JP3966202B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP3966202B2
JP3966202B2 JP2003081804A JP2003081804A JP3966202B2 JP 3966202 B2 JP3966202 B2 JP 3966202B2 JP 2003081804 A JP2003081804 A JP 2003081804A JP 2003081804 A JP2003081804 A JP 2003081804A JP 3966202 B2 JP3966202 B2 JP 3966202B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
single component
component concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003081804A
Other languages
Japanese (ja)
Other versions
JP2004285972A (en
Inventor
和彦 安倍
孝志 中沢
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003081804A priority Critical patent/JP3966202B2/en
Priority to US10/768,662 priority patent/US6975933B2/en
Priority to CNB2004100049438A priority patent/CN100373036C/en
Publication of JP2004285972A publication Critical patent/JP2004285972A/en
Priority to US11/227,263 priority patent/US7209826B2/en
Application granted granted Critical
Publication of JP3966202B2 publication Critical patent/JP3966202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • F02D19/088Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の制御装置に関する
【0002】
【従来の技術】
ガソリンの他にアルコールとガソリンの各種組成の混合燃料でも走行可能な、いわゆるフレキシブルフューエルビークル(FFV)と言われる自動車がある。
【0003】
アルコールは、通常のガソリン(混合燃料)に対してC(炭素)原子の含有量が異なるため、フレキシブルフューエルビークルに用いられる内燃機関にアルコールとガソリンの混合燃料を供給するにあたっては、燃料内のアルコール濃度に従って燃料噴射量を調整する必要がある。
【0004】
そして、このようなフレキシブルフューエルビークルにおいては、燃料内のアルコール濃度を燃料タンク内に配設されたアルコール濃度センサにて検出し、アルコール濃度センサの故障時には、排気空燃比に基づいて算出される空燃比フィードバック補正係数の平均値とアルコール濃度との相関関係により、アルコール濃度推定を行うものが従来から知られている(特許文献1を参照)。
【0005】
【特許文献1】
特開平5−163992号公報(第1−4頁、第5図)。
【0006】
ところで、上記従来技術のように、排気空燃比を用いて燃料内のアルコール濃度を推定する場合、さまざまな外乱因子(例えば、ブローバイガス等)によって排気空燃比が大きく影響を受けることになる。そこで、排気空燃比に影響を及ぼす外乱因子が発生している場合には、排気空燃比を用いた燃料内のアルコール濃度推定を禁止することが考えられる。
【0007】
【発明が解決しようとする課題】
しかしながら、アルコール濃度の異なる燃料を給油した直後のように燃料内のアルコール濃度が大きく変化したとき、外乱因子の発生によってアルコール濃度推定が実施されないと、燃料内のアルコール濃度に応じた補正を燃料噴射量に対して行えないため、燃焼室内がオーバーリーンまたはオーバーリッチ状態に陥り、運転性能、排気性能が悪化してしてまう虞がある
【0008】
【課題を解決するための手段】
本発明の内燃機関の制御装置は、運転状態に基づいて燃料内の単一組成分濃度推定の許可/禁止を判定する第1許可判定手段と、空燃比補正量が所定の範囲外にあるか否かによって燃料内の単一組成分濃度推定の許可/禁止を判定し、燃料噴射量を補正するための空燃比補正量が所定の範囲外にある場合に燃料内の単一組成分濃度推定を許可する第2許可判定手段と、を有することを特徴としている。
【0009】
【発明の効果】
本発明によれば、空燃比補正量が所定の範囲外にある場合には、第2許可判定手段により燃料内の単一組成分濃度推定が許可されるので、推定された単一組成分濃度推定値を用いることで、空燃比補正量不足によって運転性能や、排気性能が悪化してしまうことを防止することができる。
【0010】
【発明の実施の形態】
図1は、本発明の一実施形態に係る内燃機関の制御装置の概略構成を示している。尚、図1に示す内燃機関は、アルコールを含む燃料を用いる内燃機関であって、車両に搭載されるものである。
【0011】
エンジン本体1の燃焼室2には、吸気弁3を介して吸気通路4が接続されていると共に、排気弁5を介して排気通路6が接続されている。
【0012】
吸気通路4には、エアクリーナ7、吸入空気量を検出するエアフローメータ8、吸入空気量を制御するスロットル弁9及び吸気中に燃料を噴射供給する燃料噴射弁11が配設されている。
【0013】
燃料噴射弁11は、エンジンコントロールユニット12(以下、ECUと記す)からの噴射指令信号により運転条件に応じて所定の空燃比となるよう吸気中に燃料を噴射供給している。
【0014】
排気通路6には、排気中の酸素濃度を検出することによって排気中の空燃比を算出可能にする空燃比検出手段としての酸素濃度センサ13と、三元触媒14が配設されている。
【0015】
三元触媒14は理論空燃比を中心とするいわゆるウィンドウに空燃比がある場合に最大の転化効率をもって排気中のNOx、HC、COを同時に浄化できるため、ECU12では、三元触媒14の上流側に設けた酸素濃度センサ13からの出力に基づいて排気空燃比が上記のウィンドウの範囲内で変動するように排気空燃比のフィードバック制御を行う。
【0016】
また、ECU12には、エンジン本体1の冷却水温度を検知する水温センサ15からの信号が入力されていると共に、第1燃料性状代表値付与手段であるアルコール濃度入力装置16(詳細は後述)からの信号が入力が可能になっている。
【0017】
アルコールを含む燃料は、通常のガソリンに対してC(炭素)原子の含有量が異なるため、同一の当量比を得るには大きな噴射量が要求されることになり、アルコールとガソリンの混合燃料をエンジンに供給するにあたっては、燃料内のアルコール濃度に従って燃料噴射量を調整する必要がある。
【0018】
そこで、本実施形態では、燃料内単一組成分濃度として、燃料内のアルコール濃度を以下の手順で推定する。図2は、燃料内のアルコール濃度を推定する制御の流れを示している。
【0019】
まず、ステップ(以下、単にSと表記する)1では、酸素濃度センサ13の出力信号を基に算出された空燃比フィードバック補正係数αを計算する。
【0020】
S2では、空燃比学習条件が成立しているか否かを判定し、空燃比学習条件が成立している場合には、S3に進み、各運転領域毎のαm算出マップのマップ値の書き換えを行う。空燃比学習条件が成立していない場合には、各αm算出マップのマップ値の書き換えを行わずにS4に進む。ここで、αmは上記αに基づいて算出される空燃比学習補正係数である。尚、空燃比フィードバック補正係数α及び空燃比学習補正係数αmは、上述した排気空燃比のフィードバック制御に用いられる空燃比補正量であり、燃料噴射弁11からの燃料噴射量がα及びαmに応じて補正される。また、空燃比フィードバック補正係数α及び空燃比学習補正係数αmの算出方法は、公知のいかなる算出方法でも使用可能であるため、これらの算出方法についての詳細な説明は省略する。
【0021】
S4では、現在の各運転領域毎のαmマップを参照し、各運転領域毎に空燃比補正量としての空燃比学習補正係数αmを求める。
【0022】
ここで、S1〜S4が空燃比補正量算出手段に相当する。
【0023】
第1許可判定手段に相当するS5では、排気空燃比に影響を与える外乱が発生しているか否か、すなわちアルコール濃度推定を行うための通常許可条件が成立しているか否かを判定する。具体的には、このS5において、水温、エンジン始動後時間、空燃比学習制御の進行状況、給油履歴、排気空燃比に影響を及ぼすブローバイガスの発生量が所定値以下などの条件(運転状態)が整ったか否かを判定し、条件が整っている場合にはS6に進み、条件が整っていない場合にはS9に進む。
【0024】
S6では、次式(1)のように表される空燃比感度補正総量αtを算出する。
【0025】
【数1】
αt=α×αm′×ETAHOS …(1)
ここで、ETAHOSは前回の第1アルコール濃度推定値ALC1(後述)、すなわち現在記憶している第1アルコール濃度推定値ALC1から算出される燃料性状分補正量であって、後述する図3を用い、前回の第1アルコール濃度推定値ALC1から逆引きで算出されるαtの前回値である。
【0026】
また、このS6におけるαm′は、S4にて求めた各運転領域別のαmのうち代表的な回転負荷領域のαmの平均値、換言すればエンジンとしての使用頻度が高い4領域程度のαmの平均値である。
【0027】
S7では、図3に示すマップを用い、S6にて算出された空燃比感度補正総量αtから第1単一組成分濃度推定値としての第1アルコール濃度推定値ALC1を算出し、更新する。
【0028】
図3においては、空燃比感度補正総量αtに対して、第1アルコール濃度推定値ALC1は、連続的な特性を持っているが、これは、空燃比を理論空燃比保持するために、燃料噴射量に対して、空燃比偏差、すなわち酸素濃度センサ13の検出値を基に算出される空燃比の目標空燃比に対する偏差に伴った補正を実現するために預けた特性である。また、図3について詳述すれば、空燃比が理論空燃比に対してリーン側にある状態(αtが100%以上の領域)においては、空燃比感度補正総量αtは第1アルコール濃度推定値ALC1と略比例関係となっており、空燃比が理論空燃比に対してリッチ側にある状態(αtが100%以下の領域)においては、燃料内のアルコール濃度を0%と判定する。より具体的には、空燃比感度補正総量αt=100%である場合には、燃料内のアルコール濃度が0%と推定し、空燃比感度補正総量αt=140%である場合には、燃料内のアルコール濃度が85%と推定する。
【0029】
そして、S8では、図4に示すALC2算出マップを用い、S7で算出された第1アルコール濃度推定値ALC1から第2単一組成分濃度推定値としての第2アルコール濃度推定値ALC2を算出し、更新する。
【0030】
このALC2算出マップは、第1アルコール濃度推定値ALC1に対して、第2アルコール濃度推定値ALC2が不感帯を持つ特性となっている。換言すれば、ALC2算出マップは、排気空燃比が理論空燃比に対してリーン側にある空燃比感度補正総量の特定領域に、空燃比感度補正総量の増減、すなわち第1アルコール濃度推定値ALC1の増減に関わらず第2アルコール濃度推定値ALC2が略一定となる不感帯を有しており、本実施形態においては、第1アルコール濃度推定値ALC1が0%〜30%の領域では、第2アルコール濃度推定値ALC2は一律0%、第1アルコール濃度推定値ALC1が65%〜85%の領域では、第2アルコール濃度推定値ALC2は一律85%となるように設定されている。
【0031】
これは、ガソリン(すなわち、エタノール濃度が0%のE0燃料)を入れられた場合や、いつも規格品のブレンド燃料(ガソリン−アルコール燃料)、例えば燃料内のエタノール濃度が85%のいわゆるE85燃料を入れられた場合は、安定した制御値(制御定数)を用いるために設定した特性である。ここで、上記制御値とは、点火時期関連、燃料の壁流補正関連、冷機増量関連、いわゆるλコントロールの3元点調整定数、換言すれば、空燃比制御における目標空燃比、等が挙げられ、これらが変動するとエミッションの再現性が悪くなるため不感帯としたものである。
【0032】
尚、S7で算出された第1アルコール濃度推定値ALC1は、燃料内のアルコール濃度による補正を必要とする燃焼パラメータのうち、燃料内のアルコール濃度に応じた性能保証を行う燃焼パラメータ、具体的には、運転条件に応じて算出される基本燃料噴射量(エンジン回転数と吸入吸気量から算出される)を補正する際に用いられる。
【0033】
また、S8で算出された第2アルコール濃度推定値ALC2は、燃料内のアルコール濃度による補正を必要とする燃焼パラメータのうち、市場流通燃料に対する安定的な性能保証や、実濃度に対して推定濃度の偏差の保証を必要とする燃焼パラメータ、すなわち壁流補正量、冷機時増量、目標空燃比及び点火時期等のパラメータを補正する際に用いられる。
【0034】
一方、S5にて条件が整っていないと判定されると第2許可判定手段に相当するS9に進み、S1にて算出した空燃比フィードバック補正係数αが所定範囲内にあるか否かを判定する。すなわち空燃比フィードバック補正係数αが85%(0.85)以上125%(1.25)以下の範囲内にあるか否かを判定し、この範囲外に空燃比フィードバック補正係数αがある場合にはS10に進み、この範囲内に空燃比フィードバック補正係数αがある場合には、アルコール濃度推定を行うことなく終了する。
【0035】
ここで、空燃比フィードバック補正係数αが85%(0.85)以上125%(1.25)以下の範囲外にあるときには、上述したS5にて通常許可条件が成立しないものとする。
【0036】
尚、S9での判定の結果、アルコール濃度推定を行わないとなった場合(S10に進まない場合)には、現在ECU12内に記憶している第1アルコール濃度推定値ALC1を更新せずに用いて燃料内のアルコール濃度に応じた性能保証を行う燃焼パラメータを補正すると共に、現在ECU12内に記憶している第2アルコール濃度推定値ALC2を更新せずに用いて燃料内のアルコール濃度による補正を必要とする燃焼パラメータのうち、市場流通燃料に対する安定的な性能保証や、実濃度に対して推定濃度の偏差の保証を必要とする燃焼パラメータを補正する。
【0037】
S10では、上述したS6と同様の方法で、空燃比感度補正総量αtを算出し、S11に進む。
【0038】
そして、S11では、上述したS7と同様に図3に示すマップを用い、S10にて算出された空燃比感度補正総量αtから第1アルコール濃度推定値ALC1を算出、更新し、終了する。つまり、第2アルコール濃度推定値ALC2は更新せず、現在ECU12内に記憶している第2アルコール濃度推定値ALC2を継続して用いる。
【0039】
尚、S11で算出された第1アルコール濃度推定値ALC1は、前記したように、燃料内のアルコール濃度による補正を必要とする燃焼パラメータのうち、燃料内のアルコール濃度に応じた性能保証を行う燃焼パラメータ、具体的には、運転条件に応じて算出される基本燃料噴射量(エンジン回転数と吸入吸気量から算出される)を補正する際に用いられる。
【0040】
ここで、S7にて算出された第1アルコール濃度推定値ALC1は、次回S7にて第1アルコール濃度推定値ALC1が算出されるか、S11にて第1アルコール濃度推定値ALC1が算出されるまでECU12内に記憶される。また、S8にて算出された第2アルコール濃度推定値ALC2は、次回S8にて第2アルコール濃度推定値ALC2が算出されるまでECU12内に記憶される。
【0041】
このような内燃機関の制御装置においては、S5にて燃料内のアルコール濃度推定が許可されると、第1アルコール濃度推定値ALC1及び第2アルコール濃度推定値ALC2を算出、更新し、第1アルコール濃度推定値ALC1を用いて運転条件に応じて算出される基本燃料噴射量を補正し、第2アルコール濃度推定値ALC2を用いて内燃機関の燃焼パラメータである壁流補正量、冷機時増量、目標空燃比及び点火時期を補正し、S9にて燃料内のアルコール濃度推定が許可されると、第1アルコール濃度推定値ALC1のみを算出、更新し、第2アルコール濃度推定値ALC2の算出、更新は行わない。
【0042】
つまり、給油直後のように、ECU12内に記憶されているアルコール濃度推定値と燃料タンク内にある実際の燃料内のアルコール濃度との間に大きな偏差がある場合には、アルコール濃度推定の外乱因子の発生によってアルコール濃度推定が許可されない場合(S5の通常許可条件が成立しない場合)においても、第1アルコール濃度推定値ALC1を算出、更新し、この更新された第1アルコール濃度推定値ALC1を用いて基本燃料噴射量を補正することができるので、排気空燃比フィードバック制御における空燃比補正の制御量不足を解決することができ、燃焼室内がオーバーリーンまたはオーバーリッチ状態に陥り、運転性能、排気性能が悪化してしまうことを防止することができる。
【0043】
また、第2アルコール濃度推定値ALC2については、S9以降に進んだ場合には更新しない(すなわちS5の通常許可条件が成立した、より確実な条件の下でのみ更新する)ことにより、前述した第2アルコール濃度推定値ALC2の使用目的に対して適切なものとなる。
【0044】
上記実施形態から把握し得る本発明の技術的思想について、その効果とともに列記する。
【0045】
(1) 内燃機関の制御装置は、燃料内の単一組成分濃度を推定するものであって、排気空燃比を検出する空燃比算出手段と、燃料噴射量を補正するための空燃比補正量を空燃比算出手段の検出値に基づいて算出する空燃比補正量算出手段と、運転状態に基づいて燃料内の単一組成分濃度推定の許可/禁止を判定する第1許可判定手段と、空燃比補正量が所定の範囲外にあるか否かによって燃料内の単一組成分濃度推定の許可/禁止を判定し、空燃比補正量が所定の範囲外にある場合に燃料内の単一組成分濃度推定を許可する第2許可判定手段と、を有する。これによって、空燃比補正量不足によって運転性能や、排気性能が悪化してしまうことを防止することができる。
【0046】
(2) 上記(1)に記載の内燃機関の制御装置は、より具体的には、燃料内の単一組成分濃度は空燃比補正量に基づいて推定され、かつ第1許可判定手段は排気空燃比に影響を与える外乱が発生しているときに単一組成分濃度推定を禁止すると判定する。
【0047】
(3) 上記(2)に記載の内燃機関の制御装置は、より具体的には、ブローバイガスの発生量が所定値以上のときに、排気空燃比に影響を与える外乱が発生していると判定する。
【0048】
(4) 上記(1)〜(3)のいずれかに記載の内燃機関の制御装置は、より具体的には、第2許可判定手段において、空燃比検出手段の検出値に基づいて算出された空燃比フィードバック補正係数の値が、1.0から所定値以上外れた値をとったときに、燃料内の単一組成分濃度推定を許可する。
【0049】
(5) 上記(1)〜(4)のいずれかに記載の内燃機関の制御装置は、より具体的には、燃料内の単一組成分濃度を推定/更新し、更新された単一組成分濃度を記憶する内燃機関の制御装置であって、現在記憶している単一組成分濃度に基づき燃料性状分補正量を算出する燃料性状分補正量算出手段と、空燃比補正量と燃料性状分補正量とから空燃比感度補正総量を算出する空燃比感度補正総量算出手段と、空燃比検出手段で検出された排気空燃比が理論空燃比に対してリーン側にある状態において空燃比感度補正総量と単一組成分濃度推定値とが略比例関係となる、第1単一組成分濃度を算出する第1単一組成分濃度推定手段と、を有し、第1許可判定手段により燃料内の単一組成分濃度推定が禁止され、第2許可判定手段により燃料内の単一組成分濃度推定が許可された場合には、第1単一組成分濃度推定手段から第1単一組成分濃度推定値を算出し、第1単一組成分濃度推定値を用いて運転条件に応じて算出される基本燃料噴射量を補正する。
【0050】
(6) 上記(1)〜(4)のいずれかに記載の内燃機関の制御装置は、より具体的には、燃料内の単一組成分濃度を推定/更新し、更新された単一組成分濃度を記憶する内燃機関の制御装置において、現在記憶している単一組成分濃度に基づき燃料性状分補正量を算出する燃料性状分補正量算出手段と、空燃比補正量と燃料性状分補正量とから空燃比感度補正総量を算出する空燃比感度補正総量算出手段と、運転条件に応じて算出される基本燃料噴射量を補正する第1単一組成分濃度を算出するものであって、空燃比検出手段で検出された排気空燃比が理論空燃比に対してリーン側にある状態において空燃比感度補正総量と第1単一組成分濃度推定値とが略比例関係となる第1単一組成分濃度推定手段と、内燃機関の燃焼パラメータである壁流補正量、冷機時増量、目標空燃比及び点火時期を補正する第2単一組成分濃度を算出するものであって、空燃比検出手段の検出値に基づいて算出された空燃比が理論空燃比に対してリーン側にある空燃比感度補正総量の特定領域に空燃比感度補正総量の増減に関わらず算出される第2単一組成分濃度推定値が略一定となる不感帯を有する第2単一組成分濃度推定手段と、を有し、第1許可判定手段により燃料内の単一組成分濃度推定が許可された場合には、第1単一組成分濃度推定手段から第1単一組成分濃度推定値を算出して更新すると共に、第2単一組成分濃度推定手段から第2単一組成分濃度推定値を算出して更新し、第1許可判定手段により燃料内の単一組成分濃度推定が禁止され、第2許可判定手段により燃料内の単一組成分濃度推定が許可された場合には、第1単一組成分濃度推定手段から第1単一組成分濃度推定値を算出して更新し、第2単一組成分濃度推定値の更新は行わない。
【0051】
(7) 上記(1)〜(6)のいずれかに記載の内燃機関の制御装置において、単一組成分濃度は、燃料内のアルコール濃度である。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る内燃機関の燃料性状推定装置の概略構成を示す説明図。
【図2】燃料内のアルコール濃度推定値を算出する制御の流れを示すフローチャート。
【図3】ALC1算出マップの特性例を示す説明図。
【図4】ALC2算出マップの特性例を示す説明図。
【符号の説明】
1…エンジン本体
2…燃焼室
3…吸気弁
4…吸気通路
5…排気弁
6…排気通路
7…エアクリーナ
8…エアフローメータ
9…スロットル弁
11…燃料噴射弁
12…エンジンコントロールユニット
13…酸素濃度センサ
14…三元触媒
15…水温センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for an internal combustion engine.
[Prior art]
In addition to gasoline, there is an automobile called a so-called flexible fuel vehicle (FFV) that can run with a mixed fuel of various compositions of alcohol and gasoline.
[0003]
Alcohol has a C (carbon) atom content different from that of ordinary gasoline (mixed fuel). Therefore, when supplying a mixed fuel of alcohol and gasoline to an internal combustion engine used in a flexible fuel vehicle, alcohol in the fuel is used. It is necessary to adjust the fuel injection amount according to the concentration.
[0004]
In such a flexible fuel vehicle, the alcohol concentration in the fuel is detected by an alcohol concentration sensor disposed in the fuel tank, and when the alcohol concentration sensor fails, the air concentration calculated based on the exhaust air / fuel ratio is calculated. An apparatus that estimates an alcohol concentration based on a correlation between an average value of a fuel ratio feedback correction coefficient and an alcohol concentration is conventionally known (see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-5-163992 (page 1-4, FIG. 5).
[0006]
By the way, when the alcohol concentration in the fuel is estimated using the exhaust air-fuel ratio as in the above prior art, the exhaust air-fuel ratio is greatly influenced by various disturbance factors (for example, blow-by gas). Therefore, when a disturbance factor affecting the exhaust air / fuel ratio is generated, it is considered that the estimation of the alcohol concentration in the fuel using the exhaust air / fuel ratio is prohibited.
[0007]
[Problems to be solved by the invention]
However, when the alcohol concentration in the fuel changes greatly, such as immediately after fuel with different alcohol concentrations, if the estimation of the alcohol concentration is not performed due to the generation of a disturbance factor, the fuel injection is corrected according to the alcohol concentration in the fuel. Since it cannot be performed with respect to the amount, the combustion chamber may fall into an over-lean or over-rich state, and there is a risk that the operating performance and exhaust performance will deteriorate.
[Means for Solving the Problems]
The control apparatus for an internal combustion engine according to the present invention includes: a first permission determination unit that determines permission / prohibition of single component concentration estimation in fuel based on an operating state; and whether the air-fuel ratio correction amount is outside a predetermined range. It is determined whether the single component concentration estimation in the fuel is permitted or prohibited depending on whether or not, and when the air-fuel ratio correction amount for correcting the fuel injection amount is outside the predetermined range, the single component concentration estimation in the fuel is estimated. And a second permission judging means for authorizing.
[0009]
【The invention's effect】
According to the present invention, when the air-fuel ratio correction amount is outside the predetermined range, the single permission component concentration estimation in the fuel is permitted by the second permission determination means. By using the estimated value, it is possible to prevent the operating performance and the exhaust performance from deteriorating due to an insufficient air-fuel ratio correction amount.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of a control device for an internal combustion engine according to an embodiment of the present invention. The internal combustion engine shown in FIG. 1 is an internal combustion engine that uses a fuel containing alcohol, and is mounted on a vehicle.
[0011]
An intake passage 4 is connected to the combustion chamber 2 of the engine body 1 via an intake valve 3, and an exhaust passage 6 is connected via an exhaust valve 5.
[0012]
In the intake passage 4, an air cleaner 7, an air flow meter 8 for detecting the intake air amount, a throttle valve 9 for controlling the intake air amount, and a fuel injection valve 11 for injecting and supplying fuel during intake are disposed.
[0013]
The fuel injection valve 11 injects and supplies fuel during intake air so as to achieve a predetermined air-fuel ratio in accordance with operating conditions by an injection command signal from an engine control unit 12 (hereinafter referred to as ECU).
[0014]
The exhaust passage 6 is provided with an oxygen concentration sensor 13 as an air-fuel ratio detection means and a three-way catalyst 14 that can calculate the air-fuel ratio in the exhaust gas by detecting the oxygen concentration in the exhaust gas.
[0015]
Since the three-way catalyst 14 can simultaneously purify NOx, HC, and CO in the exhaust gas with maximum conversion efficiency when the so-called window centered on the stoichiometric air-fuel ratio has an air-fuel ratio, the ECU 12 has an upstream side of the three-way catalyst 14. The exhaust air / fuel ratio is feedback-controlled so that the exhaust air / fuel ratio fluctuates within the range of the above window based on the output from the oxygen concentration sensor 13 provided in FIG.
[0016]
The ECU 12 receives a signal from a water temperature sensor 15 for detecting the coolant temperature of the engine body 1 and an alcohol concentration input device 16 (details will be described later) serving as a first fuel property representative value providing unit. This signal can be input.
[0017]
Alcohol-containing fuel has a different C (carbon) atom content than ordinary gasoline, so a large injection amount is required to obtain the same equivalent ratio. When supplying the engine, it is necessary to adjust the fuel injection amount in accordance with the alcohol concentration in the fuel.
[0018]
Therefore, in the present embodiment, the alcohol concentration in the fuel is estimated by the following procedure as the single component concentration in the fuel. FIG. 2 shows a control flow for estimating the alcohol concentration in the fuel.
[0019]
First, in step (hereinafter simply referred to as S) 1, an air-fuel ratio feedback correction coefficient α calculated based on the output signal of the oxygen concentration sensor 13 is calculated.
[0020]
In S2, it is determined whether or not the air-fuel ratio learning condition is satisfied. If the air-fuel ratio learning condition is satisfied, the process proceeds to S3, and the map value of the αm calculation map for each operating region is rewritten. . If the air-fuel ratio learning condition is not satisfied, the process proceeds to S4 without rewriting the map value of each αm calculation map. Here, αm is an air-fuel ratio learning correction coefficient calculated based on α. The air-fuel ratio feedback correction coefficient α and the air-fuel ratio learning correction coefficient αm are air-fuel ratio correction amounts used for the above-described exhaust air-fuel ratio feedback control, and the fuel injection amount from the fuel injection valve 11 depends on α and αm. Corrected. The calculation method of the air-fuel ratio feedback correction coefficient α and the air-fuel ratio learning correction coefficient αm can be any known calculation method, and thus detailed description of these calculation methods is omitted.
[0021]
In S4, the current αm map for each operation region is referred to, and an air-fuel ratio learning correction coefficient αm as an air-fuel ratio correction amount is obtained for each operation region.
[0022]
Here, S1 to S4 correspond to air-fuel ratio correction amount calculation means.
[0023]
In S5 corresponding to the first permission determining means, it is determined whether or not a disturbance affecting the exhaust air / fuel ratio has occurred, that is, whether or not a normal permission condition for estimating the alcohol concentration is satisfied. Specifically, in S5, conditions such as the water temperature, the time after engine startup, the progress of air-fuel ratio learning control, the refueling history, and the amount of blow-by gas that affects the exhaust air-fuel ratio are below a predetermined value (operating state). If the condition is satisfied, the process proceeds to S6. If the condition is not satisfied, the process proceeds to S9.
[0024]
In S6, an air-fuel ratio sensitivity correction total amount αt expressed as the following equation (1) is calculated.
[0025]
[Expression 1]
αt = α × αm ′ × ETAHOS (1)
Here, ETAHOS is the previous first alcohol concentration estimated value ALC1 (described later), that is, the fuel property correction amount calculated from the currently stored first alcohol concentration estimated value ALC1, and will be described later with reference to FIG. The previous value of αt calculated by reverse lookup from the previous first alcohol concentration estimated value ALC1.
[0026]
In addition, αm ′ in S6 is an average value of αm in a representative rotational load region among αm for each operation region obtained in S4, in other words, αm in about four regions frequently used as an engine. Average value.
[0027]
In S7, using the map shown in FIG. 3, the first alcohol concentration estimated value ALC1 as the first single component concentration estimated value is calculated and updated from the air-fuel ratio sensitivity correction total amount αt calculated in S6.
[0028]
In FIG. 3, the first alcohol concentration estimated value ALC1 has a continuous characteristic with respect to the air-fuel ratio sensitivity correction total amount αt. This is because fuel injection is performed in order to maintain the air-fuel ratio at the stoichiometric air-fuel ratio. This is a characteristic reserved for realizing a correction with respect to the air-fuel ratio deviation, that is, the deviation of the air-fuel ratio calculated based on the detected value of the oxygen concentration sensor 13 with respect to the target air-fuel ratio. 3 in detail, in a state where the air-fuel ratio is leaner than the stoichiometric air-fuel ratio (a region where αt is 100% or more), the air-fuel ratio sensitivity correction total amount αt is the first alcohol concentration estimated value ALC1. When the air-fuel ratio is on the rich side with respect to the stoichiometric air-fuel ratio (a region where αt is 100% or less), the alcohol concentration in the fuel is determined to be 0%. More specifically, when the air-fuel ratio sensitivity correction total amount αt = 100%, the alcohol concentration in the fuel is estimated to be 0%, and when the air-fuel ratio sensitivity correction total amount αt = 140%, The alcohol concentration is estimated to be 85%.
[0029]
In S8, using the ALC2 calculation map shown in FIG. 4, the second alcohol concentration estimated value ALC2 as the second single composition concentration estimated value is calculated from the first alcohol concentration estimated value ALC1 calculated in S7, Update.
[0030]
This ALC2 calculation map has a characteristic that the second alcohol concentration estimated value ALC2 has a dead zone with respect to the first alcohol concentration estimated value ALC1. In other words, the ALC2 calculation map shows the increase / decrease of the air-fuel ratio sensitivity correction total amount, that is, the first alcohol concentration estimated value ALC1 in a specific region of the air-fuel ratio sensitivity correction total amount where the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio. There is a dead zone in which the second alcohol concentration estimated value ALC2 becomes substantially constant regardless of the increase or decrease. In the present embodiment, in the region where the first alcohol concentration estimated value ALC1 is 0% to 30%, the second alcohol concentration estimated value ALC2 In the region where the estimated value ALC2 is uniformly 0% and the first alcohol concentration estimated value ALC1 is 65% to 85%, the second alcohol concentration estimated value ALC2 is set to be uniformly 85%.
[0031]
This is because when gasoline (that is, E0 fuel with an ethanol concentration of 0%) is put in, or a standard blend fuel (gasoline-alcohol fuel), for example, the so-called E85 fuel with an ethanol concentration of 85% is used. If it is entered, the characteristic is set to use a stable control value (control constant). Here, the control value includes ignition timing-related, fuel wall flow correction-related, cooler increase-related, so-called λ control ternary point adjustment constants, in other words, target air-fuel ratio in air-fuel ratio control, and the like. If these fluctuate, the reproducibility of emissions deteriorates.
[0032]
Note that the first alcohol concentration estimated value ALC1 calculated in S7 is a combustion parameter that guarantees performance according to the alcohol concentration in the fuel among the combustion parameters that require correction based on the alcohol concentration in the fuel, specifically, Is used when correcting the basic fuel injection amount (calculated from the engine speed and the intake air intake amount) calculated according to the operating conditions.
[0033]
In addition, the second alcohol concentration estimated value ALC2 calculated in S8 is an estimated concentration with respect to an actual concentration or a stable performance guarantee with respect to a marketed fuel among combustion parameters that require correction based on the alcohol concentration in the fuel. This is used when correcting parameters such as a wall flow correction amount, a cold-time increase amount, a target air-fuel ratio, and an ignition timing.
[0034]
On the other hand, if it is determined in S5 that the condition is not satisfied, the process proceeds to S9 corresponding to the second permission determination means, and it is determined whether or not the air-fuel ratio feedback correction coefficient α calculated in S1 is within a predetermined range. . That is, it is determined whether or not the air-fuel ratio feedback correction coefficient α is within the range of 85% (0.85) or more and 125% (1.25) or less, and when the air-fuel ratio feedback correction coefficient α is outside this range. Advances to S10, and if the air-fuel ratio feedback correction coefficient α is within this range, the process is terminated without estimating the alcohol concentration.
[0035]
Here, when the air-fuel ratio feedback correction coefficient α is outside the range of 85% (0.85) to 125% (1.25), it is assumed that the normal permission condition is not satisfied in S5 described above.
[0036]
If the alcohol concentration is not estimated as a result of the determination in S9 (if it does not proceed to S10), the first alcohol concentration estimated value ALC1 currently stored in the ECU 12 is used without being updated. And correcting the combustion parameter for guaranteeing performance according to the alcohol concentration in the fuel, and correcting the alcohol concentration in the fuel by using the second alcohol concentration estimated value ALC2 currently stored in the ECU 12 without updating. Among the necessary combustion parameters, the combustion parameters that require stable performance guarantee for marketed fuel and guarantee of deviation of estimated concentration from actual concentration are corrected.
[0037]
In S10, the air-fuel ratio sensitivity correction total amount αt is calculated by the same method as in S6 described above, and the process proceeds to S11.
[0038]
Then, in S11, the first alcohol concentration estimated value ALC1 is calculated and updated from the air-fuel ratio sensitivity correction total amount αt calculated in S10 using the map shown in FIG. That is, the second alcohol concentration estimated value ALC2 is not updated, and the second alcohol concentration estimated value ALC2 currently stored in the ECU 12 is continuously used.
[0039]
As described above, the first alcohol concentration estimated value ALC1 calculated in S11 is a combustion that guarantees performance according to the alcohol concentration in the fuel among the combustion parameters that need to be corrected by the alcohol concentration in the fuel. It is used when correcting a parameter, specifically, a basic fuel injection amount (calculated from the engine speed and the intake air intake amount) calculated according to operating conditions.
[0040]
Here, the first alcohol concentration estimated value ALC1 calculated in S7 is calculated until the first alcohol concentration estimated value ALC1 is calculated in the next S7 or the first alcohol concentration estimated value ALC1 is calculated in S11. It is stored in the ECU 12. The second alcohol concentration estimated value ALC2 calculated in S8 is stored in the ECU 12 until the second alcohol concentration estimated value ALC2 is calculated in the next S8.
[0041]
In such a control apparatus for an internal combustion engine, when the alcohol concentration estimation in the fuel is permitted in S5, the first alcohol concentration estimated value ALC1 and the second alcohol concentration estimated value ALC2 are calculated and updated, and the first alcohol is estimated. The basic fuel injection amount calculated according to the operating conditions is corrected using the concentration estimated value ALC1, and the wall flow correction amount, the cold-time increase amount, which is a combustion parameter of the internal combustion engine, and the target are corrected using the second alcohol concentration estimated value ALC2. When the air-fuel ratio and ignition timing are corrected and the alcohol concentration estimation in the fuel is permitted in S9, only the first alcohol concentration estimated value ALC1 is calculated and updated, and the second alcohol concentration estimated value ALC2 is calculated and updated. Not performed.
[0042]
That is, when there is a large deviation between the estimated alcohol concentration value stored in the ECU 12 and the actual alcohol concentration in the fuel tank, just after refueling, a disturbance factor for estimating the alcohol concentration. Even when the alcohol concentration estimation is not permitted due to the occurrence of (the normal permission condition of S5 is not satisfied), the first alcohol concentration estimated value ALC1 is calculated and updated, and the updated first alcohol concentration estimated value ALC1 is used. Because the basic fuel injection amount can be corrected, the lack of control amount for air-fuel ratio correction in exhaust air-fuel ratio feedback control can be solved, and the combustion chamber falls into an over-lean or over-rich state, resulting in operating performance and exhaust performance. Can be prevented from deteriorating.
[0043]
Further, the second alcohol concentration estimated value ALC2 is not updated when the process proceeds to S9 and thereafter (that is, updated only under a more reliable condition in which the normal permission condition of S5 is satisfied). This is appropriate for the intended use of the 2-alcohol concentration estimate ALC2.
[0044]
The technical idea of the present invention that can be grasped from the above embodiment will be listed together with the effects thereof.
[0045]
(1) A control device for an internal combustion engine estimates a single component concentration in fuel, and includes an air-fuel ratio calculating means for detecting an exhaust air-fuel ratio, and an air-fuel ratio correction amount for correcting a fuel injection amount. An air-fuel ratio correction amount calculating means for calculating the air-fuel ratio based on the detected value of the air-fuel ratio calculating means, a first permission determining means for determining permission / prohibition of single component concentration estimation in the fuel based on the operating state, Permission / prohibition of single component concentration estimation in the fuel is determined depending on whether or not the fuel ratio correction amount is outside the predetermined range. When the air fuel ratio correction amount is outside the predetermined range, the single composition in the fuel is determined. Second permission determination means for permitting partial concentration estimation. As a result, it is possible to prevent the operating performance and the exhaust performance from deteriorating due to an insufficient air-fuel ratio correction amount.
[0046]
(2) More specifically, in the control device for an internal combustion engine according to (1), the single component concentration in the fuel is estimated based on the air-fuel ratio correction amount, and the first permission determination means is the exhaust It is determined that the single component concentration estimation is prohibited when a disturbance affecting the air-fuel ratio occurs.
[0047]
(3) More specifically, in the control device for an internal combustion engine described in (2) above, when a disturbance that affects the exhaust air-fuel ratio occurs when the amount of blow-by gas generated is equal to or greater than a predetermined value. judge.
[0048]
(4) More specifically, the control device for an internal combustion engine according to any one of (1) to (3) is calculated based on the detection value of the air-fuel ratio detection means in the second permission determination means. When the air-fuel ratio feedback correction coefficient value deviates from 1.0 by a predetermined value or more, single component concentration estimation in the fuel is permitted.
[0049]
(5) The control apparatus for an internal combustion engine according to any one of (1) to (4), more specifically, estimates / updates the single component concentration in the fuel, and updates the single composition A control device for an internal combustion engine for storing a concentration, a fuel property correction amount calculating means for calculating a fuel property correction amount based on a currently stored single component concentration, an air-fuel ratio correction amount, and a fuel property The air-fuel ratio sensitivity correction total amount calculating means for calculating the air-fuel ratio sensitivity correction total amount from the minute correction amount, and the air-fuel ratio sensitivity correction in a state where the exhaust air-fuel ratio detected by the air-fuel ratio detection means is on the lean side with respect to the theoretical air-fuel ratio And a first single component concentration estimating means for calculating a first single component concentration in which the total amount and the single component concentration estimated value are approximately proportional to each other, and the first permission determining means includes Single component concentration estimation is prohibited, and the second permission judgment means When the single component concentration estimation is permitted, the first single component concentration estimation value is calculated from the first single component concentration estimation means, and the operation is performed using the first single component concentration estimation value. The basic fuel injection amount calculated according to the conditions is corrected.
[0050]
(6) The control apparatus for an internal combustion engine according to any one of (1) to (4), more specifically, estimates / updates the single component concentration in the fuel, and updates the single composition In a control device for an internal combustion engine that stores a concentration, a fuel property correction amount calculating means for calculating a fuel property correction amount based on a currently stored single component concentration, an air-fuel ratio correction amount, and a fuel property correction An air-fuel ratio sensitivity correction total amount calculating means for calculating an air-fuel ratio sensitivity correction total amount from the amount, and a first single component concentration for correcting a basic fuel injection amount calculated according to operating conditions, In the state where the exhaust air-fuel ratio detected by the air-fuel ratio detecting means is on the lean side with respect to the stoichiometric air-fuel ratio, the first single single component in which the total air-fuel ratio sensitivity correction amount and the first single component concentration estimated value are approximately proportional to each other Composition concentration estimating means and a wall which is a combustion parameter of an internal combustion engine A flow rate correction amount, a cold-time increase amount, a target air-fuel ratio, and a second single component concentration that corrects the ignition timing are calculated. A second unit having a dead zone in which the second single component concentration estimated value calculated regardless of the increase / decrease in the air / fuel ratio sensitivity correction amount is substantially constant in a specific region of the air / fuel ratio sensitivity correction amount on the lean side with respect to the fuel ratio. A single component concentration estimating means, and when the first permission determining means permits the single component concentration estimation within the fuel, the first single composition concentration estimating means The partial concentration estimated value is calculated and updated, and the second single composition concentration estimated value is calculated and updated from the second single composition concentration estimated means, and the single composition in the fuel is determined by the first permission determining means. Concentration estimation is prohibited, and the second permission judgment means will concentrate the single component in the fuel. If the estimation is permitted, the first single composition component concentration estimating means calculates a first single composition component concentration estimates update, updating the second single composition component concentration estimates is not performed.
[0051]
(7) In the control device for an internal combustion engine according to any one of (1) to (6), the single component concentration is an alcohol concentration in the fuel.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic configuration of a fuel property estimation device for an internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a flow of control for calculating an estimated value of alcohol concentration in fuel.
FIG. 3 is an explanatory diagram showing a characteristic example of an ALC1 calculation map.
FIG. 4 is an explanatory diagram showing an example of characteristics of an ALC2 calculation map.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Engine main body 2 ... Combustion chamber 3 ... Intake valve 4 ... Intake passage 5 ... Exhaust valve 6 ... Exhaust passage 7 ... Air cleaner 8 ... Air flow meter 9 ... Throttle valve 11 ... Fuel injection valve 12 ... Engine control unit 13 ... Oxygen concentration sensor 14 ... Three-way catalyst 15 ... Water temperature sensor

Claims (5)

燃料内の単一組成分濃度を推定する内燃機関の制御装置において、
排気空燃比を検出する空燃比算出手段と、
燃料噴射量を補正するための空燃比補正量を空燃比算出手段の検出値に基づいて算出する空燃比補正量算出手段と、
運転状態に基づいて燃料内の単一組成分濃度推定の許可/禁止を判定する第1許可判定手段と、
空燃比補正量が所定の範囲外にあるか否かによって燃料内の単一組成分濃度推定の許可/禁止を判定し、空燃比補正量が所定の範囲外にある場合に燃料内の単一組成分濃度推定を許可する第2許可判定手段と、
現在記憶している単一組成分濃度に基づき燃料性状分補正量を算出する燃料性状分補正量算出手段と、
空燃比補正量と燃料性状分補正量とから空燃比感度補正総量を算出する空燃比感度補正総量算出手段と、
運転条件に応じて算出される基本燃料噴射量を補正する第1単一組成分濃度を算出するものであって、空燃比検出手段で検出された排気空燃比が理論空燃比に対してリーン側にある状態において空燃比感度補正総量と第1単一組成分濃度推定値とが略比例関係となる第1単一組成分濃度推定手段と、
内燃機関の燃焼パラメータである壁流補正量を補正する第2単一組成分濃度を算出するものであって、空燃比検出手段の検出値に基づいて算出された空燃比が理論空燃比に対してリーン側にある空燃比感度補正総量の特定領域に空燃比感度補正総量の増減に関わらず算出される第2単一組成分濃度推定値が略一定となる不感帯を有する第2単一組成分濃度推定手段と、を有し、
第1許可判定手段により燃料内の単一組成分濃度推定が許可された場合には、第1単一組成分濃度推定手段から第1単一組成分濃度推定値を算出して更新すると共に、第2単一組成分濃度推定手段から第2単一組成分濃度推定値を算出して更新し、
第1許可判定手段により燃料内の単一組成分濃度推定が禁止され、第2許可判定手段により燃料内の単一組成分濃度推定が許可された場合には、第1単一組成分濃度推定手段から第1単一組成分濃度推定値を算出して更新し、第2単一組成分濃度推定値の更新は行わないことを特徴とする内燃機関の制御装置。
In a control device for an internal combustion engine that estimates a single component concentration in fuel,
Air-fuel ratio calculating means for detecting the exhaust air-fuel ratio;
An air-fuel ratio correction amount calculating means for calculating an air-fuel ratio correction amount for correcting the fuel injection amount based on a detection value of the air-fuel ratio calculating means;
First permission determination means for determining permission / prohibition of single component concentration estimation in the fuel based on the operating state;
Whether the single component concentration estimation in the fuel is permitted / prohibited is determined based on whether the air-fuel ratio correction amount is outside the predetermined range, and if the air-fuel ratio correction amount is outside the predetermined range, Second permission determination means for permitting composition concentration estimation;
A fuel property correction amount calculating means for calculating a fuel property correction amount based on the currently stored single component concentration;
An air-fuel ratio sensitivity correction total amount calculating means for calculating an air-fuel ratio sensitivity correction total amount from the air-fuel ratio correction amount and the fuel property correction amount;
The first single component concentration for correcting the basic fuel injection amount calculated according to the operating condition is calculated, and the exhaust air-fuel ratio detected by the air-fuel ratio detecting means is leaner than the stoichiometric air-fuel ratio. A first single component concentration estimating means in which the air-fuel ratio sensitivity correction total amount and the first single component concentration estimated value are approximately proportional to each other,
A second single component concentration for correcting a wall flow correction amount that is a combustion parameter of an internal combustion engine is calculated, and the air-fuel ratio calculated based on the detected value of the air-fuel ratio detecting means The second single composition component having a dead zone in which the second single component concentration estimated value calculated regardless of the increase / decrease in the air / fuel ratio sensitivity correction amount is substantially constant in a specific region of the air / fuel ratio sensitivity correction amount on the lean side. Concentration estimation means, and
If the first permission determination means permits the single component concentration estimation in the fuel, the first single composition concentration estimation value is calculated and updated from the first single composition concentration estimation means, and updated. Calculating and updating the second single component concentration estimated value from the second single component concentration estimating means;
When the first permission determination means prohibits the single component concentration estimation in the fuel and the second permission determination means permits the single composition concentration estimation in the fuel, the first single composition concentration estimation A control device for an internal combustion engine, characterized in that the first single component concentration estimated value is calculated and updated from the means, and the second single component concentration estimated value is not updated .
燃料内の単一組成分濃度は空燃比補正量に基づいて推定され、かつ第1許可判定手段は排気空燃比に影響を与える外乱が発生しているときに単一組成分濃度推定を禁止すると判定することを特徴とする請求項1に記載の内燃機関の制御装置。  The single component concentration in the fuel is estimated based on the air-fuel ratio correction amount, and the first permission determining means prohibits the single component concentration estimation when a disturbance that affects the exhaust air-fuel ratio occurs. The control apparatus for an internal combustion engine according to claim 1, wherein the determination is made. ブローバイガスの発生量が所定値以上のときに、排気空燃比に影響を与える外乱が発生していると判定することを特徴とする請求項2に記載の内燃機関の制御装置。  3. The control apparatus for an internal combustion engine according to claim 2, wherein when the amount of blow-by gas generated is equal to or greater than a predetermined value, it is determined that a disturbance affecting the exhaust air-fuel ratio has occurred. 第2許可判定手段は、空燃比検出手段の検出値に基づいて算出された空燃比フィードバック補正係数の値が、1.0から所定値以上外れた値をとったときに、燃料内の単一組成分濃度推定を許可することを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。  The second permission determination unit is configured to detect a single value in the fuel when the value of the air-fuel ratio feedback correction coefficient calculated based on the detection value of the air-fuel ratio detection unit deviates from 1.0 by a predetermined value or more. The control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the composition concentration estimation is permitted. 単一組成分濃度は、燃料内のアルコール濃度であることを特徴とする請求項1〜のいずれかに記載の内燃機関の制御装置。The control apparatus for an internal combustion engine according to any one of claims 1 to 4 , wherein the single component concentration is an alcohol concentration in the fuel.
JP2003081804A 2003-02-13 2003-03-25 Control device for internal combustion engine Expired - Lifetime JP3966202B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003081804A JP3966202B2 (en) 2003-03-25 2003-03-25 Control device for internal combustion engine
US10/768,662 US6975933B2 (en) 2003-02-13 2004-02-02 Fuel properties estimation for internal combustion engine
CNB2004100049438A CN100373036C (en) 2003-02-13 2004-02-13 Fuel performance estimation for internal combustion engine
US11/227,263 US7209826B2 (en) 2003-02-13 2005-09-16 Fuel properties estimation for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081804A JP3966202B2 (en) 2003-03-25 2003-03-25 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004285972A JP2004285972A (en) 2004-10-14
JP3966202B2 true JP3966202B2 (en) 2007-08-29

Family

ID=33295238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081804A Expired - Lifetime JP3966202B2 (en) 2003-02-13 2003-03-25 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3966202B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009903A (en) * 2005-06-01 2007-01-18 Toyota Motor Corp Fuel injection quantity control device for internal combustion engine
JP4672048B2 (en) * 2008-06-09 2011-04-20 三菱電機株式会社 Internal combustion engine control device
JP4985986B2 (en) * 2008-10-07 2012-07-25 三菱自動車工業株式会社 Fuel alcohol concentration estimation device
JP4818382B2 (en) 2009-03-09 2011-11-16 三菱電機株式会社 Fuel injection device for internal combustion engine
JP4820431B2 (en) 2009-04-21 2011-11-24 三菱電機株式会社 Control device for internal combustion engine
JP4605293B2 (en) * 2009-05-21 2011-01-05 株式会社デンソー Fuel supply control system for flex fuel engine

Also Published As

Publication number Publication date
JP2004285972A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US7209826B2 (en) Fuel properties estimation for internal combustion engine
JP3903943B2 (en) Fuel property estimation device for internal combustion engine
US6758201B2 (en) Fuel injection control system for internal combustion engine
US8640681B2 (en) Control apparatus for internal combustion engine
JP2004278449A (en) Fuel property estimating device for internal combustion engine
JPH04224244A (en) Air fuel ratio control device of engine
WO2006129198A1 (en) Fuel injection quantity control apparatus for an internal combustion engine
JP3966202B2 (en) Control device for internal combustion engine
JP3903925B2 (en) Fuel property estimation device for internal combustion engine
WO2009122829A1 (en) Fuel injection controller of multiple fuel engine
US8161954B2 (en) Fuel supply control apparatus
JP4010256B2 (en) Control device for internal combustion engine
JPH06100149B2 (en) Control device for internal combustion engine
JP2005048625A (en) Alcohol concentration estimating device for engine and engine control device
JPH08284708A (en) Fuel injector for engine
JP2004293349A (en) Controlling device of internal combustion engine
JP4161772B2 (en) Control device for internal combustion engine
JP3006304B2 (en) Air-fuel ratio controller for multi-fuel engines
JP2007211766A (en) Control device for internal combustion engine
JPH04279746A (en) Fuel character detecting device of internal combustion engine
JPH07269407A (en) Engine misfire detecting device
JPH0746750Y2 (en) Air-fuel ratio controller for engine
JP2004251135A (en) Fuel aspect estimating device for internal combustion engine
JPH0734931A (en) Stability controller of engine
JP2004285971A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3966202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

EXPY Cancellation because of completion of term