JPH04252835A - Fuel injection controller for internal combustion engine - Google Patents

Fuel injection controller for internal combustion engine

Info

Publication number
JPH04252835A
JPH04252835A JP2409291A JP2409291A JPH04252835A JP H04252835 A JPH04252835 A JP H04252835A JP 2409291 A JP2409291 A JP 2409291A JP 2409291 A JP2409291 A JP 2409291A JP H04252835 A JPH04252835 A JP H04252835A
Authority
JP
Japan
Prior art keywords
fuel
engine
fuel injection
state
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2409291A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwano
浩 岩野
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2409291A priority Critical patent/JPH04252835A/en
Publication of JPH04252835A publication Critical patent/JPH04252835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To compensate an injection quantity conformed to the heavy-light type of fuel and the deposit of a intake system. CONSTITUTION:A means 103 judging the start-up state of engine speed at the time of engine starting, a means 104 learning a fuel correction value from this start-up state and engine cooling water temperature, and a means 105 compensating a fuel injection quantity according to this learning value are all installed in a fuel control system 102 of an internal combustion engine which controls fuel injection out of a fuel injection system 101 on the basis of the detected value of a sensor 100 detecting an engine's driving state. Since heavy- light type of fuel and the presence of deposit are judged from the engine speed start-up state at the time of starting, and thereby the fuel injection quantity is learned and compensated, the fuel injection quantity is always controllable so properly.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、内燃機関の燃料噴射
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for an internal combustion engine.

【0002】0002

【従来の技術】燃料噴射式エンジンにおいて、始動時の
燃料噴射量(噴射パルス幅)Tstは、例えば次式によ
り計算され、制御される。
2. Description of the Related Art In a fuel injection engine, the fuel injection amount (injection pulse width) Tst at the time of starting is calculated and controlled, for example, by the following equation.

【0003】Tst=Tsto×Kvb×Kneここで
、Tstoは始動時の基本噴射量で、エンジンの冷却水
温Twに応じて定められる。Kvbはバッテリ電圧に応
じて定められる電圧補正係数、Kneはエンジンの回転
数に応じて定められる回転数補正係数である。
Tst=Tsto×Kvb×Kne Here, Tsto is the basic injection amount at the time of starting, and is determined according to the engine cooling water temperature Tw. Kvb is a voltage correction coefficient determined according to the battery voltage, and Kne is a rotation speed correction coefficient determined according to the engine rotation speed.

【0004】通常時の燃料噴射量(噴射パルス幅)Te
は、例えば次式により計算され、制御される。
[0004] Normal fuel injection amount (injection pulse width) Te
is calculated and controlled, for example, by the following equation.

【0005】Te=Tp×α×K×Coefここで、T
pはエンジンの吸入空気量Qaとエンジンの回転数Nと
に応じて定まる基本的な噴射量(ベース空燃比)、αは
実空燃比(排気中の酸素濃度)と目標空燃比との差異に
基づいて計算されるフィードバック補正係数、Kはベー
ス空燃比の微妙な変化を修正するための学習制御係数で
ある。また、Coefは運転域の空燃比補正係数、水温
増量補正係数、始動後増量補正係数等の和である(特開
昭58ー27844号公報等参照)。
[0005] Te=Tp×α×K×Coef where, T
p is the basic injection amount (base air-fuel ratio) determined according to the engine intake air amount Qa and engine speed N, and α is the difference between the actual air-fuel ratio (oxygen concentration in exhaust gas) and the target air-fuel ratio. The feedback correction coefficient K calculated based on this is a learning control coefficient for correcting subtle changes in the base air-fuel ratio. Further, Coef is the sum of the air-fuel ratio correction coefficient in the operating range, the water temperature increase correction coefficient, the post-start increase correction coefficient, etc. (see Japanese Patent Laid-Open No. 58-27844, etc.).

【0006】[0006]

【発明が解決しようとする課題】このような制御にあっ
て、タンクに給油される燃料の性状が異なったり、エン
ジンの吸気バルブや吸気ポート壁にデポジットの付着が
あると、燃料の応答、混合気の生成等に影響を及ぼすこ
とになる。
[Problems to be Solved by the Invention] In this kind of control, if the properties of the fuel supplied to the tank are different, or if deposits are attached to the intake valve or intake port wall of the engine, the response and mixing of the fuel may be affected. This will affect the generation of energy, etc.

【0007】即ち、揮発性の低い重質燃料だと、軽質燃
料に比べて気化しにくい分、過渡時等にエンジンシリン
ダ内の燃料が相対的に不足する。また、燃料噴射装置か
らの噴射燃料の一部は吸気ポート壁等に付着したり、液
状のままポート壁等に沿う壁流分となるものの(これら
を燃料付着分と称す)、この燃料付着分は重質燃料を用
いた場合、あるいは吸気ポート壁等にデポジットがある
と、それだけ増加し、エンジンシリンダへの吸入が大き
く遅れるのである。
[0007] That is, if heavy fuel has low volatility, it is difficult to vaporize compared to light fuel, so there is a relative shortage of fuel in the engine cylinder during transient times. In addition, some of the injected fuel from the fuel injection device may adhere to the intake port wall, etc., or flow along the port wall while remaining in liquid form (these are referred to as fuel adhesion). If heavy fuel is used, or if there are deposits on the intake port wall, etc., the amount increases accordingly, and intake into the engine cylinders is significantly delayed.

【0008】このため、図11のようにデポジットがな
く所定の軽質燃料の場合には、始動時にエンジン回転の
スムーズな立上がりが得られるものの、重質燃料の場合
あるいはデポジットがあると、始動時に安定した燃焼を
得にくく、回転が大きく変動するという問題がある。ま
た、重質燃料の場合あるいはデポジットがあると、加速
時等に混合気がリーン化し、加速性が悪化するという問
題がある。
For this reason, as shown in FIG. 11, when using a specified light fuel with no deposits, a smooth start-up of the engine rotation is obtained at the time of starting, but when using heavy fuel or when there are deposits, the engine speed becomes unstable at the time of starting. There is a problem that it is difficult to obtain a certain combustion and the rotation fluctuates greatly. Furthermore, if heavy fuel is used or there is deposit, there is a problem in that the air-fuel mixture becomes lean during acceleration, resulting in poor acceleration.

【0009】したがって、良好な始動性、運転性が得ら
れなくなると共に、燃料経済性、排気エミッションを損
なうことにもなる。
[0009] Therefore, good startability and drivability cannot be obtained, and fuel economy and exhaust emissions are also impaired.

【0010】なお、燃料の比重、誘電率等から燃料性状
を検出するものがあるが、こうしたものは燃料の重軽質
までは正確に検出できないため、適用は難しい。また、
空燃比制御から燃料性状の違いを測定して燃料噴射量制
御にフィードバックするものが考えられているが、この
ような制御は簡単には行いにくい。
[0010] Although there are methods for detecting fuel properties based on the specific gravity, dielectric constant, etc. of the fuel, these methods are difficult to apply because they cannot accurately detect the heavy and light components of the fuel. Also,
Although it has been considered to measure differences in fuel properties from air-fuel ratio control and feed it back to fuel injection amount control, such control is difficult to perform.

【0011】この発明は、始動時のエンジン回転の立上
がり状態から燃料の重軽質、デポジットの有無を判断し
て、燃料を適正に制御することにより、このような問題
点を解決することを目的としている。
[0011] The present invention aims to solve these problems by appropriately controlling the fuel by determining whether the fuel is heavy or light and the presence or absence of deposits from the rising state of engine rotation at the time of starting. There is.

【0012】0012

【課題を解決するための手段】この発明は、図1に示す
ように機関の運転状態を検出するセンサ100の検出値
に基づいて燃料噴射装置101からの燃料噴射量を制御
する内燃機関の燃料制御系102に、機関始動時に機関
回転の立上がり状態を判定する手段103と、この立上
がり状態と機関冷却水温とから燃料修正量を学習する手
段104と、この学習値に応じて燃料噴射量を補正する
手段105とを備える。
[Means for Solving the Problems] As shown in FIG. 1, the present invention provides fuel for an internal combustion engine that controls the amount of fuel injected from a fuel injection device 101 based on the detected value of a sensor 100 that detects the operating state of the engine. The control system 102 includes a means 103 for determining a rising state of engine rotation when starting the engine, a means 104 for learning a fuel correction amount from this starting state and the engine cooling water temperature, and a means 104 for correcting the fuel injection amount according to the learned value. and means 105 for doing so.

【0013】[0013]

【作用】燃料性状が重質の場合あるいは吸気系にデポジ
ットがあると、機関始動時に機関回転の立上がりが遅く
、また回転変動が大きくなる。したがって、この立上が
り状態から燃料の重軽質、デポジットの有無を判断でき
、立上がり状態と機関冷却水温とに応じて燃料噴射量を
学習補正することにより、常に燃料噴射量を適正に制御
することができる。
[Operation] If the fuel is heavy or there are deposits in the intake system, the engine speed will be slow to start and the rotational fluctuations will be large when the engine is started. Therefore, it is possible to judge whether the fuel is heavy or light and whether there is a deposit from this start-up state, and by learning and correcting the fuel injection amount according to the start-up state and the engine cooling water temperature, the fuel injection amount can always be controlled appropriately. .

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings.

【0015】図2に示すように、吸入空気はエアクリー
ナ2から吸気管3を通り、燃料は各気筒に設けたインジ
ェクタ(燃料噴射装置)4から、エンジン1の各吸気ポ
ートに向けて噴射される。
As shown in FIG. 2, intake air passes through an intake pipe 3 from an air cleaner 2, and fuel is injected from an injector (fuel injection device) 4 provided in each cylinder toward each intake port of the engine 1. .

【0016】シリンダ内で燃焼したガスは排気管5を通
して触媒コンバータ6に導入され、ここで燃焼ガス中の
有害成分(CO,HC,NOx)が三元触媒により清浄
化されて排出される。
The gas combusted in the cylinder is introduced into a catalytic converter 6 through an exhaust pipe 5, where harmful components (CO, HC, NOx) in the combusted gas are purified by a three-way catalyst and discharged.

【0017】吸入空気の流量Qaはホットワイヤ式のエ
アフローメータ7により検出され、アクセルペダルと連
動するスロットルバルブ8によってその流量が制御され
る。
The intake air flow rate Qa is detected by a hot wire type air flow meter 7, and the flow rate is controlled by a throttle valve 8 which is linked with an accelerator pedal.

【0018】スロットルバルブ8の開度TVOはスロッ
トル開度センサ9により検出され、エンジン1の回転数
Nはクランク角センサ10により検出される。また、ウ
ォータジャケットの冷却水温Twは水温センサ11によ
り検出され、排気中の空燃比(混合比)は空燃比センサ
12により検出される。
The opening TVO of the throttle valve 8 is detected by a throttle opening sensor 9, and the rotational speed N of the engine 1 is detected by a crank angle sensor 10. Further, the cooling water temperature Tw of the water jacket is detected by a water temperature sensor 11, and the air-fuel ratio (mixture ratio) in the exhaust gas is detected by an air-fuel ratio sensor 12.

【0019】機関の運転状態を検出するセンサとしての
エアフローメータ7、スロットル開度センサ9、クラン
ク角センサ10、水温センサ11、空燃比センサ12お
よびイグニッションスイッチ(図示しない)からの検出
信号ならびにバッテリ電圧信号はコントロールユニット
20に入力される。
Detection signals from an air flow meter 7, a throttle opening sensor 9, a crank angle sensor 10, a water temperature sensor 11, an air-fuel ratio sensor 12, and an ignition switch (not shown) as sensors for detecting the operating state of the engine, as well as battery voltage. The signal is input to control unit 20.

【0020】立上がり状態判定手段、燃料修正量学習手
段、燃料噴射量補正手段としてのコントロールユニット
20は、CPU、RAM、ROM、I/O装置等からな
るマイクロコンピュータにて構成され、前記各検出信号
に基づきインジェクタ4からの燃料噴射量を制御する。
The control unit 20 serving as the start-up state determining means, the fuel correction amount learning means, and the fuel injection amount correcting means is constituted by a microcomputer including a CPU, RAM, ROM, I/O device, etc. The fuel injection amount from the injector 4 is controlled based on the following.

【0021】次に、コントロールユニット20の制御内
容を説明する。
Next, the control details of the control unit 20 will be explained.

【0022】エンジン始動時の燃料噴射量(噴射パルス
幅)Tstは、図3(ステップ11〜15)のように始
動時の基本噴射量Tstoに電圧補正係数Kvb、回転
数補正係数Kneおよび学習補正値Kfuelを乗算し
て求められ、その噴射パルス信号をインジェクタ4に出
力することで制御される。
The fuel injection amount (injection pulse width) Tst at the time of engine starting is determined by adding the voltage correction coefficient Kvb, the rotational speed correction coefficient Kne, and the learning correction to the basic injection amount Tsto at the time of starting, as shown in FIG. 3 (steps 11 to 15). It is determined by multiplying the value Kfuel, and is controlled by outputting the injection pulse signal to the injector 4.

【0023】     Tst=Tsto×Kvb×Kne×Kfue
l        ‥‥‥(1)この始動時の基本噴射
量Tstoはエンジンの冷却水温Twに応じて定めたテ
ーブルから、電圧補正係数Kvbはバッテリ電圧に応じ
て定めたテーブルから、回転数補正係数Kneはエンジ
ンの回転数Nに応じて定めたテーブルから読み込まれる
。学習補正値Kfuelは後述する。
Tst=Tsto×Kvb×Kne×Kfue
(1) The basic injection amount Tsto at startup is determined from a table determined according to the engine cooling water temperature Tw, the voltage correction coefficient Kvb is determined from a table determined according to the battery voltage, and the rotational speed correction coefficient Kne is determined from a table determined according to the engine cooling water temperature Tw. It is read from a table determined according to the engine rotation speed N. The learning correction value Kfuel will be described later.

【0024】通常時の燃料噴射量(噴射パルス幅)Te
は、次式(2),(3)のようにエンジンの吸入空気量
Qaとエンジンの回転数Nとに応じて定まる基本的な噴
射量Tp(ベース空燃比)に、空燃比センサ12の検出
値と目標空燃比との差異に基づくフィードバック補正係
数α、ベース空燃比の学習制御係数K、各種補正係数C
oefを乗算して求められ、その噴射パルス信号をイン
ジェクタ4に出力することで制御される。
[0024] Normal fuel injection amount (injection pulse width) Te
is the basic injection amount Tp (base air-fuel ratio) determined according to the engine intake air amount Qa and the engine rotational speed N, as shown in the following equations (2) and (3), and the detection by the air-fuel ratio sensor 12. Feedback correction coefficient α based on the difference between the value and the target air-fuel ratio, base air-fuel ratio learning control coefficient K, various correction coefficients C
It is determined by multiplying oef and is controlled by outputting the injection pulse signal to the injector 4.

【0025】     Te=Tp×α×K×Coef       
 ‥‥‥(2)    Coef={(Kmr+Ktr
m)+Ktw+(Kas×Kfuel)+      
        Kf−Kdc}×Kst    ‥‥
‥(3)ここで、Coef中のKmr、Ktrmは運転
域の空燃比補正係数、Ktwは水温増量補正係数、Ka
sは始動後増量補正係数、Kfは低水温時補正係数、K
dcは減速時減量補正係数、Kstは始動時増量補正値
で、それぞれ所定のテーブルから読み込まれる。また、
学習補正値KfuelはKasの補正項に加えられる。
Te=Tp×α×K×Coef
‥‥‥(2) Coef={(Kmr+Ktr
m)+Ktw+(Kas×Kfuel)+
Kf−Kdc}×Kst‥‥
(3) Here, Kmr and Ktrm in Coef are the air-fuel ratio correction coefficients in the operating range, Ktw is the water temperature increase correction coefficient, and Ka
s is the increase correction coefficient after starting, Kf is the correction coefficient at low water temperature, K
dc is a reduction correction coefficient during deceleration, and Kst is an increase correction value during starting, each of which is read from a predetermined table. Also,
The learning correction value Kfuel is added to the correction term of Kas.

【0026】一方、学習補正値Kfuelは、エンジン
始動時の回転の立上がり状態より次のように学習される
On the other hand, the learning correction value Kfuel is learned as follows from the rising state of rotation at the time of starting the engine.

【0027】まず、図4のようにエンジンが起動される
と、イグニッションスイッチがスタート位置からON位
置に戻ったときにフラグFLGSTが“0”にあれば、
図5のように回転Neの所定の回転数Nel、Neh間
の立上がり時間Tmstを測定し、フラグFLGSTに
“1”を立てる(ステップ21〜27)。
First, when the engine is started as shown in FIG. 4, if the flag FLGST is "0" when the ignition switch returns from the start position to the ON position,
As shown in FIG. 5, the rise time Tmst between the predetermined rotational speeds Nel and Neh of the rotational speed Ne is measured, and the flag FLGST is set to "1" (steps 21 to 27).

【0028】次に、この始動時の水温Twから始動時間
基準Tmsto(回転数Nel、Neh間の立上がり基
準時間)を、次式(4)のように水温基準時間Tmst
twにバッテリ電圧Vbによる補正時間Tmstvbを
乗算して求める。
Next, from the water temperature Tw at the time of starting, the starting time reference Tmsto (rise reference time between the rotational speeds Nel and Neh) is calculated as the water temperature reference time Tmst as shown in the following equation (4).
It is obtained by multiplying tw by the correction time Tmstvb based on the battery voltage Vb.

【0029】 Tmsto=Tmsttw×Tmstvb‥‥(4)つ
まり、水温Twに基づき図6のように基準データを定め
たテーブルから水温基準時間Tmsttwを読み込み、
バッテリ電圧Vbに基づき図7のようなテーブルから電
圧補正時間Tmstvbを読み込み、始動時間基準Tm
stoを演算し、立上がり時間Tmstと始動時間基準
Tmstoとの差ΔTmstを求める(ステップ28〜
30)。
Tmsto=Tmsttw×Tmstvb (4) That is, read the water temperature reference time Tmsttw from the table in which reference data is determined as shown in FIG. 6 based on the water temperature Tw,
Based on the battery voltage Vb, read the voltage correction time Tmstvb from a table such as that shown in FIG. 7, and set the starting time reference Tm.
sto is calculated, and the difference ΔTmst between the rise time Tmst and the starting time reference Tmsto is determined (steps 28-
30).

【0030】そして、この差ΔTmstから学習補正値
Kfuelを、図8のように定めたテーブルから読み込
み、決定する。
Then, from this difference ΔTmst, the learning correction value Kfuel is determined by reading from the table defined as shown in FIG.

【0031】即ち、エンジン始動時の回転Neの立上が
りが遅く、水温Twに基づく始動時間基準Tmstoと
の差が大きいときほど、大きな学習補正値Kfuelを
とる。また、回転Neがスムーズに立上がり、始動時間
基準Tmstoとの差が小さいと、学習補正値Kfue
lは小さい値になる。
That is, the slower the rise of the rotation Ne when starting the engine is and the larger the difference from the starting time reference Tmsto based on the water temperature Tw, the larger the learning correction value Kfuel is taken. In addition, if the rotation Ne starts up smoothly and the difference from the starting time reference Tmsto is small, the learning correction value Kfue
l becomes a small value.

【0032】なお、燃料タンクに給油したときにフラグ
FLGSTが“0”に切り替わるようになっている。
Note that the flag FLGST is set to "0" when the fuel tank is refilled.

【0033】このような構成のため、給油した燃料が重
質燃料の場合あるいは吸気ポート壁等にデポジットがあ
ると、給油後のエンジン始動時にインジェクタ4からの
噴射燃料の不足や応答の遅れを生じることで、エンジン
回転の立上がりが遅くなるが(図11参照)、この際回
転の立上がり時間Tmstの所定の始動時間基準Tms
toからの差に基づいて燃料の補正値Kfuelが学習
される。
Because of this configuration, if the refueled fuel is heavy fuel or if there is a deposit on the intake port wall, etc., there will be a shortage of fuel injected from the injector 4 or a delay in response when starting the engine after refueling. As a result, the start-up of the engine rotation is delayed (see FIG. 11), but at this time, the predetermined starting time reference Tms of the rotation start-up time Tmst is
A fuel correction value Kfuel is learned based on the difference from to.

【0034】そして、次の始動時からはその学習補正値
Kfuelにて燃料噴射量Tst(式(1))が補正さ
れ、補正後のTstに基づいてインジェクタ4の始動時
の燃料噴射量が制御される。
From the next start, the fuel injection amount Tst (formula (1)) is corrected using the learning correction value Kfuel, and the fuel injection amount of the injector 4 at the time of start is controlled based on the corrected Tst. be done.

【0035】このため、燃料の重軽質ならびにデポジッ
トの状態に応じた燃料の適正な噴射量制御が可能になり
、これによりエンジン回転の変動が少なくスムーズに立
上がる良好な始動性を確保することができる。
[0035] Therefore, it is possible to control the appropriate injection amount of fuel according to the heavy/light quality of the fuel and the state of deposits, thereby ensuring good starting performance with little fluctuation in engine rotation and smooth start-up. can.

【0036】一方、前記学習補正値Kfuelにて燃料
噴射量Te(式(2),(3))も補正され、補正後の
Teに基づいてインジェクタ4の通常時の燃料噴射量が
制御される。
On the other hand, the fuel injection amount Te (formulas (2), (3)) is also corrected by the learning correction value Kfuel, and the normal fuel injection amount of the injector 4 is controlled based on the corrected Te. .

【0037】即ち、重質燃料の場合あるいはデポジット
があると、空燃比のフィードバック制御を行っていても
加速時等に混合気がリーン化することがあるが、燃料の
重軽質ならびにデポジットに基づく補正値Kfuelに
て燃料噴射量を補正するので、加速時等に燃料の供給が
遅れることなく適正な噴射を行うことができる。
In other words, in the case of heavy fuel or if there are deposits, the mixture may become lean during acceleration etc. even if feedback control of the air-fuel ratio is performed, but correction based on the heavy/light quality of the fuel and deposits Since the fuel injection amount is corrected using the value Kfuel, proper injection can be performed without delay in fuel supply during acceleration or the like.

【0038】このため、空燃比のフィードバック制御、
学習制御の負担を軽減しつつ、良好な加速性を得ること
ができ、この結果運転性、燃費、排気性能が大幅に向上
する。
For this reason, feedback control of the air-fuel ratio,
It is possible to obtain good acceleration while reducing the burden of learning control, resulting in significant improvements in drivability, fuel efficiency, and exhaust performance.

【0039】なお、補正値Kfuelの学習は、給油毎
に行うが、例えば給油後にエンジンの始動毎に数回学習
を行い、学習毎に補正値Kfuelを補正、更新するよ
うにしても良い。
The correction value Kfuel is learned each time the engine is refueled, but the learning may be performed several times each time the engine is started after refueling, and the correction value Kfuel may be corrected or updated each time the learning is performed.

【0040】また、実施例では、学習補正値Kfuel
を補正係数Coefに追加することで通常時の燃料噴射
量Teを補正するが、例えば加速時等に割込み噴射を行
うものの場合、学習補正値Kfuelにてその割込み噴
射量を補正することも可能である。
Furthermore, in the embodiment, the learning correction value Kfuel
is added to the correction coefficient Coef to correct the normal fuel injection amount Te. However, in the case of interrupt injection during acceleration, for example, it is also possible to correct the interrupt injection amount using the learning correction value Kfuel. be.

【0041】図9、図10は本発明の他の実施例を示す
もので、エンジン始動時の回転の変動状態から、学習補
正値Kfuelの学習を行うものである。
FIGS. 9 and 10 show another embodiment of the present invention, in which the learning correction value Kfuel is learned from the fluctuation state of the rotation when the engine is started.

【0042】この場合、エンジンが起動されると、回転
が所定の回転数NelからNehに立上がる間の移動平
均値Neavを算出すると共に、移動平均値Neavに
対する瞬時値Neの差ΔNeを積分し、その分散値En
eを求める(ステップ41〜51)。
In this case, when the engine is started, the moving average value Neav during the time when the engine speed rises from a predetermined rotational speed Ne1 to Neh is calculated, and the difference ΔNe between the instantaneous value Ne and the moving average value Neav is integrated. , its variance En
Find e (steps 41-51).

【0043】そして、この分散値Ene(水温Twにて
補正後)から学習補正値Kfuelを図8のテーブルか
ら読み込み、決定する。この分散値Eneつまり回転変
動が大きいときほど、大きな学習補正値Kfuelをと
る。
Then, the learning correction value Kfuel is read from the table in FIG. 8 and determined from this variance value Ene (after correction based on the water temperature Tw). The larger the variance value Ene, that is, the rotational fluctuation, the larger the learning correction value Kfuel is taken.

【0044】即ち、重質燃料の場合あるいはデポジット
があると、エンジン始動時に回転の立上がりが遅くなる
と共に、回転の変動が大きくなるが、この回転変動から
燃料の重軽質ならびにデポジットの状態を判定すること
ができ、これにより前述の実施例に同じく補正値Kfu
elを正確に求めることができる。
That is, in the case of heavy fuel or if there are deposits, the startup of the engine rotation will be delayed and the fluctuations in the rotation will be large when starting the engine. From this rotation fluctuation, the heavy/light quality of the fuel and the state of the deposits can be determined. As a result, the correction value Kfu
el can be determined accurately.

【0045】[0045]

【発明の効果】以上のように本発明によれば、機関の運
転状態を検出するセンサの検出値に基づいて燃料噴射装
置からの燃料噴射量を制御する内燃機関の燃料制御系に
、機関始動時に機関回転の立上がり状態を判定する手段
と、この立上がり状態と機関冷却水温とから燃料修正量
を学習する手段と、この学習値に応じて燃料噴射量を補
正する手段とを備えたので、燃料の重軽質あるいは吸気
ポート壁等のデポジットの状態にかかわらず、燃料噴射
量を適正に制御することができ、エンジンの良好な始動
性、運転性を確保できると共に、燃費、排気エミッショ
ンを大幅に向上できる。
As described above, according to the present invention, a fuel control system for an internal combustion engine that controls the amount of fuel injected from a fuel injection device based on a detected value of a sensor that detects the operating state of the engine is used to control engine startup. The present invention is equipped with means for determining the start-up state of engine rotation, means for learning the fuel correction amount from this start-up state and engine cooling water temperature, and means for correcting the fuel injection amount according to this learned value. Regardless of whether the engine is heavy or light or whether there are deposits on the intake port wall, the fuel injection amount can be controlled appropriately, ensuring good engine startability and drivability, and significantly improving fuel efficiency and exhaust emissions. can.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の構成図である。FIG. 1 is a configuration diagram of the present invention.

【図2】制御系を示す構成図である。FIG. 2 is a configuration diagram showing a control system.

【図3】始動時の燃料噴射量を演算する制御フローチャ
ートである。
FIG. 3 is a control flowchart for calculating the fuel injection amount at startup.

【図4】回転の立上がり状態を判定する制御フローチャ
ートである。
FIG. 4 is a control flowchart for determining a start-up state of rotation.

【図5】回転の立上がり時間の測定例を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing an example of measuring the rise time of rotation.

【図6】水温と始動時間基準の関係を示す特性図である
FIG. 6 is a characteristic diagram showing the relationship between water temperature and starting time reference.

【図7】電圧補正データを示す特性図である。FIG. 7 is a characteristic diagram showing voltage correction data.

【図8】学習補正値のデータを示す特性図である。FIG. 8 is a characteristic diagram showing data of learning correction values.

【図9】他の実施例の制御フローチャートである。FIG. 9 is a control flowchart of another embodiment.

【図10】回転変動の測定例を示す説明図である。FIG. 10 is an explanatory diagram showing an example of measurement of rotational fluctuations.

【図11】始動時の回転の立上がり状態を示す説明図で
ある。
FIG. 11 is an explanatory diagram showing a rising state of rotation at the time of starting.

【符号の説明】[Explanation of symbols]

1  エンジン 4  インジェクタ 7  エアフローメータ 9  スロットル開度センサ 10  クランク角センサ 11  水温センサ 12  空燃比センサ 20  コントロールユニット 1 Engine 4 Injector 7 Air flow meter 9 Throttle opening sensor 10 Crank angle sensor 11 Water temperature sensor 12 Air fuel ratio sensor 20 Control unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  機関の運転状態を検出するセンサの検
出値に基づいて燃料噴射装置からの燃料噴射量を制御す
る内燃機関の燃料噴射制御装置において、機関始動時に
機関回転の立上がり状態を判定する手段と、この立上が
り状態と機関冷却水温とから燃料修正量を学習する手段
と、この学習値に応じて燃料噴射量を補正する手段とを
備えたことを特徴とする内燃機関の燃料噴射制御装置。
Claim 1: In a fuel injection control device for an internal combustion engine that controls the amount of fuel injected from a fuel injection device based on a detected value of a sensor that detects the operating state of the engine, a rising state of engine rotation is determined at the time of starting the engine. A fuel injection control device for an internal combustion engine, comprising: means for learning a fuel correction amount from the start-up state and engine cooling water temperature; and means for correcting the fuel injection amount according to the learned value. .
【請求項2】  立上がり状態判定手段は、所定の回転
数間での立上がり時間を検出し、この時間から立上がり
状態を判定することを特徴とする請求項1に記載の内燃
機関の燃料噴射制御装置。
2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the start-up state determination means detects a start-up time between predetermined rotational speeds and determines the start-up state based on this time. .
【請求項3】  立上がり状態判定手段は、回転数の移
動平均値に対する瞬時値の差を積分して回転変動を検出
し、この回転変動から立上がり状態を判定することを特
徴とする請求項1に記載の内燃機関の燃料噴射制御装置
3. The start-up state determining means detects rotation fluctuation by integrating the difference between the instantaneous value and the moving average value of the rotation speed, and determines the start-up state from this rotation fluctuation. The fuel injection control device for the internal combustion engine described above.
JP2409291A 1991-01-24 1991-01-24 Fuel injection controller for internal combustion engine Pending JPH04252835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2409291A JPH04252835A (en) 1991-01-24 1991-01-24 Fuel injection controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2409291A JPH04252835A (en) 1991-01-24 1991-01-24 Fuel injection controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04252835A true JPH04252835A (en) 1992-09-08

Family

ID=12128738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2409291A Pending JPH04252835A (en) 1991-01-24 1991-01-24 Fuel injection controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04252835A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817923A (en) * 1996-01-25 1998-10-06 Unisia Jecs Corporation Apparatus for detecting the fuel property for an internal combustion engine and method thereof
US6283102B1 (en) * 1999-11-04 2001-09-04 Daimlerchrysler Corporation Fuel identifier algorithm
KR20140052858A (en) * 2012-10-24 2014-05-07 로베르트 보쉬 게엠베하 Method for detecting a stable combustion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817923A (en) * 1996-01-25 1998-10-06 Unisia Jecs Corporation Apparatus for detecting the fuel property for an internal combustion engine and method thereof
DE19702556C2 (en) * 1996-01-25 2002-03-14 Unisia Jecs Corp Device and method for determining the fuel property for an internal combustion engine
US6283102B1 (en) * 1999-11-04 2001-09-04 Daimlerchrysler Corporation Fuel identifier algorithm
KR20140052858A (en) * 2012-10-24 2014-05-07 로베르트 보쉬 게엠베하 Method for detecting a stable combustion

Similar Documents

Publication Publication Date Title
JP2004278449A (en) Fuel property estimating device for internal combustion engine
JP2887056B2 (en) Fuel property determination device for internal combustion engine
JPH06235347A (en) Fuel property detecting device for internal combustion engine
JP4063129B2 (en) Control device for internal combustion engine
JPH04252835A (en) Fuel injection controller for internal combustion engine
JP3966202B2 (en) Control device for internal combustion engine
JPH08284708A (en) Fuel injector for engine
JPH1018883A (en) Engine air-fuel ratio controller
JP4010256B2 (en) Control device for internal combustion engine
JPH09177580A (en) Fuel supply controller of internal combustion engine
JP3006304B2 (en) Air-fuel ratio controller for multi-fuel engines
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JP3123357B2 (en) Air-fuel ratio control device for internal combustion engine
JPH03179150A (en) Fuel supply controller and ignition timing controller for internal combustion engine
JPH11159376A (en) Air-fuel ratio control device for internal combustion engine
JP2509020Y2 (en) Fail-safe device of mixed fuel supply control device
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JPH0746750Y2 (en) Air-fuel ratio controller for engine
JP2548612B2 (en) Fuel supply control device for internal combustion engine
JPH0734931A (en) Stability controller of engine
JPH02271041A (en) Intake-air temperature detecting device of internal combustion engine
JP3564923B2 (en) Engine air-fuel ratio control device
JPH0886234A (en) Air-fuel ratio control device for engine
JPH04175432A (en) Fuel feeding control device for internal combustion engine