JPS60261947A - Accelerative correction of fuel injector - Google Patents

Accelerative correction of fuel injector

Info

Publication number
JPS60261947A
JPS60261947A JP59116475A JP11647584A JPS60261947A JP S60261947 A JPS60261947 A JP S60261947A JP 59116475 A JP59116475 A JP 59116475A JP 11647584 A JP11647584 A JP 11647584A JP S60261947 A JPS60261947 A JP S60261947A
Authority
JP
Japan
Prior art keywords
acceleration
fuel
pulse
amount
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59116475A
Other languages
Japanese (ja)
Inventor
Takeshi Atago
阿田子 武士
Masami Nagano
正美 永野
Masahide Sakamoto
坂本 正英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59116475A priority Critical patent/JPS60261947A/en
Priority to KR1019850003838A priority patent/KR900000149B1/en
Priority to DE8585107023T priority patent/DE3565151D1/en
Priority to EP85107023A priority patent/EP0164125B1/en
Publication of JPS60261947A publication Critical patent/JPS60261947A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/105Introducing corrections for particular operating conditions for acceleration using asynchronous injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the accelerative performance by correcting the synchronous fuel injection under acceleration with correspondence to the operating conditions. CONSTITUTION:Under steady acceleration, it will pass through the right loop to produce no interruption pulse if DELTAQa (variation of intake air) is lower than predetermined level while to produce TA1 pulse upon exceeding over predetermined level. Under acceleration from idling, pulse TA2 due to after idling is produced from the central loop. When accelerating from deceleration, it will pass through the right loop resulting in improvement of acceleration performance.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は自動車用内燃機関の燃料噴射装置に係り、特に
加速時の燃料噴射量を補正し、良好な加速性を得る方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel injection device for an internal combustion engine for an automobile, and more particularly to a method for correcting the fuel injection amount during acceleration to obtain good acceleration performance.

〔発明の背景〕[Background of the invention]

従来の燃料噴射装置における加速時の補正方法は、特開
昭59−5841号公報に記載のように、エンジンの運
転条件により詳細な増量パルスの補正はされていなかっ
た。しかし、本発明に用φられた空気流量計においては
、従来のベーン型のように吸気を遮るものもなく、エン
ジンへの空気の流入が瞬時に行われるため、詳細な加速
時の補正が必要となってきた。
As described in Japanese Unexamined Patent Application Publication No. 59-5841, the correction method during acceleration in a conventional fuel injection device does not include detailed correction of the increase pulse depending on the operating conditions of the engine. However, in the air flow meter used in the present invention, there is no obstruction to the intake air unlike the conventional vane type, and air flows into the engine instantly, so detailed corrections are required during acceleration. It has become.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、熱線式空気流量計を用いた場合の加速
時の補正法を適切にすることにより、良好な内燃機関の
加速性を提供することにある。
An object of the present invention is to provide good acceleration performance of an internal combustion engine by optimizing the correction method during acceleration when using a hot wire air flow meter.

〔発明の概要〕[Summary of the invention]

従来、販売されている電子式燃料噴射装置(、MPIシ
ステム)Viベーン形の空気流量計を使用しているため
加速時は急激なエンジンの吸入空気量の増加がないため
、加速初期に相対的に比較的濃い混合気が供給されてい
た。しかし、本来工ンジンへの空気の吸入遅れが存在す
るため、眼を見晴る加速性は実現できなかった。一方、
本発明に用いられる空気量センサは絞り構成とはなって
いないため、加速時のエンジンへの空気の到達が早く出
来る利点がある一方、燃料の追従遅れが、問題となって
いた。
Conventionally, the electronic fuel injection device (MPI system) on the market uses a Vi vane type air flow meter, so there is no sudden increase in the intake air amount of the engine during acceleration. A relatively rich mixture was being supplied to the However, due to the inherent delay in air intake to the engine, spectacular acceleration could not be achieved. on the other hand,
Since the air amount sensor used in the present invention does not have a throttle configuration, it has the advantage that air can reach the engine quickly during acceleration, but a delay in fuel follow-up has been a problem.

この燃料の遅れ量Vi従来のように空気の吸入が遅れる
ため一定値で良い」ということにはならず、加速度その
他によって緻密に補正してやる必要があることが判った
It has been found that this fuel delay amount Vi cannot be kept at a constant value as in the conventional method because air intake is delayed, and that it is necessary to precisely correct it based on acceleration and other factors.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を実施するためのエンジンおよび実施例
を図示したもので、エンジンlは気筒数に対応してイン
ジェクタ3を有する吸気管2を有しており、この吸気管
は上流のコレクタ4において1つに纏められ、更に上流
にエンジンの吸気端を決定する絞り弁を有している。ま
た、エンジンの吸気tは更に上流に設けられたエアフロ
センサ6において測定される。一方、エンジンの回転数
は回転センサー3によって検出される。その他、コント
ロールユニツ)12にはエンジン温度11゜排気ガス信
号lOなどが入力される。エンジンに対する燃料の供給
は、インジェクタ3の開弁により行われ、燃料量の計量
は開弁時間に1って行われる。
FIG. 1 illustrates an engine and an embodiment for carrying out the present invention. The engine l has an intake pipe 2 having injectors 3 corresponding to the number of cylinders, and this intake pipe is connected to an upstream collector. 4, and has a throttle valve further upstream that determines the intake end of the engine. Further, the intake air t of the engine is measured by an air flow sensor 6 provided further upstream. On the other hand, the rotational speed of the engine is detected by a rotation sensor 3. In addition, the engine temperature 11° and the exhaust gas signal lO are input to the control unit 12. Fuel is supplied to the engine by opening the valve of the injector 3, and the amount of fuel is measured once every valve opening time.

また、燃料は燃料ポンプ8とレギュレータ9とに工って
加圧調圧されている。
Further, the pressure of the fuel is regulated by means of a fuel pump 8 and a regulator 9.

第2図は第1図に示した入出力関係をブロックダイヤプ
ラムで示したもので、コントロールユニットECUに対
して、左111!+がセンサ類、右側がアクチュエータ
類である。また、ECUの中には圧部に示す波形整形回
路、AD変換器や入出力の交換、演算処理を行うl10
LSI部および、これに指令を出すCPU、更に右側に
は出力アクチュエータ類を駆動するための回路が配置さ
れている。
FIG. 2 shows the input/output relationship shown in FIG. 1 using a block diagram. + indicates sensors, and the right side indicates actuators. In addition, inside the ECU, there is a waveform shaping circuit shown in the pressure section, an AD converter, input/output exchange, and l10 that performs arithmetic processing.
An LSI section, a CPU that issues commands to the LSI section, and a circuit for driving output actuators are arranged on the right side.

つぎに、噴射タイミングについて第3図を用い□、( て説明する。通常4気筒4サイクルエンジンにお (け
る噴射は、4気筒をまとめて1回転に1回づつすなわち
AXCのタイミングで燃料を噴射している。本発明にお
いて説明する追加パルスとはBの部分に示したパルスで
あり、加速が検出されると直ちにパルスが発生し、その
タイミングで燃料を噴射する。また加速の検出の方法と
しては本発明では、アイドル状態からスロットルが開か
れたことを意味するアイドルSWの0N−OFF信号、
吸入空気量Qaの変化率などがあるが、加速の大きさは
、Δtの間のΔQa/Qaの大きさとに検出できる。
Next, we will explain the injection timing using Fig. 3.Injection in a normal 4-cylinder 4-cycle engine (injects fuel into all 4 cylinders once per rotation, that is, at the AXC timing). The additional pulse explained in the present invention is the pulse shown in part B, and the pulse is generated immediately when acceleration is detected, and fuel is injected at that timing.Also, as a method for detecting acceleration, In the present invention, the 0N-OFF signal of the idle SW means that the throttle is opened from the idle state,
There is a rate of change in the intake air amount Qa, etc., and the magnitude of acceleration can be detected by the magnitude of ΔQa/Qa between Δt.

第5図は加速度の大きさに対する割込み追加パルスの実
車におけるセッチングの一例を示したものであり、例え
ば、加速前の状態により、加速後の処理が分けられる。
FIG. 5 shows an example of how the interrupt additional pulse is set in an actual vehicle depending on the magnitude of acceleration. For example, the processing after acceleration is divided depending on the state before acceleration.

すなわち、減速時の燃料カット後については、燃料カッ
ト中の吸気糸のドライアップを充足するために、燃料を
多量に供給する必要があること。定常状態においてもス
ロットル全閉状態とそれ以外とでは加速補を量を変える
必要がある。また、加速の検出は吸入空気量の変化とア
イドルスイッチの併用となるが、アフターアイドルと表
しているものが、アイドルスイッチによる加速検出によ
る加速割込みパルスである。
That is, after fuel cut during deceleration, it is necessary to supply a large amount of fuel in order to dry up the intake string during fuel cut. Even in a steady state, it is necessary to change the amount of acceleration compensation depending on whether the throttle is fully closed or not. Furthermore, acceleration is detected using both changes in the amount of intake air and the idle switch, and what is referred to as "after idle" is an acceleration interrupt pulse generated by acceleration detection by the idle switch.

それぞれの代表例を側圧とって説明をすると、まず、減
速燃料カット後は緩加速と急加速とに分け、緩加速時は
3m3.急加速時は9m8を複数回噴射(加速検出する
毎に)する。また、加速の検出は、アイドルSWとΔQ
a双方で行うが、この理由はアイドルSWにおける検出
が、ΔQaによる検出に比べて必らず早いという実験デ
ータによる(理由はΔQaの場合は吸気系の遅れが少な
いとは云ってもスロットルの開きよシも大きいことによ
る)。
To explain each typical example using lateral pressure, first, after deceleration and fuel cut, it is divided into slow acceleration and sudden acceleration, and during slow acceleration, the pressure is 3 m3. During sudden acceleration, 9m8 is injected multiple times (each time acceleration is detected). In addition, acceleration detection is performed using the idle SW and ΔQ.
The reason for this is due to experimental data showing that detection at the idle switch is always faster than detection by ΔQa (the reason is that although the delay in the intake system is less in the case of ΔQa, the throttle opening (Depends on how big it is).

このアイドル8WKよる割込みパルスは9m8と比較的
大きい値を例として、セツチングした。
The interrupt pulse due to this idle 8WK is set to a relatively large value of 9m8 as an example.

また、定常時はこれに比べて吸気管のドライアップが少
ないため、アイドル8WKよる割込みパルスは3m8な
どと減速時に比べて小さくてよい。
Furthermore, during steady state, there is less dry-up of the intake pipe, so the interrupt pulse due to idle 8WK may be smaller, such as 3 m8, than during deceleration.

また更にアイドルSWがOFF時、すなわち、スロット
ルが開かれた状態からの加速においては、閉じられた状
態に比べて吸気管での混合気の状態が均一であるなど条
件が良いためアイドルSWでの加速補正は不要である。
Furthermore, when the idle switch is OFF, that is, when accelerating from an open state, conditions are better such as the air-fuel mixture in the intake pipe being more uniform than when the throttle is closed. No acceleration correction is required.

これらの補正を適用した結果による実験結果を第6図に
示した。第6図の例はアイドルからの無負荷全開急加速
の例であるが、回転の立ち上がり時間は、加速時の割込
追加パルス補正の適用により、従来型のTIが200m
8種度であるものをT2としてl 20’m 8種度に
改善できることが判っている。
Experimental results obtained by applying these corrections are shown in FIG. The example in Figure 6 is an example of no-load full-throttle sudden acceleration from idle, but the rise time of rotation is 200m compared to the conventional TI due to the application of interrupt additional pulse correction during acceleration.
It has been found that it is possible to improve l 20'm from 8 degrees to 8 degrees as T2.

第7図は第5図で説明した補正法を実現するためのフロ
ーチャートを示したものであり、まず定常時における加
速では右側のループを通り、ΔQaがAIより小さい時
は割込みパルスはなく、大きい場合にTANのパルスを
出力する。なお、本来は、71j>ΔQa>Aiとして
判別して追加パルスもTAX’ (図5では6m5)と
T A l ” (3m8)と区別するべきであるが、
フローチャートでは以−下すべてのフローでこれを省略
した。
Fig. 7 shows a flowchart for realizing the correction method explained in Fig. 5. First, acceleration in steady state passes through the right loop, and when ΔQa is smaller than AI, there is no interrupt pulse, and when ΔQa is smaller than AI, there is no interrupt pulse. outputs a TAN pulse. Note that originally, the additional pulse should be distinguished from TAX' (6m5 in FIG. 5) and T A l '' (3m8) by determining 71j>ΔQa>Ai, but
In the flowchart, this is omitted in all the flows below.

つぎに中央のループは、アイドルからの加速でアフター
アイドルによるパルスTA2(、,3m5)がセットさ
れ、その後ΔQaが判別されて追加パルスTA3(ここ
でも、TA3’ (3m8)TA3’(6m8)の2種
)をセットする。
Next, in the center loop, pulse TA2 (, 3m5) due to after-idle is set during acceleration from idle, and then ΔQa is determined and additional pulse TA3 (also here, TA3' (3m8) TA3' (6m8)) is set. 2 types).

左側のループは減速からの加速の場合であり、この場合
、アフターアイドルでTA4 (9m8)出力され、更
にΔQaによって加速度を判別、A5>ΔQa>A6の
ときは、TA6 (3mS)のパルスを出力することで
、補正を終了する。これらの補正は全て、ΔQaによる
補正パルスは1回の加速当り1回しか行われないが、現
実のエンジンにおけるテストでは減速カット後の急加速
時に、加速不足の問題が残る。本発明の更に1つの特徴
は、この部分に改良を加えたことである。即ち、ΔQa
>A5の場合については補正パルスTA5をセットする
、このTASを出力したことを覚えておき、この条件の
ときのみ、ΔQa>A5の判別によるTASの補正を繰
返し得るようにした。
The loop on the left is the case of acceleration from deceleration. In this case, TA4 (9m8) is output at after idle, and the acceleration is further determined by ΔQa, and when A5>ΔQa>A6, a TA6 (3mS) pulse is output. This completes the correction. In all of these corrections, the correction pulse based on ΔQa is performed only once per acceleration, but in actual engine tests, the problem of insufficient acceleration remains during sudden acceleration after deceleration cut. Another feature of the present invention is that this part has been improved. That is, ΔQa
>A5, the correction pulse TA5 is set, and this TAS is outputted. Only under this condition, the TAS correction based on the determination of ΔQa>A5 can be repeated.

〔発明の効果〕 1 以上、実施例で説明したように加速時の割込み補正の条
件判別により補正量を変えることで、実験例に示した如
き、良好な加速性を得ることができる。更に、本発明の
特徴でもめる減速燃料カット後の補正の条件判別の適用
により、従来、減速時と定常時の双方の加速マツチング
の両立は困難とされていた概念を破ることが出来た。
[Effects of the Invention] 1. As described above in the embodiment, by changing the correction amount by determining the conditions for interrupt correction during acceleration, it is possible to obtain good acceleration performance as shown in the experimental example. Furthermore, by applying the condition determination for correction after deceleration fuel cut, which is a feature of the present invention, it has been possible to break the conventional concept that it is difficult to achieve both acceleration matching during deceleration and steady state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1. 2−は本発明を実施するシステム図、第3.4
囚は噴射タイミングの説明図、第5図は本発明の詳細な
説明図、第6(9)は本発明による実験結果の説BA図
、第7図は本発明実現のためのフローチャートの説明図
である。 l・・・エンジン、3・・・インジェクタ、6・・・吸
入空気第3凶 ◇〃口濠検出 第L+閃 帖5図 范6閃 桔q図
1st. 2- is a system diagram implementing the present invention, Section 3.4
Figure 5 is an explanatory diagram of injection timing, Figure 5 is a detailed diagram of the present invention, Figure 6 (9) is a BA diagram of the experimental results according to the present invention, and Figure 7 is an explanatory diagram of a flowchart for realizing the present invention. It is. 1...Engine, 3...Injector, 6...Intake air No. 3

Claims (1)

【特許請求の範囲】[Claims] 1、燃料噴射弁と、機関の吸入空気量や回転数や温度を
含む各柚作動パラメータに基づいて予めプログラムされ
た制御内容に従って上記燃料噴射弁の開弁時開を制御し
、更に、吸入空気量を制御する絞り弁の閉状態を検出す
る信号を入力する機能を有した内燃機関の燃料噴射装置
において、定常時に基本燃料量を噴射する噴射弁の開弁
パルスとは独立に燃料増輸出の開弁パルス発生手段を設
け、この増量用パルス巾を基本パルス巾とは独立に、吸
入空気量の単位時間当りの変化量、絞り弁の閉信号、内
燃機関の回転数信号などに依存させたことを特徴とする
燃料噴射装置の加速補正方法。
1. Controls the opening of the fuel injector according to pre-programmed control contents based on various operating parameters including the intake air amount, rotation speed, and temperature of the engine. In a fuel injection system for an internal combustion engine that has a function of inputting a signal to detect the closed state of a throttle valve that controls the amount of fuel, it is possible to increase or export fuel independently of the opening pulse of the injection valve that injects the basic amount of fuel during steady state. A valve opening pulse generating means is provided, and the width of this increasing pulse is made to depend on the amount of change in intake air amount per unit time, the closing signal of the throttle valve, the rotation speed signal of the internal combustion engine, etc., independently of the basic pulse width. An acceleration correction method for a fuel injection device, characterized in that:
JP59116475A 1984-06-08 1984-06-08 Accelerative correction of fuel injector Pending JPS60261947A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59116475A JPS60261947A (en) 1984-06-08 1984-06-08 Accelerative correction of fuel injector
KR1019850003838A KR900000149B1 (en) 1984-06-08 1985-06-01 Fuel injection control method for internal combustion engine
DE8585107023T DE3565151D1 (en) 1984-06-08 1985-06-07 Fuel injection control method for internal combustion engines
EP85107023A EP0164125B1 (en) 1984-06-08 1985-06-07 Fuel injection control method for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116475A JPS60261947A (en) 1984-06-08 1984-06-08 Accelerative correction of fuel injector

Publications (1)

Publication Number Publication Date
JPS60261947A true JPS60261947A (en) 1985-12-25

Family

ID=14688020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116475A Pending JPS60261947A (en) 1984-06-08 1984-06-08 Accelerative correction of fuel injector

Country Status (4)

Country Link
EP (1) EP0164125B1 (en)
JP (1) JPS60261947A (en)
KR (1) KR900000149B1 (en)
DE (1) DE3565151D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182453A (en) * 1985-12-27 1987-08-10 Japan Electronic Control Syst Co Ltd Interruption increased fuel quantity controller in acceleration for electronically controlled fuel injection type internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611844A (en) * 1984-06-15 1986-01-07 Automob Antipollut & Saf Res Center Fuel injection device
JPS6361739A (en) * 1986-09-01 1988-03-17 Hitachi Ltd Fuel control device
DE4420956C2 (en) * 1994-06-16 1998-04-09 Bosch Gmbh Robert Control method for the fuel metering of an internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108127A (en) * 1978-02-13 1979-08-24 Toyota Motor Corp Electronically-controlled fuel injector
US4424568A (en) * 1980-01-31 1984-01-03 Hitachi, Ltd. Method of controlling internal combustion engine
JPS56124637A (en) * 1980-03-07 1981-09-30 Hitachi Ltd Method of controlling acceleration of engine
JPH0610443B2 (en) * 1982-04-28 1994-02-09 株式会社日立製作所 Electronic fuel injection device
DE3276383D1 (en) * 1982-08-30 1987-06-25 Toyota Motor Co Ltd Electronically controlled fuel injection apparatus
JPS5949336A (en) * 1982-09-14 1984-03-21 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injector for internal- combustion engine
DE3376995D1 (en) * 1982-10-20 1988-07-14 Hitachi Ltd Control method for internal combustion engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182453A (en) * 1985-12-27 1987-08-10 Japan Electronic Control Syst Co Ltd Interruption increased fuel quantity controller in acceleration for electronically controlled fuel injection type internal combustion engine

Also Published As

Publication number Publication date
DE3565151D1 (en) 1988-10-27
EP0164125A3 (en) 1986-03-12
KR860000467A (en) 1986-01-29
EP0164125B1 (en) 1988-09-21
KR900000149B1 (en) 1990-01-20
EP0164125A2 (en) 1985-12-11

Similar Documents

Publication Publication Date Title
US4479186A (en) Method and apparatus for controlling an internal combustion engine
US4630206A (en) Method of fuel injection into engine
US4886030A (en) Method of and system for controlling fuel injection rate in an internal combustion engine
JPH057548B2 (en)
JPS60261947A (en) Accelerative correction of fuel injector
JPH0316498B2 (en)
JPH057546B2 (en)
JPS61157741A (en) Detecting device of intake air quantity
JP2749138B2 (en) Combustion abnormality detection device for internal combustion engine
JPH0246777B2 (en)
JPS6138140A (en) Fuel injection control device in internal-combustion engine
JPH0584386B2 (en)
JPH0323330A (en) Fuel injection amount control device for internal combustion engine
JPS58150045A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS63140867A (en) Engine controller
JPS62168939A (en) Control device for internal combustion engine with supercharger
JP2002147280A (en) Engine control device
JPS59188045A (en) Asynchronous fuel-feed controller for acceleration of internal-combustion engine
JPS59200034A (en) Method of controlling fuel injection in internal- combustion engine
JPS63289237A (en) Fuel injection quantity controlling method for internal combustion engine
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS62206246A (en) Fuel injection quantity controller for internal combustion engine
JPS59226242A (en) Apparatus for starting electronically controlled fuel injection in internal-combustion engine
JPH0416621B2 (en)
JPS63111249A (en) Interrupt injection control device for electronical controlled gasoline injection type internal combustion engine