴射
を行うためのもので、ステップ5o−86よ構成る。S
Oにおいてスタートし、Slにおいてメモリ、入出力゛
テートの初期化を行う。S2では、吸入空気量のデータ
Qとエンジン回転数データNと水温センサのデータθW
から、基本燃料量を計算する。S3では、空燃比センサ
6の信号を用い、空燃比が一定となる様にフィードバッ
ク制御を行って基本燃料量を補正する。
FIG. 9 shows a schematic flowchart of the control program of the control circuit 1. This program is for performing electronically controlled fuel injection and consists of steps 5o-86. S
It starts at O, and the memory and input/output states are initialized at Sl. In S2, intake air amount data Q, engine speed data N, and water temperature sensor data θW are
From this, calculate the basic fuel amount. In S3, the basic fuel amount is corrected by performing feedback control using the signal from the air-fuel ratio sensor 6 so that the air-fuel ratio remains constant.

S4では、初期加速時燃料増量とデポジット量検出と、
初期加速時燃料増量へのデポジット補正tfる。S5で
エンジン1回転の判別をし、エンジン1回転毎に1回の
燃料噴射弁8の開弁時間を、フィードバック制御によシ
補正された基本燃料量と加速時燃料増量とから計算して
め、SOで燃料噴射弁制御を行う。
In S4, increase fuel amount during initial acceleration and detect deposit amount,
Deposit correction to fuel increase during initial acceleration tf. In S5, one revolution of the engine is determined, and the valve opening time of the fuel injection valve 8 for each revolution of the engine is calculated from the basic fuel amount corrected by feedback control and the fuel amount increase during acceleration. , SO controls the fuel injection valve.

第10図に84の空燃比偏差検出処理の詳細なフローチ
ャートを、また第11図に初期加速時燃料増量およびこ
の増量に対する加速時燃料増量補正の計算処理の詳細な
フローチャートを示す。
FIG. 10 shows a detailed flowchart of the air-fuel ratio deviation detection process of step 84, and FIG. 11 shows a detailed flowchart of the calculation process for increasing the amount of fuel during initial acceleration and correcting the increase in fuel amount during acceleration for this increase.

第10図、第11図に示す加速時補正は、5401に示
す様に、一定時間(例えば32.7m5)毎に処理を行
う。空燃比偏差を検出する方法として、空燃比センサ6
の出力信号を一定電圧レベルと比較し、混合ガスの希薄
(リーン)状態および濃厚(リッチ)状態の2値を検出
し、加速時のり一ン継続時間TLおよびリッチ継続時間
TRを測定する方法を用いる。
The correction during acceleration shown in FIGS. 10 and 11 is performed every fixed period of time (for example, 32.7 m5) as shown at 5401. As a method of detecting the air-fuel ratio deviation, the air-fuel ratio sensor 6
A method of comparing the output signal with a constant voltage level, detecting two values of the lean state and rich state of the mixed gas, and measuring the lean duration time TL and rich duration time TR during acceleration. use

例えばデポジット付着の影響は、冷却水温が低温時のみ
生じ、またデポジット付M量の推定を容易にするため、
5402.8403.8404で冷却水温80℃未満、
加速後5秒以内、エンジン回転数90Orpm〜200
0rpmの場合のリーン継続時間T L 、 IJプツ
チ続時間TRを測定する。またリッチ、リーンが交互に
現われる様、5405で、フィードバック制御中に限定
する0 8406でリッチ、リーンを判別する。リーンの場合5
407において、リーンタイムカウンタを+1し、TL
を32.7m日単位で計数する。次に8408で、リッ
チタイムカウンタの値が一定値(リッチタイムリミツト
)を越えているか判断し、越えていれば、5409でリ
ッチ補正力カウンタを+1する。次にステップ5410
でリッチタイムカウンタを0とする。
For example, the influence of deposits only occurs when the cooling water temperature is low, and in order to make it easier to estimate the amount of deposited M,
5402.8403.8404, cooling water temperature less than 80℃,
Within 5 seconds after acceleration, engine rotation speed 90 Orpm ~ 200
Measure the lean duration time T L and the IJ tight duration time TR at 0 rpm. Further, so that rich and lean appear alternately, 5405 is limited to feedback control, and 08406 is determined to be rich or lean. For Lean 5
At 407, the lean time counter is incremented by 1 and the TL
is counted in units of 32.7m days. Next, in 8408, it is determined whether the value of the rich time counter exceeds a certain value (rich time limit), and if it does, in 5409, the rich correction force counter is incremented by 1. Then step 5410
Set the rich time counter to 0.

84.06でリッチと判別した場合、同様に8411〜
5414てリッチタイムカウンタの+1と、リーンタイ
ムの判断を行う。前述の8406〜5414でめたリー
ン補正カウンタおよびリッチ補正カウンタの値からデポ
ジット付着および剥離を推定できる。すなわち、エンジ
ンの正常状態から異常状態への変化および異常状態から
正常状態への復帰を推定できる。
If 84.06 is determined as rich, 8411~
At 5414, the rich time counter is increased by 1 and lean time is determined. Deposit adhesion and peeling can be estimated from the values of the lean correction counter and rich correction counter determined in steps 8406 to 5414 described above. That is, it is possible to estimate a change in the engine from a normal state to an abnormal state and a return from an abnormal state to a normal state.

第11図に84における加速時補正処理の詳細なフロー
チャートを示す。5702で吸入空気量検出装置2から
の吸入空気量信号Qと、回転数検出装置3からの回転数
信号Nとからめたエンラフ1回転当夛の吸入空気fQ/
Nの変化率Δ(φ)をめる。前記Δ(Qハ)が正の場合
、エンジンは加速中である。従って8703で、Δ(Q
/N )−!tE正で一定値以上あれば、加速とみなし
て、5704へ進む。
FIG. 11 shows a detailed flowchart of the acceleration correction process in step 84. At 5702, the intake air fQ/ for one rotation of the enruff is calculated by combining the intake air amount signal Q from the intake air amount detection device 2 and the rotation speed signal N from the rotation speed detection device 3.
Calculate the rate of change Δ(φ) of N. If Δ(Qc) is positive, the engine is accelerating. Therefore, in 8703, Δ(Q
/N)-! If tE is positive and greater than a certain value, it is regarded as acceleration and the process proceeds to 5704.

5704では第1加速時燃料増量f、をめる。エンジン
状態によって定まる単位Δ(Q/N )当シの増量比F
1にΔ(Q/1′IJ )’を乗じ、リーン補正カウン
タおよびリッチ補正カウンタの値よ請求めた第1補正値
を乗じて補正を行い、以前の第1加速時7料増量t1(
n−1)に加える。
At 5704, the fuel amount increase f during the first acceleration is determined. Increase ratio F in unit Δ(Q/N) determined by engine condition
1 is multiplied by Δ(Q/1'IJ)', and the values of the lean correction counter and rich correction counter are multiplied by the requested first correction value to perform correction, and the previous first acceleration 7 charge increase t1 (
Add to n-1).

これによシ、加速時のφの変化量にほぼ比例した増量の
初期値を得られる。
This makes it possible to obtain an initial value for increase that is approximately proportional to the amount of change in φ during acceleration.

同様にして5705において、第2加速時燃料増量f2
 を冷却水温等のエンジン状態によって定まる単位Δ(
Q/N )当シの増量比F2にΔ(Q/N)を乗じ、リ
ーン補正カウンタおよびリッチ補正カウンタの値よ請求
め′fc第2補正値を乗じて補正を行い、以前の第2加
速時燃料増量t2(n−1)に加えめる。増量比F2は
冷却水温ヲノセラメータとしたマツプよシ水温センサ4
よシの冷却水温信号によってめる。
Similarly, at 5705, fuel increase f2 during second acceleration
is the unit Δ(
Q/N) The current increase ratio F2 is multiplied by Δ(Q/N), and the value of the lean correction counter and rich correction counter is multiplied by the second correction value. It is added to the fuel increase amount t2(n-1). The increase ratio F2 is determined by a water temperature sensor 4 that uses a cooling water temperature sensor.
It is determined by the cooling water temperature signal.

8706においても、第3加速時燃料増量(f、)を冷
却水温等のエンジン状態によって定まる単位Δ(Q/N
)当)の増量比FsにΔ(Q/N )を乗じAリーン補
正カウンタおよびリッチ補正カウンタの値よりめた第3
補正値を乗じて補正をtテい、以前の第3加速時燃料増
量fs(nl)にカロえめる。こうしてめたfl ft
= +f3をカロ速時燃料増量の初期値とする。これら
のfllfz’+f@はリーン補正カウンタ、リツを補
正カウンタの値よ請求められる空燃比偏差の補正力5含
まれる。
8706 as well, the fuel amount increase (f,) during the third acceleration is determined by the unit Δ(Q/N) determined by the engine condition such as the cooling water temperature.
) The third increase ratio Fs of this) is multiplied by Δ(Q/N) and determined from the values of the A lean correction counter and the rich correction counter.
The correction value is multiplied by t, and the previous fuel increase during the third acceleration fs (nl) is subtracted. This is how I got fl ft
= +f3 is the initial value of the fuel increase at Calo speed. These fllfz'+f@ include the correction force 5 for the air-fuel ratio deviation which is requested from the value of the lean correction counter and the lean correction counter.

5707ではエンジン1回転毎の判別を行う。At 5707, determination is made for each engine revolution.

5708〜5710においてエンジン1回転毎に、自+
1記加速時燃料増量fs + fa 、fs %l’ら
それぞれ一定値DB HDa r DIを減じて、0ま
で減衰させる。このDI HDa * Daはそれぞれ
異るf直であシ、Dr >I)l >DI とする。5
711において以上のf’l p f2 + fsを加
鏝ル、加速時燃料増量:fとする。
At 5708 to 5710, the self +
1. The constant value DB HDar DI is reduced from each of the fuel increase amount fs + fa and fs %l' during acceleration to attenuate it to 0. This DI HDa * Da has different f directivity, and Dr > I) l > DI. 5
In step 711, the above f'l p f2 + fs is added, and the fuel amount increase during acceleration is set as f.

従って、(1)スロットルを開けて加速した場合のスロ
ットル開度THが第4図(1)に示さiするようである
と、前記φ値も第4図(2)に示されるように増加し、
吸気バルブ傘部に付着した燃料補正のための第2加速時
燃料増量f2が第4図(4)に示されるように行われ、
吸気管7の管壁に付着した燃料補正のための第2加速時
燃料増量f3が第4図(5)に示されるように行われ、
エンジン、エアフローメータ、空燃比センサの遅れに応
じた第1加速時燃料増量f1が第4図(1)にボされる
ように行われる。これらの加算値の加速時燃料増量比イ
が、第4図(6)に示されるように減衰の傾斜が3段階
にゆるやかになる波形となシ、この波形にもとづく増量
が行われる。
Therefore, (1) If the throttle opening TH when the throttle is opened and acceleration is as shown in Figure 4 (1), the φ value will also increase as shown in Figure 4 (2). ,
The fuel increase f2 during the second acceleration to compensate for the fuel adhering to the intake valve head is performed as shown in FIG. 4 (4),
The fuel increase f3 during the second acceleration to compensate for the fuel adhering to the wall of the intake pipe 7 is performed as shown in FIG. 4 (5),
The fuel increase f1 during the first acceleration according to the delay of the engine, air flow meter, and air-fuel ratio sensor is performed as shown in FIG. 4(1). The acceleration fuel increase ratio (a) of these summed values forms a waveform in which the slope of the attenuation becomes gentle in three stages as shown in FIG. 4 (6), and the fuel increase is performed based on this waveform.

本発明の実施にあたっては前述の実施例のほか種々の変
形実施例が可能である。例えば、前述の実施例では、減
衰の傾斜が3段階に変化する増量特性を得るために、減
衰量が一定値で値O異なる3つの増量を加え合せる方式
で行りたが、この代シに、第12図のフローチャートに
示すように、加速時増量で1つの初期値を持ち、減衰量
を3段階に切り換える方式の加速時燃料増量を行うこと
ができる。
In implementing the present invention, various modified embodiments are possible in addition to the embodiments described above. For example, in the above-mentioned embodiment, in order to obtain an increase characteristic in which the slope of the attenuation changes in three stages, the attenuation amount is a constant value and three increases with different values O are added together. As shown in the flowchart of FIG. 12, it is possible to increase the amount of fuel during acceleration by having one initial value for increasing the amount of fuel during acceleration and switching the attenuation amount in three stages.

第12図において、8902において、一定周期毎(例
えば32.7m5)にΔQ/Nを計算し、8903で加
速が検出されると、8904でエンジン状態によって定
まる、増量係数FにΔ(VN)を乗じ、以前の加速時燃
料増量f(n−1)に加えることによシ、今回の加速時
燃料増量fをめる。5905でこのfが極大値かどうか
を調べ、極大値の場合は8906においてfをf ma
xに代入する。このfmaxが今回の加速における増量
の最大値で1、この値から減衰していく。
In FIG. 12, at 8902, ΔQ/N is calculated every fixed period (for example, 32.7 m5), and when acceleration is detected at 8903, at 8904, Δ(VN) is added to the increase coefficient F determined by the engine condition. By multiplying and adding to the previous fuel increase f(n-1) during acceleration, the current fuel increase f during acceleration is determined. In 5905, it is checked whether this f is a local maximum value, and if it is a local maximum value, in 8906, f is changed to f ma
Assign to x. This fmax is 1, which is the maximum value of the increase in the current acceleration, and starts to attenuate from this value.

5907でエンジン1回転毎の判別をぜい、890Bで
増量値fがfmaxXKl よシ大きい場合、8909
でDI を減じて減衰させる。またfがfmazXKl
よシ大きくない場合、5910でfがfmaxXK震よ
シ大きいかどうか調べ、大きい場合は、8911でDz
を減じて減衰する・fがfmaxXK@以下の場合、5
912でり、を減じて減衰する。この場合1>K1>K
gでDt >Dz >Daとする。また増量係数F、お
よびKl+に冨はリーン補正カウンタ、す、チ補正カウ
ンタの値によシ補正を加えた値である。
5907 is used to discriminate every revolution of the engine, and 890B is used when the increase value f is larger than fmaxXKl, 8909
to reduce DI and attenuate it. Also f is fmazXKl
If it is not large enough, use 5910 to check whether fmax is large, and if it is large, use 8911 to check Dz
Attenuates by reducing ・If f is less than fmaxXK@, 5
912 to reduce and attenuate. In this case 1>K1>K
Let Dt>Dz>Da at g. Further, the value of the increase coefficient F and Kl+ is the value obtained by adding the lean correction counter value, the lean correction counter value, and the lean correction counter value.

また前述の実施例では、加速時TL、加速時TRをデポ
ジット付着量対応値の検出手段としているが、空燃比の
挙動とトルクは密接な関係にあシ、特に加速時空燃比(
A/’F )が大きい時はトルクがもたつき、回転数の
立ち上シが鈍くなることから、加速時回転数の立ち上シ
からも、デポジット付着量対応値を検出できる。すなわ
ち、デポジット付Nf=対応値検出手段として、エンジ
ンの回転数を検出する回転数センサが用いられる実施例
が可能である。この協合の特性が第13図に示される。
Furthermore, in the above-mentioned embodiment, TL during acceleration and TR during acceleration are used as means for detecting the value corresponding to the deposit amount, but the behavior of the air-fuel ratio and torque are closely related, especially the air-fuel ratio during acceleration (
When A/'F) is large, the torque is sluggish and the rise of the rotational speed is slow, so the value corresponding to the deposit amount can also be detected from the rise of the rotational speed during acceleration. That is, an embodiment is possible in which a rotation speed sensor that detects the rotation speed of the engine is used as the deposited Nf=corresponding value detection means. The characteristics of this association are shown in FIG.

第13図(1)の特性図は、時間に対するスロットル開
度THの変化を、第13図(2)の特性図は時間に対す
るエンジン回転数Nの変化を尽すもので、ACC時点に
おいて加速が行われたことをおられす〇回転数挙動N(
1)、N(2)、N(3)はそれぞれ加速条件(加速前
運転状態、スロットル変化)が異なる時の挙動であるが
、同じ加速条件であれば同じ回転数挙動を示す。
The characteristic diagram in Fig. 13 (1) shows the change in throttle opening TH with respect to time, and the characteristic chart in Fig. 13 (2) shows the change in engine speed N with respect to time, and acceleration is performed at the ACC point. 〇Revolution speed behavior N (
1), N(2), and N(3) are the behaviors when the acceleration conditions (pre-acceleration operating state, throttle change) are different, but they show the same rotation speed behavior under the same acceleration conditions.

第13図(3)の特性図は、デポジットの無い場合N(
4)と、デポジットの有る場合N(5)とについて、加
速時の回転数挙動を示す0デポジット付着時N(5)に
は、加速時空燃比の希薄化によ、9)ルクが十分発生せ
ず、回転数がもたつきデポジット有りN(5)と無しN
(4)では、同じ加速条件でも回転数挙動に相違が生ず
る。
The characteristic diagram in Figure 13 (3) shows that N(
Regarding 4) and N(5) when there is a deposit, in N(5) when there is no deposit, which shows the rotational speed behavior during acceleration, due to the dilution of the air-fuel ratio during acceleration, sufficient torque is not generated in 9). , rotation speed is slow and with deposit N (5) and without N
In (4), a difference occurs in the rotational speed behavior even under the same acceleration conditions.

第13図の特性図による実施例においては、デポジット
無しで加速が行われた時の各加速条件における回転数挙
動を代表する値(例えば単位時間の回転数変化)を予め
メモリに記憶させておき、加速時回転数センサによシ検
出された回転数挙動を代表する値と、加速条件を検出す
るセンサ(例えばスロットル位置センサ、吸入空気景セ
ンサ)によシ検出された加速条件時の前記メモリに記憶
されている加速時回転数挙動を代表する値とを比較する
ことでデポジット付着を検出できる。
In the embodiment shown in the characteristic diagram of FIG. 13, values representing the rotational speed behavior under each acceleration condition when acceleration is performed without deposit (for example, rotational speed change per unit time) are stored in memory in advance. , a value representative of the rotational speed behavior detected by the rotational speed sensor during acceleration, and the memory during the acceleration condition detected by the sensor that detects the acceleration condition (e.g., throttle position sensor, intake airscape sensor). Deposit adhesion can be detected by comparing the value representative of the rotational speed behavior during acceleration stored in the engine.

第13図の特性図による実施例においては各加速条件時
の回転数挙動を代表する値をメモリに記憶しているが、
加速伯仲から回転数挙動を代表する値を演算する演算式
をメモリに記憶しその演算値と比較することでもデポジ
ット刺着が検出可能である。さらに前述の実施例ではデ
ポジット付着による空燃比ずれの補正について説明した
が、EFIノ’fンジェクタの目づまシやエアフ0− 
) −タの特性ずれやスピードデンシティ方式の圧力セ
ンテの特性ずれやガソリンの揮発性変化についても対応
できる。
In the embodiment shown in the characteristic diagram of FIG. 13, values representing the rotational speed behavior under each acceleration condition are stored in the memory.
Deposit sticking can also be detected by storing in memory an arithmetic expression for calculating a value representing the rotational speed behavior from the acceleration ratio and comparing it with the calculated value. Furthermore, in the above-mentioned embodiment, correction of the air-fuel ratio deviation due to deposits was explained.
) - It can also deal with deviations in the characteristics of the pressure sensor in the speed-density method and changes in the volatility of gasoline.

また、本発明の別形態として、空燃比偏差検出手段によ
シ検出された空燃比偏差に応する初期値補正を行うこと
なく、内燃機関の運転状態に対応して選択される初期値
をもち、傾斜が変化する減衰特性をもつ増量特性を有し
、内燃機関の加速を検出し加速時供給燃料を増量する、
内燃機関の電子制御燃料噴射による加速時燃料増量方法
を採用することができる。
Further, as another form of the present invention, the present invention has an initial value that is selected in accordance with the operating state of the internal combustion engine without performing initial value correction corresponding to the air-fuel ratio deviation detected by the air-fuel ratio deviation detection means. , has an increasing characteristic with a damping characteristic whose slope changes, detects acceleration of the internal combustion engine, and increases the amount of fuel supplied during acceleration;
A method of increasing the amount of fuel during acceleration using electronically controlled fuel injection of the internal combustion engine can be adopted.

この別形態の場合の特性を説明するために、第14図(
A) l (B) l (C)に直線的減衰特性をもつ
加速増量と、そのときの空燃比挙動が図解される。第1
4図(ト)、■) t (C)におhて左側は加速増量
特性を、右側は空燃比挙動をあられす。第14図に)、
ψ)。
In order to explain the characteristics of this other form, FIG.
A) l (B) l (C) An acceleration increase with linear damping characteristics and the air-fuel ratio behavior at that time are illustrated. 1st
In Figure 4 (G), ■) t (C), the left side shows the acceleration increase characteristics, and the right side shows the air-fuel ratio behavior. (see Figure 14),
ψ).

(C)において破線は加速時増足女求將性(推定)を、
実線は加速時増量パターンをあられし、マイナス記号部
は増量不足(リーン)を、プジス記号部は増量過多(リ
ッチ)をあらゎす。
In (C), the dashed line represents the increase in female demand during acceleration (estimated),
The solid line shows the fuel increase pattern during acceleration, the minus symbol indicates insufficient fuel increase (lean), and the positive symbol indicates excessive fuel increase (rich).

第14図に)は、減衰量が小で、減衰傾斜が小である場
合を示し、初期値を増大して行くと、空燃比挙動は、後
の時間において空燃比がリッチになって行く。第14図
の)は減衰量が中位で、減衰傾斜が中位である場合金示
し“、w10増量時のリーンスノ量イク伺近にリッチス
パイクがみえる。第14図(9は減衰量が大で、減衰傾
斜が大である場合を示し、増量直後にリッチスパイクが
みられ、その後リーンスパイクが発生する。
Fig. 14) shows a case where the attenuation amount is small and the attenuation slope is small, and as the initial value is increased, the air-fuel ratio behavior becomes richer at later times. ) in Fig. 14 shows a rich spike when the attenuation amount is medium and the attenuation slope is medium, and a rich spike can be seen near the lean snow level when w10 is increased. This shows a case where the attenuation slope is large, and a rich spike is seen immediately after increasing the amount, followed by a lean spike.

なお第14図(4)において曲想aは鈎増量をあられし
、抛14[&(c)においてbのところはり、チスバイ
ク(リーンタイム)によシλ、FBが新たなスパイクを
作ることをあられす。
In addition, in Figure 14 (4), song a increases the hook amount, and in 抛14 [& (c), at b, due to the lean time, λ, FB creates a new spike. vinegar.

第14図に示される特性から、加速増量の減衰特性とし
て、最初傾斜が大で、その後次第にゅるやかになる減衰
特性を与えれば、加速時の空燃比変動を減少させること
ができることが理解される。
From the characteristics shown in Fig. 14, it is understood that if the damping characteristic of the acceleration increase is given a damping characteristic that has a large slope at first and then gradually becomes smoother, it is possible to reduce the air-fuel ratio fluctuation during acceleration. be done.

そして、その減衰特性を3本以上の折線で近似させれば
、空燃比変動を安定化することができることが理解され
る。この場合においては、第15図(す、(2)に示さ
れるように、増量の初期値Aはエンジン温度によって与
えられる値A(1)とエンジン1回転で吸入される空気
量φの変化量ΔΦ乍との積で定め、3つの減衰傾斜R(
Bl)。
It is understood that air-fuel ratio fluctuations can be stabilized by approximating the damping characteristics using three or more broken lines. In this case, as shown in Figure 15 (2), the initial value A of the increase is the amount of change between the value A (1) given by the engine temperature and the amount of air φ taken in per engine revolution. It is determined by the product of ΔΦ乍, and the three attenuation slopes R (
Bl).

R(B2)、R(式3)はエンジン1回転毎の減量値で
定め、これらA (1) + R(B 1 ) +R(
B2)、R(B3)をエンジンについて予めめておき、
これらを用いて加速増量を決定するととになる。
R(B2) and R(Formula 3) are determined by the weight loss value per engine revolution, and these A (1) + R(B 1 ) + R(
B2) and R(B3) for the engine in advance,
Using these to determine the acceleration increase yields.

発明の効果 本発明によれば、加速時における空燃比の変動が抑制さ
れ、トルクのもたつきが減少させられ、それによジエン
ジンのドライバビリティを向上させることができる。
Effects of the Invention According to the present invention, fluctuations in the air-fuel ratio during acceleration are suppressed and torque stagnation is reduced, thereby improving the drivability of the engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は内燃機関の電子制御燃料噴射方式に用いられる
燃料噴射部構成を示す図、 第2図は内燃機関の電子制御燃料噴射方式の空燃比変動
波形を示す波形図、 第3図は吸気弁背面部にデポジットが付着した場合の空
燃比変動波形を示す波形図、 第4図は増量補正モードを示す波形図、第5図は本発明
の一実施例としての内燃機関の電子制御燃料噴射による
加速時燃料増量方法を行う装置を示す図、 第6図は第5図装置における制御回路の構成を示す図、 第7図(4)、(B)は第5図装置の動作特性を説明す
る図、第8図(4)、(B)は第5図装置における吸気
系デポジッHt関係の特性を説明する図、 第9.第10.第11.および第12図は第5図装置に
おける制御回路の動作流れを示す流れ図、第13図は本
発明の変形実施例における特性を説明する図、 第14図囚1 (B) #(ロ)および第15図は本発
明O別形態としての内燃機関の電子?lt制御燃料噴射
による加速時燃料増量方法の場合の特性を説明する図で
ある。 (符号の説明) E・・・エンジン、1・・・制御回路、2・・・吸入空
気量検出装置、3・・・回転数センサ、4・・・水温セ
ンサ、5・・・排気通路、6・・・空燃比センサ、7・
・・吸2管、8・・・燃料噴射弁、9・・・スロットル
弁、11・・・吸気弁O 特許出願人 株式会社日本自動車部品糺ζ合研究所 トヨタ自動車株式会社 特釣−出願代理人 弁理士 青 木 朗 弁理士 西 舘 和 之 弁理士 松 下 操 弁理士 山 口 昭 之 第6図 第7図(A) 第7図(B) D(A/F) 第8図(A) 第8図(B) W(DEP) 第9図 第14図 第15図 −〉尤 豊田型トヨタ町1番地トヨタ自 動車株式会社内 0発 明 者 野上進 豊田型トヨタ町1番地トヨタ自 動車株式会社内 ■出 願 人 トヨタ自動車株式会社 豊田市トヨタ町1番地
Figure 1 is a diagram showing the configuration of a fuel injection section used in an electronically controlled fuel injection system for an internal combustion engine, Figure 2 is a waveform diagram showing air-fuel ratio fluctuation waveforms in an electronically controlled fuel injection system for an internal combustion engine, and Figure 3 is a diagram showing the air-fuel ratio fluctuation waveform for an electronically controlled fuel injection system for an internal combustion engine. A waveform diagram showing the air-fuel ratio fluctuation waveform when a deposit is attached to the back surface of the valve, FIG. 4 is a waveform diagram showing the increase correction mode, and FIG. 5 is an electronically controlled fuel injection for an internal combustion engine as an embodiment of the present invention. Figure 6 is a diagram showing the configuration of the control circuit in the apparatus shown in Figure 5. Figures 7 (4) and (B) explain the operating characteristics of the apparatus shown in Figure 5. Figures 8 (4) and (B) are diagrams explaining the characteristics of the intake system deposit Ht in the apparatus shown in Figure 5. 10th. 11th. 12 is a flowchart showing the operation flow of the control circuit in the device shown in FIG. 5, FIG. 13 is a diagram explaining the characteristics of a modified embodiment of the present invention, and FIG. Figure 15 shows an electronic diagram of an internal combustion engine as another form of the present invention. FIG. 3 is a diagram illustrating characteristics in the case of a method of increasing fuel amount during acceleration using lt control fuel injection. (Explanation of symbols) E... Engine, 1... Control circuit, 2... Intake air amount detection device, 3... Rotation speed sensor, 4... Water temperature sensor, 5... Exhaust passage, 6...Air-fuel ratio sensor, 7.
...Intake pipe 2, 8...Fuel injection valve, 9...Throttle valve, 11...Intake valve O Patent applicant: Japan Auto Parts Co., Ltd. Toyota Motor Corporation Tokusuri - Application agent Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Akira Matsushita Patent Attorney Akira Yamaguchi Figure 6 Figure 7 (A) Figure 7 (B) D (A/F) Figure 8 (A) Figure 8 (B) W (DEP) Figure 9 Figure 14 Figure 15-〉Yu Toyota Motor Corporation, 1 Toyota-cho Toyota-cho Inventor Susumu Nogami Toyota Motor Corporation, 1-Toyota-cho ■Applicant Toyota Motor Corporation 1 Toyota-cho, Toyota City

Claims (1)

【特許請求の範囲】 1、内燃機関の加速時における最適空燃比からの空燃比
偏差を検出する空燃比偏差検出手段を用い、内燃機関の
運転状態に対応して選択される初期値に対し、該空燃比
偏差検出手段によ多検出された空燃比偏差に対応して補
正を加え、該補正が、加えられた初期値をもち、傾斜が
変化する減衰特性をもつノ曽量特性とし、内燃機関の加
速を検出し加速時供給燃料を増量することを特徴とする
内燃機関の電子制御燃料噴射による加速時燃料増量方法
。 2、前記空燃比偏差検出手段は、空燃比センサである、
特許請求の範囲第1項記載の方法。 3、前記空燃比偏差検出手段は、前記内燃機関の機関回
転数を検出する回転数センサである、特許請求の範囲第
1項記載の方法。 4、前記空燃比偏差は、前記内燃機関の吸気系に付着す
るデポジットによシ生ずる空燃比偏差である、特許請求
の範囲第1〜第3項のいずれかに記載の方法。 5、内燃機関の運転状態に対応して選択される初期値を
もち、傾斜が変化する減衰特性をもつ増量特性を有し、
内燃機関の加速を検出し加速時供給燃料を増量すること
を特徴とする内燃機関の電子制御燃料噴射による加速時
燃料増量方法。 6、該減衰特性の該傾斜の変化は、傾斜が大から徐々に
小となる変化である、特許請求の範囲第5項記載の方法
。 7、 前記増量特性として、機関の運転状態によって決
定される初期値を有し、減衰特性として傾斜が大から小
に3段階以上に変化する増量特性を有する、特許請求の
範囲第5項記載の方法。 8、前記増量特性として、機IP、]の運転状態によっ
て決定される初期値と、減衰特性の傾斜がそれぞれ異る
3つ以上の増量を合成した、特許請求の範囲第7項記載
の方法。 9、前記減衰特性として、前記運転状態および初期値で
定まる3か所以上の点で減衰の傾斜を変化させる、特許
請求の範囲第7項記載の方法。
[Claims] 1. Using an air-fuel ratio deviation detection means for detecting an air-fuel ratio deviation from an optimum air-fuel ratio during acceleration of the internal combustion engine, for an initial value selected in accordance with the operating state of the internal combustion engine, A correction is made in response to the air-fuel ratio deviation frequently detected by the air-fuel ratio deviation detection means, and the correction has the added initial value and a damping characteristic whose slope changes, and the internal combustion A method for increasing the amount of fuel during acceleration using electronically controlled fuel injection for an internal combustion engine, which is characterized by detecting the acceleration of the engine and increasing the amount of fuel supplied during acceleration. 2. The air-fuel ratio deviation detection means is an air-fuel ratio sensor;
A method according to claim 1. 3. The method according to claim 1, wherein the air-fuel ratio deviation detection means is a rotation speed sensor that detects the engine rotation speed of the internal combustion engine. 4. The method according to any one of claims 1 to 3, wherein the air-fuel ratio deviation is an air-fuel ratio deviation caused by deposits attached to the intake system of the internal combustion engine. 5. has an initial value selected in accordance with the operating state of the internal combustion engine, and has an increasing characteristic having a damping characteristic whose slope changes;
A method for increasing the amount of fuel during acceleration using electronically controlled fuel injection for an internal combustion engine, which is characterized by detecting acceleration of the internal combustion engine and increasing the amount of fuel supplied during acceleration. 6. The method according to claim 5, wherein the change in the slope of the attenuation characteristic is a change in which the slope gradually decreases from a large value. 7. The engine according to claim 5, wherein the increasing characteristic has an initial value determined by the operating state of the engine, and the damping characteristic has an increasing characteristic whose slope changes from large to small in three or more steps. Method. 8. The method according to claim 7, wherein the increase characteristic is a combination of an initial value determined depending on the operating state of the machine IP, and three or more increases with different slopes of the damping characteristic. 9. The method according to claim 7, wherein, as the damping characteristic, the slope of the damping is changed at three or more points determined by the operating state and the initial value.
JP10795183A 1983-06-17 1983-06-17 Method of increasing fuel amount upon acceleration due to electronically controlled fuel injection of internal-combustion engine Granted JPS601346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10795183A JPS601346A (en) 1983-06-17 1983-06-17 Method of increasing fuel amount upon acceleration due to electronically controlled fuel injection of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10795183A JPS601346A (en) 1983-06-17 1983-06-17 Method of increasing fuel amount upon acceleration due to electronically controlled fuel injection of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS601346A true JPS601346A (en) 1985-01-07
JPH0512539B2 JPH0512539B2 (en) 1993-02-18

Family

ID=14472183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10795183A Granted JPS601346A (en) 1983-06-17 1983-06-17 Method of increasing fuel amount upon acceleration due to electronically controlled fuel injection of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS601346A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272451A (en) * 1985-05-29 1986-12-02 Hitachi Ltd Controller for internal-combustion engine
JPS62265440A (en) * 1986-05-12 1987-11-18 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
US4976242A (en) * 1989-01-27 1990-12-11 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine
US4981122A (en) * 1989-01-27 1991-01-01 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine
US4991559A (en) * 1989-01-24 1991-02-12 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412045A (en) * 1977-06-28 1979-01-29 Nippon Denso Co Ltd Electronic control type fuel injection device
JPS5841244A (en) * 1981-09-03 1983-03-10 Mitsubishi Electric Corp Electronic air-fuel ratio control system for internal- combustion engine
JPS59203836A (en) * 1983-05-04 1984-11-19 Toyota Motor Corp Method of increasing fuel for acceleration while warming up electronically controlled fuel injection type engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412045A (en) * 1977-06-28 1979-01-29 Nippon Denso Co Ltd Electronic control type fuel injection device
JPS5841244A (en) * 1981-09-03 1983-03-10 Mitsubishi Electric Corp Electronic air-fuel ratio control system for internal- combustion engine
JPS59203836A (en) * 1983-05-04 1984-11-19 Toyota Motor Corp Method of increasing fuel for acceleration while warming up electronically controlled fuel injection type engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272451A (en) * 1985-05-29 1986-12-02 Hitachi Ltd Controller for internal-combustion engine
JPS62265440A (en) * 1986-05-12 1987-11-18 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
US4991559A (en) * 1989-01-24 1991-02-12 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine
US4976242A (en) * 1989-01-27 1990-12-11 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine
US4981122A (en) * 1989-01-27 1991-01-01 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an engine

Also Published As

Publication number Publication date
JPH0512539B2 (en) 1993-02-18

Similar Documents

Publication Publication Date Title
US4886030A (en) Method of and system for controlling fuel injection rate in an internal combustion engine
JP2832944B2 (en) Measurement data delay compensation method
US4616619A (en) Method for controlling air-fuel ratio in internal combustion engine
US5546918A (en) Method of adjusting the composition of the operating mixture for an internal combustion engine
JPS59128944A (en) Air-fuel ratio controller for internal-combustion engine
US4821698A (en) Fuel injection system
JP2548273B2 (en) Fuel injection control device for internal combustion engine
JPH0226053B2 (en)
JPS601346A (en) Method of increasing fuel amount upon acceleration due to electronically controlled fuel injection of internal-combustion engine
JP4706487B2 (en) Fuel injection control device for internal combustion engine
JPS6267258A (en) Driving control method for internal combustion engine
US20030213476A1 (en) Method and arrangement for correcting a fuel quantity which is supplied to an internal combustion engine
US5188082A (en) Fuel injection control system for internal combustion engine
JP3064806B2 (en) Fuel supply control device for internal combustion engine
JP2924576B2 (en) Engine stability control device
JP3138533B2 (en) Engine fuel control device
JPS6017237A (en) Air-fuel ratio control method for internal-combustion engine
JPH0251053B2 (en)
JP2827491B2 (en) Fuel injection amount control device for internal combustion engine
JPS6328228B2 (en)
JPS60261947A (en) Accelerative correction of fuel injector
JPH03121228A (en) Fuel injection controller of internal combustion engine
JP2005069045A (en) Fuel injection control device for internal combustion engine
JP5206221B2 (en) Method and system for controlling the fuel supply of an internal combustion engine
JP2623660B2 (en) Control device for internal combustion engine