JPS6026132A - Air-fuel ratio controlling method in internal-combustion engine - Google Patents

Air-fuel ratio controlling method in internal-combustion engine

Info

Publication number
JPS6026132A
JPS6026132A JP13181483A JP13181483A JPS6026132A JP S6026132 A JPS6026132 A JP S6026132A JP 13181483 A JP13181483 A JP 13181483A JP 13181483 A JP13181483 A JP 13181483A JP S6026132 A JPS6026132 A JP S6026132A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
acceleration
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13181483A
Other languages
Japanese (ja)
Other versions
JPH0623547B2 (en
Inventor
Tokio Kohama
時男 小浜
Kimitaka Saito
斉藤 公孝
Tsuneyuki Egami
常幸 江上
Tsutomu Saito
努 斉藤
Masaru Takahashi
大 高橋
Kunihiko Sato
邦彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP58131814A priority Critical patent/JPH0623547B2/en
Priority to US06/630,682 priority patent/US4616619A/en
Publication of JPS6026132A publication Critical patent/JPS6026132A/en
Publication of JPH0623547B2 publication Critical patent/JPH0623547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1487Correcting the instantaneous control value

Abstract

PURPOSE:To prevent an emission of exhaust and a rate of fuel consumption from worsening as well as to aim at improvements in drivability, by detecting an air-fuel ratio deviation from the setting air-fuel ratio in time of acceleration, while compensating a fuel increment value at acceleration according to the air- fuel ratio deviation. CONSTITUTION:In the case where a control circuit CONT performs a fuel injection in accordance with a control program, a fundamental fuel injection quantity is calculated, then feedback control for an air-fuel ratio sensor takes place, thus the fundamental fuel injection quantity is compensated. And, fuel increment at the initial acceleration and air-fuel deviation detection both take place, while air- fuel deviation compensation to the fuel increment at the initial acceleration takes place as well. With this constitution, a slip out of the optimum air-fuel ratio of mixed gas in time of acceleration is prevented from occurring, so that improvements in drivability are promoted while preventing emission of exhaust and rate of fuel consumption from worsening.

Description

【発明の詳細な説明】 技術分野 本発明は内燃機関の空燃比制御方法に関する。[Detailed description of the invention] Technical field The present invention relates to an air-fuel ratio control method for an internal combustion engine.

本発明による方法は自動車用エンジンに適用される。The method according to the invention is applied to motor vehicle engines.

従来技術 従来、エンシン用の空燃比制御装置の一形式が知られて
いる。この形式の装置は、エンジンの燃料要求を表わす
エンジン温度を含む予め定められたエンジンの動作ノク
ラメータの値に応動して定常状態におけるエンジンの燃
料要求を表わす基本燃料信号を発生する手段と、出力増
大要求を表わす過渡的なエンジンの動作状態を検出する
手段と、エンジン温度の測定された飴と検出された過渡
的なエンジンの動作状態に応動して、エンジン温度によ
って決定される第1の柵に等しく、検出されたエンジン
の過渡状態によって決定される初期値を有し、エンジン
の温度によって決定される速度で1に向って俊化する因
子によって増大される補強促進信号を発生する手段と、
基本燃料信号および補強促進信号に従ってエンジンに燃
料を供給し、それによってエンシンの定常状態および過
渡状態のいずれにあっても、その要求に応じてエンジン
に燃料を供給する手段とを有する。この装置は、エンジ
ンの定常状態のみならず過渡状態において常に最適な空
燃比を確保して、エンジンの最適動作を得る燃料供給シ
ステムを提供する(例えば、特開昭56−6034号参
照)。
BACKGROUND OF THE INVENTION One type of air-fuel ratio control device for an engine is known in the prior art. This type of device includes means for generating a basic fuel signal representative of the fuel demand of the engine at steady state in response to the value of a predetermined engine operating temperature including engine temperature representative of the fuel demand of the engine; means for detecting a transient engine operating condition indicative of a demand; and in response to the measured engine temperature and the detected transient engine operating condition, a first barrier determined by the engine temperature; and means for generating a reinforcing boost signal, which has an initial value determined by the detected engine transient and is increased by a factor accelerating towards unity at a rate determined by the engine temperature;
means for supplying fuel to the engine in accordance with the base fuel signal and the reinforcement boost signal, thereby supplying fuel to the engine on demand during both steady state and transient conditions of the engine. This device provides a fuel supply system that always ensures an optimal air-fuel ratio not only in the steady state of the engine but also in the transient state, thereby obtaining the optimal operation of the engine (see, for example, Japanese Patent Laid-Open No. 56-6034).

前述の形式の装置においては、エンジンの経時変化、例
えば、パルプクリアランスやEFIにおけるインジェク
タ噴口部へのデポジット付着による特性変化、シリンダ
吸気弁の背面部等に伺尤するデポジット、すなわち、潤
’l?i油成分および燃焼生成物に由来する炭素微粒子
等の粘矯物、による特性変化、ガソリン性状のバラツキ
による揮発性の変化が原因の特性変化等に刻し考慮され
ておらす、これらエンジンの経時変化、ガソリンの性状
変化による加速時の空燃比の最適1iiからの変化を検
出する手段を有していないため、揮発性の悪いガソリン
を使用したり、エンジンの経時変化によシ加速時の混合
ガスの希薄化による加速時のもたつき等のドライバビリ
ティの悪化が生じたシ、逆に揮発性の良いガソリンを使
用した場合には加速時に混合ガスが濃くなることによる
燃費悪化、エミッション悪化が発生する可能性があると
いう問題点があった。
In the above-mentioned type of device, changes in the engine over time, such as changes in characteristics due to deposits on the injector nozzle in pulp clearance and EFI, deposits on the back of the cylinder intake valve, etc. The aging of these engines takes into account changes in properties caused by viscous substances such as carbon particles derived from i oil components and combustion products, and changes in properties caused by changes in volatility due to variations in gasoline properties. Since there is no means to detect changes in the air-fuel ratio from the optimum 1ii during acceleration due to changes in the properties of gasoline, gasoline with poor volatility may be used, or the mixture during acceleration may change due to changes in the engine over time. Drivability deteriorates due to dilution of the gas, such as sluggishness during acceleration, and conversely, when gasoline with good volatility is used, the mixed gas becomes richer during acceleration, resulting in poor fuel efficiency and poor emissions. The problem was that it was possible.

この場合の空燃比の変動状況、ノ1漬に吸気弁片面部に
デポジットが付着した場合の変動状況が第1図に図解さ
れている。第1図において、A/F (0)はデ、J?
ジット付着前の、A/F (DEP)に、デポジットイ
」着後の空燃比の変化状況をそれぞれあられ1゜ACC
は加速時点を、A/F (OPT)は最適を燃比を、A
/F (LN)は希薄(リーン)側を、A/F CRC
Ii)は濃厚(リッチ)側を、それぞれあられす。
FIG. 1 illustrates the fluctuations in the air-fuel ratio in this case, and the fluctuations in the case where a deposit is attached to one side of the intake valve. In Figure 1, A/F (0) is De, J?
The changes in the air-fuel ratio after the deposit is applied to the A/F (DEP) before the deposit is deposited are shown as 1° ACC.
is the acceleration point, A/F (OPT) is the optimum fuel ratio, and A
/F (LN) is the lean side, A/F CRC
Ii) is the rich side, respectively.

また、インジェクタの目づまシについても定常において
は空燃比センサのフィードバックで補正できるが、加速
ト1イにおいてI」、補正手段をもたないため同様の問
題を生じ−〔いた。また、エンジン。
In addition, injector blindness can be corrected by feedback from the air-fuel ratio sensor in steady state, but in acceleration mode, the same problem occurs because there is no correction means. Also, the engine.

エアフローメータの製作時のばらつきゃ経時変化によっ
ても同様の問題点を生じていた。
Similar problems have arisen due to variations in the manufacturing process of air flow meters and changes over time.

第2図にはガソリン性状を変えた場合(飼えは夏用ガソ
リンG(S)と冬用ガソリンG(W)の変動状況が図解
される。第2図においてt:ll、第1図のデポジット
利殖した場合と同様の問題が生じている。
Figure 2 illustrates the fluctuations of summer gasoline G (S) and winter gasoline G (W) when the gasoline properties are changed. The same problem arises as in the case of profiteering.

ガソリンは一般に四季を通じ夏用と冬用というように特
性が異なったものが同一ノー力〃・ら市販゛されている
。ガソリンの揮発性を示す斂値としてはリード蒸気圧と
か蒸留性状とかか−j投によく知られているが、あるメ
ーカの匹]季をJ粛じでのガソリンを調べてもリード蒸
気圧ぐ」、0.5 U /cgfim2〜0.86/r
、シ伽12、また10チ留出時の温度も40〜58℃と
バラツーfており、ガソリン性状の近いによる揮発性の
変化により第21g+の如き壁燃比λ動が生ずる◇第2
図では希薄側へ変化した一例を示したが逆に濃厚側に変
化することもある。
Gasoline is generally marketed with different characteristics, such as for summer and winter use, with the same gasoline throughout the four seasons. Reed vapor pressure and distillation properties are well known as the value that indicates the volatility of gasoline, but when we looked at gasoline manufactured by a certain manufacturer, we found that the Reed vapor pressure was ”, 0.5 U/cgfim2~0.86/r
, Shika 12, and the temperature at the time of 10-chi distillation also vary from 40 to 58 °C, and changes in volatility due to similar gasoline properties cause wall fuel ratio λ fluctuations such as No. 21g + ◇ No. 2
The figure shows an example of a change to the lean side, but it can also change to the rich side.

発明の目的 不発り」の主な目的は、前述の従来形における問題点に
かんがみ、全燃比偏差検出によりめた最適空燃比からの
空燃比偏差を補うよう加速時燃石増庸補止により、加速
時燃料増ル1.を調整するという第1〜Y想にもとづき
、吸気弁背向部へのノ゛+′I?ジットの付治やインジ
ェクタの目づまり、エンジンや吸入空気t1.検出装置
の経時変化による加速時混合ガスの最適空燃比からの”
j−れ全防止し、エミッションおよび燃費のノミ比を防
止しつつドライバビリディの向上をはかることにある。
The main purpose of the invention is to compensate for the air-fuel ratio deviation from the optimum air-fuel ratio determined by detecting the total fuel ratio deviation, using fuel stone increase compensation during acceleration, in view of the problems with the conventional type described above. Increase fuel during acceleration 1. Based on the first to Y ideas of adjusting If the engine or intake air t1. “From the optimum air-fuel ratio of the mixed gas during acceleration due to changes in the detection device over time”
The object of the present invention is to improve drivability while completely preventing engine slippage and reducing the ratio of emissions and fuel consumption.

呼だ、本発明は、経時変化たけでなく、ガソリン性状の
違い、エンジンの製作時のパンツキやエアノロ−メータ
の製作時のQ」、らつきによる加速114混aガスの/
lj−適空燃比からの空燃比ずれ乞防止することを伺随
的な目的とする。
The present invention is designed to reduce not only changes over time, but also differences in gasoline properties, shortcuts during engine manufacturing, Q's during manufacturing of air meters, and acceleration due to fluctuations in 114-a gas mixtures.
lj-The optional purpose is to prevent air-fuel ratio deviation from the optimum air-fuel ratio.

発明の(1・I凧 木炭3明に石・いては、内)然板も胸の加速を検出し朋
1速11モ洪綿燃料を増h4するに必i′こり、該内燃
42刻刀の加速時における設定空燃比からの朶燃比偏差
を検出し、該検出され/ご窒)h::比偏差に応じて該
加速時燃料増置部を抽圧することを%徴とする内燃槻門
の墾燃比制御方法が提供される。
The invention (1.I kite charcoal 3 light and stone) also detects the acceleration of the chest and increases the 1st gear 11 mo Hongmian fuel h4, so the internal combustion 42 chopper An internal combustion engine that detects a deviation of the air-fuel ratio from a set air-fuel ratio during acceleration, and extracts pressure from the fuel expansion section during acceleration in accordance with the detected ratio deviation. A fuel ratio control method is provided.

本発明Qよ、本元明渚の行っ/こ[・舵のj管ルiに基
軛をおいている。第3図(A) 、 (B)および第4
図は加速時空燃比挙動、すなわち、加速時における最適
空燃比A/F (OPT) d−らの空燃比濃側への最
大偏差値D (A/F (RCH) )または空燃比希
薄111jへの最大偏差値D (A/F (LN) J
 と、加速時空燃比センサの挙動、すなわち、加速時空
燃比センサ6が混合ガスの濃状態を検出している時間、
つまり加速時リッチ継続時間T (RCH)または混合
ガスの希薄状態を検出している時間T (LN)、の関
係をあられす波形図および特性図である。第3図(A)
 、 (B)およびη)4図においてACCは加速を、
5(6)は空燃比センサ信号をあられす。
The present invention, Q, is based on the conduct of the original Akiyoshi. Figures 3 (A), (B) and 4
The figure shows the air-fuel ratio behavior during acceleration, that is, the maximum deviation value D (A/F (RCH)) of the optimal air-fuel ratio A/F (OPT) d to the air-fuel ratio rich side or the air-fuel ratio lean 111j during acceleration. Maximum deviation value D (A/F (LN) J
and the behavior of the air-fuel ratio sensor during acceleration, that is, the time during which the air-fuel ratio sensor 6 detects the rich state of the mixed gas,
In other words, they are a waveform diagram and a characteristic diagram showing the relationship between the rich continuation time T (RCH) during acceleration or the time T (LN) during which the lean state of the mixed gas is detected. Figure 3 (A)
, (B) and η) In Figure 4, ACC represents acceleration,
5 (6) detects the air-fuel ratio sensor signal.

第3図(A) 、 (B)および第4図に示すように加
速時において混合ガスは最適空燃比A/F(OPT)か
ら濃側あるいは希薄側に変化しても空燃比センサの信号
、T (LN)またはT(RCH)、よりその変化it
を11は正確に検出できる。すなわち、加速時の空燃比
センサ信号、T(RCH)、T(LN)から加速時の混
合ガスの空燃比の正確な検出が可能である。
As shown in FIGS. 3(A), (B) and 4, even if the mixed gas changes from the optimum air-fuel ratio A/F (OPT) to the rich side or lean side during acceleration, the signal from the air-fuel ratio sensor, T (LN) or T (RCH), its variation it
11 can be detected accurately. That is, it is possible to accurately detect the air-fuel ratio of the mixed gas during acceleration from the air-fuel ratio sensor signals T(RCH) and T(LN) during acceleration.

実施例 本発明の一実施例としての内燃機関の空燃比制御方法を
行う装置が第5図に示される。第5図装置における制御
1回路の構成が第6図に示される。
Embodiment An apparatus for performing an air-fuel ratio control method for an internal combustion engine as an embodiment of the present invention is shown in FIG. The configuration of the control circuit 1 in the device shown in FIG. 5 is shown in FIG.

第5図装置において、1は自動中の動力源である公知の
電子制御燃料噴射式6気筒火花点火式エンジン、2はエ
ンジン1に吸入されるを気斌を検出する公知の吸入空気
量検出装宿″0.3はエンジン10回転数を検出する公
知の回転数センサ、4はエンジンlの冷却水温を測定す
る公知の水温センサ、5はエンジン1の排気通路、6は
排気通路5に設けた公知の空燃比センサであるJ゛ 7はエンジンIの吸気管、8は吸気管7に設けた公知の
電磁式燃料噴射弁、9Qまエンジン1に吸入される空気
量、をコントロールするスロットル弁、91はスロット
ル弁「9の動きヲ検出する公知のスロットルセンサ、C
0NTはエンジン1に供給する燃料針を具用して燃料噴
射弁8を作動させる制御回路である。
In the device shown in FIG. 5, reference numeral 1 indicates a known electronically controlled fuel injection six-cylinder spark ignition engine which is a power source for automatic operation, and reference numeral 2 indicates a known intake air amount detection device for detecting air intake into the engine 1. 0.3 is a known rotation speed sensor that detects the engine 10 rotation speed, 4 is a known water temperature sensor that measures the cooling water temperature of the engine 1, 5 is the exhaust passage of the engine 1, and 6 is installed in the exhaust passage 5. A known air-fuel ratio sensor J7 is an intake pipe of the engine I, 8 is a known electromagnetic fuel injection valve provided in the intake pipe 7, 9Q is a throttle valve that controls the amount of air taken into the engine 1, 91 is a known throttle sensor C that detects the movement of throttle valve 9.
0NT is a control circuit that operates the fuel injection valve 8 using a fuel needle that supplies the engine 1.

エンジン1に供給される燃料量は、エンジンが定常状態
の時は、制御回路C0NTが、吸入空気亀検出装@2、
回転峨センザ3、水温センサ4の名検出信号から基本燃
料量としてめ、さらに空燃比センサ6の信号からめたフ
ィードバック補正量を補正して、燃料噴射弁8の開弁時
間としてめる。
The amount of fuel supplied to the engine 1 is controlled by the control circuit C0NT when the engine is in a steady state.
The basic fuel amount is determined from the detection signals of the rotation angle sensor 3 and the water temperature sensor 4, and the feedback correction amount determined from the signal of the air-fuel ratio sensor 6 is further corrected to determine the opening time of the fuel injection valve 8.

また、制御回路C0NTはスロットルセンサ91または
吸入空気鼠検出装置2によジエンジン1の加速状態が検
出された時は定常時にめた燃料量以上に加速時燃料増量
を行う様に構成しである。
Further, the control circuit C0NT is configured to increase the amount of fuel during acceleration beyond the amount of fuel set during steady state when the acceleration state of the engine 1 is detected by the throttle sensor 91 or the intake air detection device 2. .

第6図に示されるように、制御回路C0NTは、入力系
統として、吸気量センサ2および水?1□、Vセンサ4
からの信号を受けるマルチプレクサ101、ADコンバ
ータ102、空燃比センサ6の4E号を受ける整形回路
103、該整形回路およびスロットルセンサ91からの
信号を受ける人力、Jr −ト104、回転センサ3の
信号を受ける入力カウンタ105を有する。制御LIJ
l路はまた、パス106、ROM 1.07、CPU 
108、RAM109、出力カウンタ110、およびi
9ワー駆動部111をイコする。パワー駆動部111の
出力は燃料噴射弁8に供給される。
As shown in FIG. 6, the control circuit C0NT has the intake air amount sensor 2 and water? 1□, V sensor 4
A multiplexer 101 that receives signals from the AD converter 102, a shaping circuit 103 that receives the 4E of the air-fuel ratio sensor 6, a human power driver that receives signals from the shaping circuit and the throttle sensor 91, and a signal from the rotation sensor 3. It has an input counter 105 that receives input. Control LIJ
l path also includes path 106, ROM 1.07, CPU
108, RAM 109, output counter 110, and i
The 9-power drive unit 111 is equalized. The output of the power drive section 111 is supplied to the fuel injection valve 8.

制御回路C0NTとしては、マイクロコンピ−タ形式の
ものを用いることができ、例えばトヨタTCC8形式の
ものを用いることができる。割部1回路CON’l’ 
Kは、祭り!)比偏差検出敷能および加速燃料増量?t
if正機能が追加されている。
As the control circuit C0NT, a microcomputer type circuit can be used, for example, a Toyota TCC8 type circuit can be used. Split part 1 circuit CON'l'
K is for festival! ) Ratio deviation detection capacity and acceleration fuel increase? t
If regular function has been added.

制御回路C0NTの制御プログラムの概略フローチャー
トが第7図に示される。このプログラムは、電子FII
J御燃浩噴射を行うためのもので、ステップ5100−
8108より成る。
A schematic flowchart of the control program of the control circuit C0NT is shown in FIG. This program is an electronic FII
This is for performing J Gomenehiro injection, and step 5100-
Consists of 8108.

S 100にお・いてスタートし、5IOIにおいて、
メモリー、入出カフI?l、の初ルJ化を行う。510
2では、吸入を気量のデータQとエンジン回転数データ
Nと水温センサのデータθ、Vがら、基本燃料噴射間を
計算する。8103では、空燃比センサ6の信号を用い
、空燃比が一定となる様にフィードバック制御を行って
基本燃利噴射丹を補正する。
Starting at S 100, at 5IOI,
Memory, input/output cuff I? Convert l to J for the first time. 510
In step 2, the basic fuel injection interval is calculated based on the intake air amount data Q, the engine rotation speed data N, and the water temperature sensor data θ and V. At 8103, the basic fuel injection ratio is corrected by performing feedback control using the signal from the air-fuel ratio sensor 6 so that the air-fuel ratio remains constant.

8104では、初期加速時燃料増刊と空燃比偏差検出を
行い、5105では初期加速時燃Rjt/最への空燃比
偏差補正を行う。5I06でエンジン1回転の判別をし
、エンジン1回転4U、にS 107て1回の落′ミ料
trys射−Jr’ 8 ノ17tj弁+rg間を、7
 (1’ ハックfljII御によシ補正された基本燃
料uトと加速時燃料増■とから計算してめ、’8108
て燃料噴射弁制御を行うO 第7図のフローチャートにおける空燃比偏差検出処理の
「E細なフローチャートが第8図に、初期加速時燃料増
量およびこの増最に対する加速時燃料増血補正の詳細な
フローチャートが第9図に示される。
In step 8104, the initial acceleration fuel is added and the air-fuel ratio deviation is detected, and in step 5105, the air-fuel ratio deviation is corrected to the initial acceleration fuel Rjt/max. 5I06 determines one revolution of the engine, and one rotation of the engine 4U, S107, one time try injection of the leakage charge - Jr'8, 17tj valve + rg, 7
(1' Calculated from the basic fuel u and the fuel increase during acceleration, corrected by hack flj II, '8108
A detailed flowchart of the air-fuel ratio deviation detection process in the flowchart of FIG. 7 is shown in FIG. A flowchart is shown in FIG.

第8図、第9図に示ず加速10;1正tよ、S’201
に示す様に、一定時間(例えば32.7 ms ) 1
gに処理を行う。空燃比偏差f:核検出る方法として、
空燃比センサ6の出力4Fi号を一定電圧レベルと比較
し、混合ガスの希鴎、(リーン)状態および濃ルー(リ
ッチ)状態の2値を検出し、加速1+yのり一ン継続時
間T(LN)およびリッチ継続時間T(RC輿を測定す
る方法を用いる。
Acceleration 10; 1 positive t, S'201 not shown in Figures 8 and 9
As shown in , for a certain period of time (e.g. 32.7 ms) 1
Process g. Air-fuel ratio deviation f: As a method of nuclear detection,
The output 4Fi of the air-fuel ratio sensor 6 is compared with a constant voltage level to detect the two values of the lean state and rich state of the mixed gas, and calculate the acceleration 1 + y Nori 1 continuation time T (LN ) and the rich duration T (using the method of measuring RC palanquin).

過渡時の空燃比偏量の検出を容易にするために、820
3 、8204で、加速後5秒以内、エンジン回転数9
00 rpm 〜2000 rpmの’hj合のリーン
継続時間T(LN)、リッチ継続時間T(IζC1()
 を測定、する。またリッチ、リーンが交互に現われる
様、5205で、フィードバック制(i111中に1奴
定する。
In order to facilitate the detection of air-fuel ratio deviation during transient periods, 820
3, 8204, within 5 seconds after acceleration, engine speed 9
Lean duration T (LN), rich duration T (IζC1()
Measure and do. In addition, 5205 provides a feedback system (one time during i111) so that rich and lean appear alternately.

8206でリッチ、リーンを判別する。リーンの場合5
207において、リーン補止カウンタを−1−1し、T
(LN)を32.7ms 単位でM t an ’j−
る。次に8208で、リッチタイムカウンタの値が一2
蝕(リッチタイムリミツト)を越えているか判断し、越
えていれば、5209でリッチ補正カウンタを+1する
。次にステップ5z10でリッチタイムカウンタを0と
する。
At 8206, rich and lean are determined. For Lean 5
At 207, the lean compensation counter is decremented by -1-1, and T
(LN) in 32.7 ms units.
Ru. Next, at 8208, the value of the rich time counter is 12.
It is determined whether the eclipse (rich time limit) has been exceeded, and if so, the rich correction counter is incremented by 1 in step 5209. Next, in step 5z10, the rich time counter is set to 0.

8206でリッチと判別した場合、同様に8211〜5
214でリッチタイムカウンタの+1と、リーンタイム
の判断を行う。前述の5206〜5214てめたリーン
補止カウンタおよびリッチ補正カウンタの値から加速時
における、空燃比偏差の度合いを知ることができる。
If 8206 is determined to be rich, 8211 to 5
At step 214, the rich time counter is increased by 1 and lean time is determined. The degree of air-fuel ratio deviation during acceleration can be determined from the values of the lean correction counter and rich correction counter set in 5206 to 5214 described above.

5208におけるリッチタイムリミツトを過当に妃ぷこ
とによシ、リッチタイムカウンタのf直T(RcI()
を任意の値に設定できる。d55図装随においては加速
時の空燃比を、f!l!論空燃比よシ少し謀い側の値に
設定するためリッチタイムリミツトの値を理論空燃比に
制御するり、チタイムリミットの値よシも大きくするこ
とで、加速時の空燃比をリッチに制御することでドライ
バビリティを向上している。゛ここで、T(RCH)と
D (A/F (RCH) )は第3図(Al 、 (
B)、第4図よシー意的に決まるので、この結果D (
A/F (RCH) ) をり、チタイムリミット、す
なわち精度よく一定のリッチA/F 値に制御できるた
めエミッションは悪化せず、さらには良好なドライバビ
リティが保たれる。この加速時の空燃比A/Fはさらに
は冷却水温ごとにリッチタイムリミツトの値を変化させ
、低温側でリッチに制御される空燃比A/Fを可変にす
ることもできる。
If the rich time limit in 5208 is set too high, the rich time counter's f direct T(RcI()
can be set to any value. In the d55 illustration, the air-fuel ratio during acceleration is f! l! In order to set the rich time limit value to a value slightly on the side of the stoichiometric air-fuel ratio, or by increasing the rich time limit value, the air-fuel ratio during acceleration can be made richer. Control improves drivability.゛Here, T (RCH) and D (A/F (RCH)) are shown in Figure 3 (Al, (
B), as shown in Figure 4, is determined intentionally, so this result D (
Since the A/F (RCH) can be controlled to a high time limit, that is, a constant rich A/F value with high precision, emissions do not deteriorate and furthermore, good drivability is maintained. The air-fuel ratio A/F during acceleration can further be varied by changing the value of the rich time limit depending on the cooling water temperature to make the air-fuel ratio A/F controlled rich on the low temperature side variable.

第9図では、5301で吸入空気風検出装置2からの吸
入空気量信号Qと、回転数検出装置3からの回転数信号
Nとからめたエンレフ1回転当シの吸入空気量VNの変
化率Δ(Q/N) をめる。
In FIG. 9, at 5301, the rate of change Δ of the intake air amount VN per one rotation of the engine reflex is calculated by combining the intake air amount signal Q from the intake air wind detection device 2 and the rotation speed signal N from the rotation speed detection device 3. (Q/N).

前記Δ(Q/N)が正の場合、エンジンは加速中である
。従って8302で、Δ(Q/N )が正で一定値以上
であれば、加速とみなして、8303へ進む。
If Δ(Q/N) is positive, the engine is accelerating. Therefore, in 8302, if Δ(Q/N) is positive and equal to or greater than a certain value, it is regarded as acceleration, and the process proceeds to 8303.

8303では、加速時燃料増量値を冷却水温、Δ(Q/
N)、リーン補正カウンク、リッチ補正カウンタの開破
としてめる。基本的には、冷却水温に対する単位Δ(Q
/N)当ジの増t1、比を、予めマツプに記憶しておき
、該水温に対する増nt比を取シ出し、Δ(Q/N)を
乗じ、リーン補止カウンタ、す、チ袖正カウンタの値に
よって補正を加え、加速時燃料増1:値を計算する。こ
の増量値は、加速検出時の初期値とする。5304 、
5305でエンジン1回転毎に前記加速時燃料増電f1
0から一定飴を減じて、0まで減衰する。
8303, the fuel increase value during acceleration is determined by cooling water temperature, Δ(Q/
N), it is determined that the lean correction counter and rich correction counter are broken. Basically, the unit Δ(Q
/N) Store the current increase t1 and ratio in a map in advance, take out the increase nt ratio for the water temperature, multiply it by Δ(Q/N), and calculate the lean correction counter. A correction is made based on the value of the counter, and the fuel increase during acceleration 1 value is calculated. This increase value is an initial value at the time of acceleration detection. 5304,
At 5305, the fuel power increase f1 during acceleration is performed every one rotation of the engine.
By subtracting a certain amount of candy from 0, it decays to 0.

従って第10図に示すように、(1)スロットルを開け
て加速した場@、 (1’HItよフロJl・ル開#)
、(2)前記Q/N値も増加し、(3)加速時燃料増量
比Rが図示されるような波形をとって増)尋され、(4
)燃料噴射弁開弁時間Uが決定され、燃料を供給する。
Therefore, as shown in Figure 10, (1) When the throttle is opened and accelerated @,
, (2) the Q/N value also increases, (3) the fuel increase ratio R during acceleration increases with a waveform as shown in the diagram, and (4)
) The fuel injection valve opening time U is determined and fuel is supplied.

本発明の実施にあたっては、niJ述の実施例のelか
、種々の変形形態をとることができる。例えば、前述の
実施例ではデポジットの刺着の際の、加速時燃料増1.
値の初期値をリーン補止カウンタ、すッチ補正カウンタ
の値によシ変化させたが、前述の実施例の代pにFJW
 111g+のフローチャートに示すように、加速時1
は、水温θ7とΔ(Q/N )のみで、空燃比偏差にか
かわりなく決定し、それに加えて、空燃比偏差等が生じ
た補正加速増量を行うこともできる。
In carrying out the present invention, various modifications may be made to the embodiments described above. For example, in the above-mentioned embodiment, when the deposit is attached, the fuel increase during acceleration is 1.
The initial value of the value was changed depending on the value of the lean correction counter and the switch correction counter.
As shown in the flowchart for 111g+, when accelerating 1
is determined using only the water temperature θ7 and Δ(Q/N), regardless of the air-fuel ratio deviation, and in addition, it is also possible to perform a correction acceleration increase when an air-fuel ratio deviation or the like occurs.

第11図において、5402において、加速が検出され
ると8403で加速時増量値を冷却水温とΔ(Q/N)
のみからめる。次に5404で、空燃比偏差が生じた時
の補正加速燃料増桁値を計算する。
In FIG. 11, when acceleration is detected in 5402, the increase value during acceleration is determined in 8403 by combining the cooling water temperature and Δ(Q/N).
To confuse. Next, in step 5404, a corrected acceleration fuel increase value when an air-fuel ratio deviation occurs is calculated.

この計算においては、冷却水温、リーン補正カウンタ値
、す、チ補正カウンタ値、Δ(Q/N)の4変数の関数
として、空燃比偏差対応イ1ηに応じた加速燃料増量補
正値を計算する。
In this calculation, the acceleration fuel increase correction value is calculated according to the air-fuel ratio deviation correspondence A1η as a function of four variables: cooling water temperature, lean correction counter value, S, H correction counter value, and Δ(Q/N). .

エンジン1回転毎に、加速時増量値および空、燃比偏差
が生じた時の加速増量補正値からそれぞれ一定値Cyx
arp)を減じてOまで減衰する。この加速増量比と空
燃比偏差が生じた時の加速増拙袖正増量比を基本噴射お
、にかけあわぜることによ如増獣を行う。
Each rotation of the engine, a constant value Cyx is determined from the increase value during acceleration and the acceleration increase correction value when air/fuel ratio deviation occurs.
arp) and decays to O. This acceleration increase ratio and the normal acceleration increase ratio when an air-fuel ratio deviation occurs are applied to the basic injection fuel to increase the amount of fuel.

発明の効呆 本発明によれば、吸気弁背面部へのデポジットの付光や
インジエクタの目づま)、エンジンや吸入空気量検出装
置の経時変化による加速時混合ガスの最適空麩比からの
ずれが防止され、エミッションおよび燃費の悪化を防止
しつつドライバビリティの向上を実現することができる
Effects of the Invention According to the present invention, deviations from the optimum air-fuel ratio of the mixed gas during acceleration due to changes in the engine and intake air amount detection device over time (such as deposits on the back of the intake valve and clogging of the injector), This makes it possible to improve drivability while preventing deterioration in emissions and fuel efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸気弁背面部にデポジットがイリAした場合の
空燃比の変動状況を示す図、 第2図はガソリン性状を変えた場合の堕燃比の変動状況
を示す図、 第3図(A) 、 (均および第4図は加速時空燃比挙
動と加速時空燃比センサ4動の関係を示す波形図および
特性+g+、 第5図は本発明の一実施例としての内燃機関の空燃比制
御方法を行う装置を示3“図、第6図は第5図装置にお
りるf1714 (i11回路の4’ljt成を示す図
、 第7図は第5図装置におけるiit ′4t、流れを示
す演394流れlyl、 第8図は窒灯に比・偏差検出処理のtii”++411
なしく算流れ図、 819図は初期加速時燃料8Jlj L・よびξのJ’
ajiiに対する加速時燃料」erIJ:’I補止の;
1P7411なIM >’4流れ図、狛10図は第5図
装置の動作乞示す波形図、第11図は第9図の演>1−
流れの他の例を示す演算6ijれ図である。 (9号の説明〉 l・・・エンジン、2・・・杖人空気量検出装fll:
j、3・・・回転数センサ、4・・・水温セン゛す、!
5・・・刊気通1’!Lj’ %6・・・空燃比センサ
、7・・・吸気′1−1.8・・燃料唄躬弁、9・・・
スロットル弁、9]・・・スロットルーヒンザ、C0N
T・・・制側1回IllLt0 第1図 第2図 一一一ンん 第3図 (A) (B) 第10図 T)−1 −一一一一一モール 第1頁の続き 0発 明 者 佐藤邦彦 豊田布トヨタ町1番地トヨタ自 動車株式会社内 190−
Figure 1 shows how the air-fuel ratio fluctuates when deposits form on the back of the intake valve, Figure 2 shows how the degraded fuel ratio fluctuates when the gasoline properties are changed, and Figure 3 (A ), (Figure 4 is a waveform diagram and characteristic +g+ showing the relationship between air-fuel ratio behavior during acceleration and air-fuel ratio sensor 4 movement during acceleration, and Figure 5 shows an air-fuel ratio control method for an internal combustion engine as an embodiment of the present invention. Fig. 6 shows the 4'ljt configuration of the f1714 (i11 circuit in the Fig. 5 device), Fig. 7 shows the flow of the Flow lyl, Figure 8 shows the ratio/deviation detection process to nitrogen lamp tii”++411
Figure 819 shows the initial acceleration fuel 8Jlj L and J' of ξ.
Fuel during acceleration for ajii'erIJ:'I supplementary;
1P7411 IM >'4 flowchart, Figure 10 is a waveform diagram showing the operation of the device in Figure 5, Figure 11 is the performance of Figure 9 >1-
FIG. 6 is an operation diagram showing another example of the flow. (Explanation of No. 9) l...Engine, 2...Cane person air amount detection device fll:
j, 3...Rotation speed sensor, 4...Water temperature sensor!
5...Kankitsu 1'! Lj' %6...Air-fuel ratio sensor, 7...Intake '1-1.8...Fuel valve, 9...
Throttle valve, 9]...Throttle valve, C0N
T... control side 1 time IllLt0 Figure 1 Figure 2 111 Figure 3 (A) (B) Figure 10 T)-1 - 11111 Mall 1st page continuation 0 shots Name: Kunihiko Sato 190 Toyota Motor Corporation Toyotacho Toyotacho 1

Claims (1)

【特許請求の範囲】 1、内燃機関の加速を検出し加速時供給燃料を増量する
にあたシ、該内燃機関の加速時における設定空燃比から
の空燃比個差を検出し、該検出された空燃比偏差に応じ
て該加速時燃料増祉値を補正することを特徴とする内燃
機関の空燃比制御方法。 2、該空燃比偏差検出は、空燃比センサによる空燃比偏
差検出である、特許請求の範囲第1項記載の方法。 3、該設定空燃比は、該内燃機関の理論空燃比よシも濃
い空燃比である、特許請求の範囲第1項記載の方法。 4、該設定空燃比は、前記内燃機関の理論空燃比よシも
龜い空燃比であシ、該内燃機関温度が低い時はどを燃比
が濃くなるように設定された設定空燃比である、特許請
求の範囲第1項記載の方法。
[Claims] 1. In order to detect acceleration of the internal combustion engine and increase the amount of fuel supplied during acceleration, detect individual differences in air-fuel ratio from a set air-fuel ratio during acceleration of the internal combustion engine, 1. A method for controlling an air-fuel ratio of an internal combustion engine, comprising correcting the acceleration fuel welfare value in accordance with an air-fuel ratio deviation. 2. The method according to claim 1, wherein the air-fuel ratio deviation detection is performed using an air-fuel ratio sensor. 3. The method according to claim 1, wherein the set air-fuel ratio is a richer air-fuel ratio than the stoichiometric air-fuel ratio of the internal combustion engine. 4. The set air-fuel ratio is an air-fuel ratio that is faster than the stoichiometric air-fuel ratio of the internal combustion engine, and is set so that the fuel ratio becomes richer when the internal combustion engine temperature is low. , the method according to claim 1.
JP58131814A 1983-07-18 1983-07-21 Air-fuel ratio control method for internal combustion engine Expired - Lifetime JPH0623547B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58131814A JPH0623547B2 (en) 1983-07-21 1983-07-21 Air-fuel ratio control method for internal combustion engine
US06/630,682 US4616619A (en) 1983-07-18 1984-07-13 Method for controlling air-fuel ratio in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58131814A JPH0623547B2 (en) 1983-07-21 1983-07-21 Air-fuel ratio control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6026132A true JPS6026132A (en) 1985-02-09
JPH0623547B2 JPH0623547B2 (en) 1994-03-30

Family

ID=15066726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58131814A Expired - Lifetime JPH0623547B2 (en) 1983-07-18 1983-07-21 Air-fuel ratio control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0623547B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369341A (en) * 1991-06-18 1992-12-22 Daikin Ind Ltd Air conditioning apparatus
JPH0566044A (en) * 1991-06-18 1993-03-19 Daikin Ind Ltd Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369341A (en) * 1991-06-18 1992-12-22 Daikin Ind Ltd Air conditioning apparatus
JPH0566044A (en) * 1991-06-18 1993-03-19 Daikin Ind Ltd Air conditioner

Also Published As

Publication number Publication date
JPH0623547B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
EP0275169B1 (en) Adaptive control system for and method of controlling an internal combustion engine
US5157613A (en) Adaptive control system for an engine
US6513509B1 (en) Device for controlling the air-fuel ratio of an internal combustion engine
EP1367247B1 (en) Method for controlling combustion engine
JPS59128944A (en) Air-fuel ratio controller for internal-combustion engine
US5657732A (en) Method and device for regulating the NOx emission of an internal combustion engine
EP0210766B1 (en) Adaptive control system for an internal combustion engine
US6951205B2 (en) Method and arrangement for correcting a fuel quantity which is supplied to an internal combustion engine
JPH0226053B2 (en)
JPS6026132A (en) Air-fuel ratio controlling method in internal-combustion engine
JPH09287510A (en) Air-fuel ratio controller for internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP2623761B2 (en) Control device for internal combustion engine
JPS6022033A (en) Air-fuel ratio controlling method for internal- combustion engine
JPS6017237A (en) Air-fuel ratio control method for internal-combustion engine
JPH02104942A (en) Device for feeding mixed fuel of internal combustion engine
JPH11218036A (en) Cylinder injection type internal combustion engine
JPH07119520A (en) Air-fuel ratio controller of engine
JP2535007B2 (en) Engine air-fuel ratio control device
JPS60150447A (en) Air-fuel control method of internal-combustion engine
JP2803160B2 (en) Output fluctuation detection device for multi-cylinder engine
JPS5949346A (en) Air-fuel ratio control device of internal-combustion engine of electronically controlled fuel injection type
JPS6027746A (en) Air-fuel ratio controlling method for internal- combustion engine
JPH09184437A (en) Inside cylinder injection type fuel control device
JPH0227133A (en) Device for controlling air-fuel ratio of internal combustion engine