JPS62182453A - Interruption increased fuel quantity controller in acceleration for electronically controlled fuel injection type internal combustion engine - Google Patents

Interruption increased fuel quantity controller in acceleration for electronically controlled fuel injection type internal combustion engine

Info

Publication number
JPS62182453A
JPS62182453A JP29326585A JP29326585A JPS62182453A JP S62182453 A JPS62182453 A JP S62182453A JP 29326585 A JP29326585 A JP 29326585A JP 29326585 A JP29326585 A JP 29326585A JP S62182453 A JPS62182453 A JP S62182453A
Authority
JP
Japan
Prior art keywords
acceleration
interrupt
fuel injection
interruption
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29326585A
Other languages
Japanese (ja)
Inventor
Yukio Hoshino
星野 行男
Mitsuru Miyata
充 宮田
Shinpei Nakaniwa
伸平 中庭
Junichi Furuya
純一 古屋
Kazuyuki Saito
斉藤 一幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP29326585A priority Critical patent/JPS62182453A/en
Publication of JPS62182453A publication Critical patent/JPS62182453A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit the interruption injection in good timing by comparing the actual engine acceleration in succession from the smaller value side out of a plurality of prescribed judgement levels and setting the interruption increased fuel quantity on the basis of the result of the judgement and carrying out the interruption injection. CONSTITUTION:A fuel injection quantity setting means B sets the fuel injection quantity on the basis of the operation state of an engine H which is detected by an engine operation state detecting means A, and the corresponding pulse signals are outputted into a fuel injection valve D from a driving pulse output means C. Further, in an acceleration state judging means E, the actual engine acceleration speed is compared in succession from the smaller value side out of a plurality of prescribed judgement levels, and an interruption increased fuel quantity setting means F sets the increased fuel quantity on the basis of the result of the judgement, and the corresponding interruption driving pulse signals are interrupted between the driving plus signals from an output means G, and said pulse signals are outputted into the fuel injection valve D. Thus, the interruption increased fuel quantity in acceleration is made proper, and the interruption injection can be carried out in good timing, and the acceleration responsiveness can be improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電子制御燃料噴射式内燃機関の加速時割込み
増量制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an interrupt increase control device during acceleration of an electronically controlled fuel injection type internal combustion engine.

〈従来の技術〉 電子制御燃料噴射式内燃機関の従来例として以下のよう
なものがある。
<Prior Art> Conventional examples of electronically controlled fuel injection type internal combustion engines include the following.

即ち、エアフローメータ等により検出された吸入空気流
量Qと機関回転速度Nとから基本噴射量Tp (=Kx
Q/N;には定数)を演算すると共に、冷却水温度等の
機関運転状態に応じた各種補正係数C0EFと空燃比フ
ィードバック補正係数αとパフテリ電圧による補正係数
Tsとを演算した後、燃料噴射量Ti  (=TpXC
OEFxα+Ts)を演算する。そして、例えばシング
ルポイントインジェクションシステム(SP1方式)で
は、機関の172回転回転点火信号等に同1tI]シて
燃料噴射弁に対して前記燃料噴射iTiに対応するパル
ス巾の駆動パルス信号を出力して機関に燃料を供給する
That is, the basic injection amount Tp (=Kx
Q/N; is a constant), and after calculating various correction coefficients C0EF according to engine operating conditions such as cooling water temperature, air-fuel ratio feedback correction coefficient α, and correction coefficient Ts according to puffer battery voltage, fuel injection is performed. Quantity Ti (=TpXC
OEFxα+Ts) is calculated. For example, in a single point injection system (SP1 method), a drive pulse signal having a pulse width corresponding to the fuel injection iTi is output to the fuel injection valve in response to the engine's 172-rpm ignition signal, etc. Supply fuel to the engine.

ところで、前記各種補正係数C0EFには加速峙増は補
正係数が含まれるものがあるが、パルス(燃料噴射量T
iに対応するパルス)間での加速時には応答性が悪いた
め、所謂割込み噴射を行って応答性の向上を図っている
By the way, some of the various correction coefficients C0EF include correction coefficients for acceleration increase, but pulse (fuel injection amount T
Since the response is poor during acceleration between pulses corresponding to i), so-called interrupt injection is performed to improve the response.

即も、加速運転時には、第8図及び第9図に示すように
例えば吸入空気流量Qの変化率(ΔQ)の所定値(ΔQ
x)をスライスレベルとして、このスライスレベル(所
定機関加速度)を越えたときに所定itの割込みパルス
信号を前記駆動パルス信号の間に割込ませて、加速初期
に増量燃料を噴射する所謂割込み噴射により燃料の割込
み増量を図り、加速応答性を向上させるようにしていた
Immediately, during acceleration operation, for example, the rate of change (ΔQ) of the intake air flow rate Q is set to a predetermined value (ΔQ) as shown in FIGS.
x) is a slice level, and when this slice level (predetermined engine acceleration) is exceeded, an interrupt pulse signal of a predetermined value is inserted between the drive pulse signals, and an increased amount of fuel is injected at the beginning of acceleration. The aim was to increase the amount of fuel and improve acceleration response.

〈発明が解決しようとする問題点〉 ところで、かかる従来の加速時の割込み増量においては
、機関の急加速時はど多くの燃料増量を必要とする(第
9図参照)にも係わらず一定巾の割込みパルス信号しか
出力されず、割込みパルス信号の設定値によっては急加
速時に必要とする割込み増量燃料量が得られなかったり
緩加速時に割込み増量燃料量が多すぎて空燃比がリッチ
化するなど加速応答性の向上を充分に果たすことができ
なかった。
<Problems to be Solved by the Invention> By the way, in the conventional cut-in fuel increase during acceleration, even though a large amount of fuel is required to be increased when the engine suddenly accelerates (see Figure 9), Depending on the set value of the interrupt pulse signal, the required interrupt increase fuel amount may not be obtained during sudden acceleration, or the interrupt increase fuel amount may be too large during slow acceleration, causing the air-fuel ratio to become rich. It was not possible to sufficiently improve acceleration response.

また、割込みパルス信号の出力タイミングが所定のスラ
イスレベル(ΔQx)を越えたときに行われるため、第
10図に示すように急加速時には割込みパルス信号の出
力(割込み噴射タンミング)が吸入空気流i1Qの変化
に対して速すぎて空燃比がオーバーリーンとなる。これ
は、エアフローメータ等によって検出される吸入空気流
iQの変化率(若しくはスロットル弁開度変化率)によ
って加速と判定され、この加速判定により割込み噴射が
行われるが、割込みタンミングが早すぎて吸入空気流量
Qが増大した気筒に燃料が供給さない等の影響によって
、空燃比がオーバーリーン化するものである。この空燃
比のオーバーリーン化により第8図に示した図示平均有
効圧の変化に表れるような失火が発生することがあった
Furthermore, since the output timing of the interrupt pulse signal exceeds a predetermined slice level (ΔQx), as shown in FIG. changes too quickly and the air-fuel ratio becomes over-lean. This is determined to be an acceleration based on the rate of change in the intake airflow iQ (or the rate of change in the throttle valve opening) detected by an air flow meter, etc., and interrupt injection is performed based on this acceleration determination, but the interrupt tamping is too early and the intake The air-fuel ratio becomes over-lean due to effects such as not supplying fuel to the cylinder where the air flow rate Q has increased. This overleaning of the air-fuel ratio may cause a misfire as shown in the change in indicated mean effective pressure shown in FIG.

本発明は上記問題点に鑑みなされたものであり、要求さ
れる割込み噴射による加速時の割込み増量を加速状態に
応じてタイミング良く得ることのできる加速増量制御装
置を提供することを目的とする。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide an acceleration increase control device that can obtain a required interrupt increase during acceleration by interrupt injection in a timely manner depending on the acceleration state.

く問題点を解決するための手段〉 そのため本発明では、第1図に示すように、少なくとも
加速運転状態を含む機関の運転状態を検出する機関運転
状態検出手段と、検出された機関運転状態に基づいて燃
料噴射量を設定する燃料噴射量設定手段と、設定された
燃料噴射量に対応する駆動パルス信号を燃料噴射弁に出
力する駆動パルス出力手段と、実際の機関加速度を所定
複数の判定レベルの小なる側から順次比較する加速状態
判定手段と、該加速状態判定手段の判定結果に基づいて
割込み増量燃料量を設定する割込み増量燃料量設定手段
と、設定された割込み増量燃料量に対応する割込み駆動
パルス信号を前記駆動パルス信号の間に割込ませて前記
燃料噴射弁に出力する割込み駆動パルス出力手段と、を
備えて電子制御燃料噴射式内燃機関の加速時割込み増量
制御装置を構成する。
Means for Solving the Problems> Therefore, in the present invention, as shown in FIG. a fuel injection amount setting means for setting a fuel injection amount based on the fuel injection amount; a drive pulse output means for outputting a drive pulse signal corresponding to the set fuel injection amount to the fuel injection valve; and a drive pulse output means for outputting a drive pulse signal corresponding to the set fuel injection amount to the fuel injection valve; an acceleration state determining means for sequentially comparing from the smaller side; an interrupt increase fuel amount setting means for setting an interrupt increase fuel amount based on the determination result of the acceleration state determination means; and an interrupt increase fuel amount setting means that corresponds to the set interrupt increase fuel amount. an interrupt drive pulse output means for inserting an interrupt drive pulse signal between the drive pulse signals and outputting the interrupt drive pulse signal to the fuel injection valve, an interrupt increase control device during acceleration of an electronically controlled fuel injection type internal combustion engine is configured. .

く作用〉 かかる構成によると、機関加速状態を複数の判定レベル
の小なる側から順次比較し、判定結果に基づいて割込み
増量燃料量が設定されて割込み噴射されるため、急加速
状態では緩加速状態に比べて多くの回数割込み噴射が行
われる。このため、緩加速時の適性タイミングで割込み
噴射を行いつつ、急加速時には前記タイミングで割込み
噴射を行った後に更に増量した割込み噴射をさせて急加
速時における要求タイミングで加速時の割込み増量を行
わせることができる。
According to this configuration, the engine acceleration state is compared sequentially from the smallest of the plurality of determination levels, and based on the determination result, the interrupt increase fuel amount is set and the interrupt injection is performed, so that the engine accelerates slowly in the rapid acceleration state. Interrupt injection is performed more times than in the current state. For this reason, while performing interrupt injection at the appropriate timing during slow acceleration, during sudden acceleration, the interrupt injection is performed at the above-mentioned timing, and then a further increased amount of interrupt injection is performed, and the interrupt injection amount during acceleration is increased at the required timing during sudden acceleration. can be set.

しかも、急加速時には緩加速時よりも回数多く割込み噴
射が行われ、それが要求割込み増量燃料量を実際の吸入
空気流量に応じて徐々に増大する割込みパルスに分散さ
せて噴射させることができ、空燃比をオーバーリーン化
させることなく要求割込み増量燃料量を満足させること
ができる。
Furthermore, during sudden acceleration, interrupt injection is performed more times than during slow acceleration, which allows the requested interrupt increase fuel amount to be dispersed and injected into interrupt pulses that gradually increase according to the actual intake air flow rate. The required interrupt increase fuel amount can be satisfied without making the air-fuel ratio over lean.

〈実施例〉 以下に本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第2図に本発明に係る加速増量制御装置の一実施例を示
す構成ブロック図を示しである。
FIG. 2 is a block diagram showing an embodiment of an acceleration increase control device according to the present invention.

この図において、回転速度センサlの出力である機関回
転速度信号N、エアフローメータ2の出力である機関の
吸入空気流量信号Q及び機関冷却水温度を検出する水温
センサ3の出力である冷却水温度信号TWが、入出力装
置、記憶装置及び中央演算装置によって構成されるマイ
クロコンピュータを内蔵したコントロールユニット4に
入力され、コントロールユニット4はこれらの信号に基
づいて後述するように設定される噴射パルス信号を燃料
噴射弁5の駆動回路6に出力する。即ち、本実施例にお
いて機関運転状態検出手段とは、回転速度センサ1.エ
アフローメータ2及び水温センサ3が相当し、コントロ
ールユニット4は燃料噴射量設定手段、駆動パルス出力
手段、加速状態判定手段1割込み増量燃料量設定手段及
び割込み駆動パルス出力手段とを兼ねるものである。
In this figure, the engine rotational speed signal N is the output of the rotational speed sensor l, the engine intake air flow rate signal Q is the output of the airflow meter 2, and the cooling water temperature is the output of the water temperature sensor 3 that detects the engine cooling water temperature. The signal TW is input to a control unit 4 containing a microcomputer constituted by an input/output device, a storage device, and a central processing unit, and the control unit 4 generates an injection pulse signal that is set as described below based on these signals. is output to the drive circuit 6 of the fuel injection valve 5. That is, in this embodiment, the engine operating state detection means is the rotational speed sensor 1. The air flow meter 2 and the water temperature sensor 3 correspond to this, and the control unit 4 also serves as fuel injection amount setting means, drive pulse output means, acceleration state determination means 1 interrupt increase fuel amount setting means, and interrupt drive pulse output means.

次に第3図及び第4図のフローチャートに従って作用を
説明する。
Next, the operation will be explained according to the flowcharts of FIGS. 3 and 4.

まず、燃料噴射量制御ルーチンを第3図のフローチャー
トに基づいて説明すると、Slでば回転速度センサ1及
びエアフローメータ2によって検出された機関回転速度
N及び吸入空気流量Qを読み込む。そして、S2では、
これらの値から基本噴射量に相応する基本パルスTp 
(=KXQ/N:に′は定数)を中央演算装置において
演算する。
First, the fuel injection amount control routine will be explained based on the flowchart of FIG. 3. At Sl, the engine rotational speed N and the intake air flow rate Q detected by the rotational speed sensor 1 and the air flow meter 2 are read. And in S2,
From these values, the basic pulse Tp corresponding to the basic injection amount is determined.
(=KXQ/N, where ' is a constant) is calculated in the central processing unit.

S3では、水温センサ3によって検出される水温Twや
機関加速状態等の各種運転状態から、記憶装置に記憶・
設定されるそれぞれの運転状態に基づく補正係数を検索
し、これらの補正係数を中央演算装置で演算して得られ
る各種補正係数C0EFによって前記基本パルスTpを
補正した燃料噴射パルスTiを設定する。以上81〜S
3が燃料噴射量設定手段に相当する。
In S3, data is stored in the storage device based on various operating conditions such as the water temperature Tw detected by the water temperature sensor 3 and the engine acceleration state.
A fuel injection pulse Ti is set by correcting the basic pulse Tp using various correction coefficients C0EF obtained by searching for correction coefficients based on each operating state to be set and calculating these correction coefficients in a central processing unit. Above 81~S
3 corresponds to fuel injection amount setting means.

S3で設定された燃料噴射パルスTiは、駆動パルス出
力手段としての84において燃料噴射弁5の駆動回路6
に出力される。
The fuel injection pulse Ti set in S3 is applied to the drive circuit 6 of the fuel injection valve 5 at 84 as a drive pulse output means.
is output to.

このように、機関加速時には各種補正係数C0EFによ
って基本パルスを増大補正して加速性の向上を図ってい
るが、燃料噴射パルスTi間の加速時には応答性が悪化
するので、燃料噴射パルスTi間に割込み噴射させて応
答性の向上を図る。
In this way, when the engine is accelerating, the basic pulse is corrected to increase using various correction coefficients C0EF in order to improve the acceleration performance, but the responsiveness deteriorates when accelerating between the fuel injection pulses Ti. Interrupt injection is performed to improve responsiveness.

かかる割込み噴射制御ルーチンを第4図のフローチャー
トに基づいて説明する。
This interrupt injection control routine will be explained based on the flowchart of FIG.

S5では、エアフローメータ2及び水温センサ3によっ
て検出された吸入空気流i1Qと水温7’wを読み込む
、S6では、S5において読み込んだ吸入空気流量Qと
前回読み込んだ吸入空気流量Qとにより吸入空気流量Q
の変化率ΔQ(機関加速度)を演算する。
In S5, the intake air flow i1Q and the water temperature 7'w detected by the air flow meter 2 and the water temperature sensor 3 are read. In S6, the intake air flow rate is calculated based on the intake air flow rate Q read in S5 and the intake air flow rate Q read last time. Q
The rate of change ΔQ (engine acceleration) is calculated.

S7では、機関の加速度を判定する第1の判定レベルΔ
Qlと36で求めたΔQとを比較し、ΔQ≧ΔQlであ
る場合には次の38へ進み割込み噴射を行い、ΔQ〈Δ
Q!である場合には割込み噴射を行わなずにリターンさ
せる。ここで、第1の判定レベルΔQlは、第5図に示
すように後述する第2及び第3の判定レベルΔQ2.Δ
Q3とΔQl<ΔQ2<ΔQ3なる関係にあり、小さい
判定レベルから順次比較するようにしている。
In S7, the first determination level Δ for determining the acceleration of the engine is determined.
Compare Ql and ΔQ obtained in step 36, and if ΔQ≧ΔQl, proceed to the next step 38, perform interrupt injection, and determine ΔQ<Δ
Q! If so, return is performed without interrupting injection. Here, the first determination level ΔQl is different from the second and third determination levels ΔQ2, which will be described later, as shown in FIG. Δ
Q3 has a relationship of ΔQl<ΔQ2<ΔQ3, and the comparisons are made in order from the lowest determination level.

S8では、割込み噴射パルス(割込み駆動パルス)Tp
injを演算して出力する。即ち、第5図に示すように
第1の判定レベルΔQlに対応して設定される割込み噴
射パルスTpinjsに、S5で読み込んだ水温TWに
対応して第6図に示すように設定される水温補正係数K
twを掛けて割込みrJR射パルスT p injを求
め、この割込み噴射パルスT p injを燃料噴射パ
ルスTiの間に割込ませて割込み増量燃料を噴射する。
In S8, an interrupt injection pulse (interrupt drive pulse) Tp
Compute and output inj. That is, as shown in FIG. 5, the interrupt injection pulse Tpinjs is set corresponding to the first determination level ΔQl, and the water temperature correction is set as shown in FIG. 6, corresponding to the water temperature TW read in S5. Coefficient K
tw is multiplied to obtain an interrupt rJR injection pulse T p inj, and this interrupt injection pulse T p inj is inserted between the fuel injection pulses Ti to inject the interrupt increased amount of fuel.

各判定レベルΔQ1.  ΔQ2.  ΔQ3に対応し
て設定される割込み噴射パルスT p inj は、判
定レベルの大小関係と同様にしである。即ち、変化率Δ
Qが大きいとき程、割込み噴射パルス巾を大きくするよ
うにしである(T p inj  l< T p in
j 2〈Tl’)inj3)。また、水温補正係数Kt
wは、水温TWに反比例して設定され、水温TWが低い
とき程、割込み噴射パルスrlTpinjを大きくする
ようにしである。
Each judgment level ΔQ1. ΔQ2. The interrupt injection pulse T p inj set corresponding to ΔQ3 is similar to the magnitude relationship of the determination levels. That is, the rate of change Δ
The larger Q is, the larger the interrupt injection pulse width is (T p inj l< T p in
j 2〈Tl')inj3). In addition, the water temperature correction coefficient Kt
w is set in inverse proportion to the water temperature TW, and the lower the water temperature TW, the larger the interrupt injection pulse rlTpinj.

S9では、S7と同様に第2の判定レベルΔQ2とΔQ
とを比較し、ΔQ≧ΔQ2である場合にはS10におい
て割込み噴射パルスTpinj2と水温補正係数Kti
yにより割込み噴射パルスT p inj を演算して
出力する。
In S9, as in S7, the second determination levels ΔQ2 and ΔQ
If ΔQ≧ΔQ2, interrupt injection pulse Tpinj2 and water temperature correction coefficient Kti are determined in S10.
An interrupt injection pulse T p inj is calculated and output based on y.

Sllでは、第3の判定レベルΔQ3とΔQとを比較し
、ΔQ≧ΔQ3である場合には312において割込み噴
射パルスTpinj3と水温補正係数Ktwにより割込
み噴射パルスT p injを演算して出力する。
Sll compares the third determination level ΔQ3 with ΔQ, and if ΔQ≧ΔQ3, in 312, an interrupt injection pulse T p inj is calculated and outputted using the interrupt injection pulse Tpinj3 and the water temperature correction coefficient Ktw.

また、S9及びSllで各判定レベルΔQ2.  ΔQ
3を越えない(ΔQ〈ΔQ2orΔQ3)と判定された
場合には、いずれもS7と同様にリターンさせる。
Further, each judgment level ΔQ2. ΔQ
If it is determined that ΔQ does not exceed 3 (ΔQ<ΔQ2 or ΔQ3), the process returns in the same way as in S7.

以上のように、本実施例における加速状態判定手段はS
7.S9.Sllが相当し、割込み増量設定手段及び割
込み駆動パルス出力手段は、38゜510、  S12
が相当する。
As described above, the acceleration state determination means in this embodiment is S
7. S9. Sll corresponds to this, and the interrupt increase setting means and interrupt drive pulse output means are 38°510, S12
corresponds to

このように、S6において求めた吸入空気流量Qの変化
率ΔQが各判定レベルΔQ1. ΔQ2゜ΔQ3を越え
る毎に割込み噴射が行われ、回を重ねる毎にその噴射量
が増大されるようにしである。
In this way, the rate of change ΔQ of the intake air flow rate Q determined in S6 is determined at each determination level ΔQ1. Interrupt injection is performed every time ΔQ2°ΔQ3 is exceeded, and the injection amount is increased each time.

従って、第7図に示すように、変化率ΔQが第3の判定
レベル603以上となる急加速時には結果的に3回の割
込み噴射が行われ(図中実線示)、変化率ΔQが第2の
判定レベルΔQ2を越えないような緩加速時には1回の
み割込み噴射が行われる(図中点線示)。
Therefore, as shown in FIG. 7, during sudden acceleration when the rate of change ΔQ exceeds the third judgment level 603, three interrupt injections are performed as a result (shown by the solid line in the figure), and the rate of change ΔQ is at the second level. During slow acceleration that does not exceed the determination level ΔQ2, interrupt injection is performed only once (indicated by a dotted line in the figure).

このため、数回に分けて出力される割込み噴射パルスT
 p injを合計してみると、急加速時には緩加速時
よりも大きな割込み噴射パルスが出力されることに相当
し、第9図に示した割込みパルスの要求値(点線示)即
ち要求割込み増量燃料量に近づけることができ、各加速
状態における加速応答性を向上させることができる。尚
、本実施例よりも多く判定レベルを設ければ更に要求値
に近づけることができる。
Therefore, the interrupt injection pulse T is output in several parts.
When p inj is summed, it corresponds to a larger interrupt injection pulse being output during sudden acceleration than during slow acceleration, and the required value of the interrupt pulse (shown by the dotted line) shown in Fig. 9, that is, the required interrupt increased fuel amount. The acceleration response in each acceleration state can be improved. Note that if more determination levels are provided than in this embodiment, the required value can be further approached.

また、急加速時には要求される割込み噴射パルスT p
 injが数回に分けて出力され、然も、徐々にパルス
中が増大されるので、吸入空気流量oの増大に略同期し
て大きなパルス中の割込み■1゛1射パルスT p i
njがタイミング良く出力されて燃料の割込み増量が行
われるため、第10図に示した従来の割込み噴射タイミ
ング(点線示)を要求タイミングに近づけて、従来のよ
うに割込みタイミングが早すぎて空燃比がオーバーリー
ン化する惧れを回避することができる。
In addition, the interrupt injection pulse T p required during sudden acceleration
inj is output in several parts, and the number of pulses is gradually increased, so that an interrupt during a large pulse is generated approximately in synchronization with the increase in the intake air flow rate o.
Since nj is output at a good timing and the fuel is increased by the interrupt, the conventional interrupt injection timing (indicated by the dotted line) shown in Fig. 10 is brought closer to the required timing, and the air-fuel ratio The risk of becoming over-lean can be avoided.

即ち、急加速時には速すぎた割込み噴射タイミングを、
各判定レベルΔQ1.ΔQ2. ΔQ3を越える毎に割
込み噴射させることにより遅側に補正し、吸入空気流f
f1Qの増大時に割込み噴射を行わせ、オーバーリーン
化による失火を防止するものである。
In other words, the interrupt injection timing, which was too fast during sudden acceleration,
Each judgment level ΔQ1. ΔQ2. By performing an interrupt injection every time ΔQ3 is exceeded, the intake air flow f
Interrupt injection is performed when f1Q increases to prevent misfires due to overleaning.

尚、本実施例においては、3個の判定レベルΔQ+、 
 ΔQ2.  ΔQ3を設定したが個数は本実施例に限
るものではない。また、機関の加速状態はΔQの他基本
パルスTpの変化率(ΔTp)やスロットル弁の開度変
化率(Δα)によって判定しても良い。
In this embodiment, three determination levels ΔQ+,
ΔQ2. Although ΔQ3 is set, the number is not limited to this embodiment. Further, the acceleration state of the engine may be determined based on the rate of change of the basic pulse Tp (ΔTp) or the rate of change in the opening degree of the throttle valve (Δα) in addition to ΔQ.

〈発明の効果〉 以上説明したように、本発明によると、実際の機関加速
度を所定複数の判定レベルの小なる側から順次比較し、
この判定結果に基づいて割込み増量燃料量を設定して割
込み噴射させるするようにしたことにより、割込み噴射
による加速時割込み増量燃料量を適正量とし、然もタイ
ミング良く割込み噴射させることができる。
<Effects of the Invention> As explained above, according to the present invention, the actual engine acceleration is compared sequentially from the smallest of a plurality of predetermined determination levels,
By setting the interrupt increase fuel amount based on the determination result and performing the interrupt injection, the interrupt increase fuel amount during acceleration due to the interrupt injection can be set to an appropriate amount, and the interrupt injection can be performed with good timing.

このため、特に吸入空気流量の変化率が急激な急加速時
に割込み噴射のタイミングが速すぎることによる空燃比
のオーバーリーン化を防止して失火を未然に回避するこ
とができる。また、急加速時程割込み噴射による加速時
割込み増量を大きくできるため、各加速状態における加
速応答性を向上させことができるという効果がある。
Therefore, it is possible to prevent the air-fuel ratio from becoming overlean due to the timing of the interrupt injection being too fast, particularly during sudden acceleration when the rate of change in the intake air flow rate is rapid, thereby preventing a misfire from occurring. Further, since the increase in the amount of interruption during acceleration due to the interruption injection during sudden acceleration can be increased, there is an effect that the acceleration response in each acceleration state can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成図、第2図は本発明の一実施例を
示す構成ブロック図、第3図及び第4図は同上実施例に
おける制御を示すフローチャート、第5図は同上実施例
における判定レベルと割込み噴射パルス中との関係を示
すグラフ、第6図は同上実施例における水温と水温補正
係数との関係を示すグラフ、第7図は同上実施例におけ
る制御特性を示すタイムチャート図、第8図は従来の制
御特性を示すタイムチャート図、第9図は同上従来にお
ける吸入空気流量変化率と割込み噴射パルス巾との関係
を示すグラフ、第10図は同上従来における吸入空気流
量変化率と割込み噴射タイミングとの関係を示すグラフ
である。 1・・・回転速度センサ  2・・・エアフローメータ
3・・・水温センサ  4・・・コントロールユニット
5・・・燃料噴射弁  6・・・駆動回路特許出願人 
日本電子機器株式会社 代理人 弁理士 笹 島  富二雄 CCC α  α  α ヒl−ヒ 氷i補゛f係数にtw 第7図 鳳刀は 〕 第8図 β(刀ロメ仁− 客(シNシーロ錠財フイ立ンク°゛ 嶋 夛 −1−〉 −岡 1“j こ 轡ILみ口省身・↑パルス4妬Tpinj手続補正書(
自制 昭和62年2月27日 特許庁長官  黒 1)明 雄 殿 1、事件の表示 昭和60年特許願第293265号 3、補正をする者 事件との関係 特許出願人 住 所 群馬県伊勢崎市粕用町1671番地1名 称 
日本電子機器株式会社 代表者 杉野重巳 4、代理人 住 所  東京都港区西新Ja1丁目4番1o号第三森
ビル 発明の詳細な説明の欄 6、補正の内容 (1)明細書第2頁第13行に「補正係数」とあるを「
補正骨」と補正する。 (2)明細書第4頁第14行に「供給さない」とあるを
「供給されない」と補正する。 (3)明細書第7頁第1行に「加速増量制御装置」二あ
るを「加速時割込み増量制御装置」と補正すつ0 (4)明細書第7頁第18行に「駆動パルス出力手段と
を兼ねる」とあるを「駆動パルス出力手段を兼ねる」と
補正する。 (5)明細書第11頁第14行に「割込み増量」とある
を「割込み増量燃料量」と補正する。 (6)明細書第13頁第4行に「早すぎて」とあるを「
速すぎて」と補正する。 (7)明細書第14頁第2行に「噴射させるするよう二
」とあるを「噴射させるように」と補正する。 (8)明細書第14真第11行〜第12行に「向上させ
こ二」とあるを「向上させること」と補正する。 以上
FIG. 1 is a configuration diagram of the present invention, FIG. 2 is a configuration block diagram showing an embodiment of the present invention, FIGS. 3 and 4 are flowcharts showing control in the above embodiment, and FIG. 5 is the same embodiment. FIG. 6 is a graph showing the relationship between the water temperature and the water temperature correction coefficient in the above embodiment, and FIG. 7 is a time chart showing the control characteristics in the above embodiment. , Fig. 8 is a time chart showing the conventional control characteristics, Fig. 9 is a graph showing the relationship between the rate of change in intake air flow rate and the interrupt injection pulse width in the above conventional method, and Fig. 10 is a graph showing the change in intake air flow rate in the above conventional method. It is a graph which shows the relationship between a rate and interrupt injection timing. 1...Rotational speed sensor 2...Air flow meter 3...Water temperature sensor 4...Control unit 5...Fuel injection valve 6...Drive circuit patent applicant
Japan Electronics Co., Ltd. Agent, Patent Attorney Fujio Sasashima CCC Finance link °゛shima夛-1-〉 -Oka 1 “j Koko IL Miguchi Self-reflection・↑Pulse 4 Jealousy Tpinj Procedure Amendment (
Self-restraint February 27, 1988 Commissioner of the Japan Patent Office Black 1) Akio Tono1, Indication of the case 1985 Patent Application No. 2932653, Person making the amendment Relationship to the case Patent applicant address Kasu, Isesaki City, Gunma Prefecture 1671 Youmachi 1 name
Japan Electronics Co., Ltd. Representative: Shigemi Sugino 4, Agent address: Daisan Mori Building, 1-4-1o Nishishin Ja, Minato-ku, Tokyo Column 6 for detailed explanation of the invention, Contents of amendment (1) Page 2 of the specification In the 13th line, change the word “correction coefficient” to “
Corrected as "Correction bone". (2) On page 4, line 14 of the specification, the phrase "not supplied" is amended to read "not supplied." (3) In the 1st line of page 7 of the specification, ``acceleration increase control device'' is corrected to ``interrupt increase control device during acceleration.'' (4) In the 18th line of page 7 of the specification, ``Drive pulse output The phrase "also serves as means for outputting driving pulses" is corrected to "also serves as means for outputting driving pulses." (5) In the 11th page, line 14 of the specification, the phrase "interruption increase" is corrected to "interruption increase fuel amount." (6) In the 4th line of page 13 of the specification, the phrase “Too early” has been replaced with “
"It's too fast," he corrected. (7) In the second line of page 14 of the specification, the phrase "so as to inject" is corrected to "so as to be injected." (8) In the 14th line of the specification, lines 11 and 12, the phrase "improvement" is corrected to "improve."that's all

Claims (1)

【特許請求の範囲】[Claims] 少なくとも加速運転状態を含む機関の運転状態を検出す
る機関運転状態検出手段と、検出された機関運転状態に
基づいて燃料噴射量を設定する燃料噴射量設定手段と、
設定された燃料噴射量に対応する駆動パルス信号を燃料
噴射弁に出力する駆動パルス出力手段と、実際の機関加
速度を所定複数の判定レベルの小なる側から順次比較す
る加速状態判定手段と、該加速状態判定手段の判定結果
に基づいて割込み増量燃料量を設定する割込み増量燃料
量設定手段と、設定された割込み増量燃料量に対応する
割込み駆動パルス信号を前記駆動パルス信号の間に割込
ませて前記燃料噴射弁に出力する割込み駆動パルス出力
手段と、を備えたことを特徴とする電子制御燃料噴射式
内燃機関の加速時割込み増量制御装置。
an engine operating state detection means for detecting an engine operating state including at least an acceleration operating state; a fuel injection amount setting means for setting a fuel injection amount based on the detected engine operating state;
a drive pulse output means for outputting a drive pulse signal corresponding to a set fuel injection amount to the fuel injection valve; an acceleration state determination means for sequentially comparing the actual engine acceleration among a plurality of predetermined determination levels starting from the smallest one; an interrupt increase fuel amount setting means for setting an interrupt increase fuel amount based on a determination result of the acceleration state determination means; and an interrupt drive pulse signal corresponding to the set interrupt increase fuel amount inserted between the drive pulse signals. 1. An interrupt amount increase control device during acceleration of an electronically controlled fuel injection type internal combustion engine, characterized in that the interrupt drive pulse output means outputs the interrupt drive pulse to the fuel injection valve.
JP29326585A 1985-12-27 1985-12-27 Interruption increased fuel quantity controller in acceleration for electronically controlled fuel injection type internal combustion engine Pending JPS62182453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29326585A JPS62182453A (en) 1985-12-27 1985-12-27 Interruption increased fuel quantity controller in acceleration for electronically controlled fuel injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29326585A JPS62182453A (en) 1985-12-27 1985-12-27 Interruption increased fuel quantity controller in acceleration for electronically controlled fuel injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62182453A true JPS62182453A (en) 1987-08-10

Family

ID=17792582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29326585A Pending JPS62182453A (en) 1985-12-27 1985-12-27 Interruption increased fuel quantity controller in acceleration for electronically controlled fuel injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62182453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974719B1 (en) 2008-07-08 2010-08-06 현대자동차주식회사 Method for diagnosing leakage of fuel of injector in car

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974337A (en) * 1982-10-20 1984-04-26 Hitachi Ltd Fuel injector
JPS60261947A (en) * 1984-06-08 1985-12-25 Hitachi Ltd Accelerative correction of fuel injector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974337A (en) * 1982-10-20 1984-04-26 Hitachi Ltd Fuel injector
JPS60261947A (en) * 1984-06-08 1985-12-25 Hitachi Ltd Accelerative correction of fuel injector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974719B1 (en) 2008-07-08 2010-08-06 현대자동차주식회사 Method for diagnosing leakage of fuel of injector in car

Similar Documents

Publication Publication Date Title
JP3498817B2 (en) Exhaust system failure diagnosis device for internal combustion engine
JP2518717B2 (en) Internal combustion engine cooling system
JPH0634491A (en) Lean limit detecting method utilizing ion current
US4800857A (en) Apparatus for learn-controlling air-fuel ratio for internal combustion engine
KR920016711A (en) Altitude Discrimination System and Its Engine Operation Parameter Control System
US4542730A (en) Method and apparatus for controlling air-fuel ratio of mixture for combustion engines
JP2581775B2 (en) Fuel injection control method for internal combustion engine and control apparatus therefor
JP2577211B2 (en) Basic fuel injection amount setting device for internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62182453A (en) Interruption increased fuel quantity controller in acceleration for electronically controlled fuel injection type internal combustion engine
JPH10176594A (en) Combustion fluctuation detecting method for internal combustion engine
JPH0734924A (en) Injection quantity controller of internal combustion engine
JP2582571B2 (en) Learning control device for air-fuel ratio of internal combustion engine
JP3182356B2 (en) Method for detecting combustion fluctuation of internal combustion engine
US6901920B2 (en) Engine control apparatus having cylinder-by-cylinder feedback control
JP3376201B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6357836A (en) Electronic control fuel injection system for internal combustion engine
JPH04279746A (en) Fuel character detecting device of internal combustion engine
JPH07269407A (en) Engine misfire detecting device
JP3154304B2 (en) Lean limit control method using ion current
JP2520608B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2734076B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62159744A (en) Electronic fuel injection control device for internal combustion engine
JP2846023B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS5828534A (en) Electronically controlled fuel injection process and equipment in internal combustion engine