JPS60219856A - Demodulation circuit for digital modulation wave - Google Patents

Demodulation circuit for digital modulation wave

Info

Publication number
JPS60219856A
JPS60219856A JP7678884A JP7678884A JPS60219856A JP S60219856 A JPS60219856 A JP S60219856A JP 7678884 A JP7678884 A JP 7678884A JP 7678884 A JP7678884 A JP 7678884A JP S60219856 A JPS60219856 A JP S60219856A
Authority
JP
Japan
Prior art keywords
circuit
phase
output
detector
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7678884A
Other languages
Japanese (ja)
Other versions
JPH088593B2 (en
Inventor
Yoshihiko Akaiwa
赤岩 芳▲彦▼
Yoshiaki Nagata
善紀 永田
Yoshio Matsuo
松尾 良雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP7678884A priority Critical patent/JPH088593B2/en
Priority to AU41074/85A priority patent/AU589119B2/en
Priority to US06/722,256 priority patent/US4817116A/en
Priority to NO85851489A priority patent/NO169269C/en
Priority to FI851513A priority patent/FI80175C/en
Priority to CA000479247A priority patent/CA1236168A/en
Priority to SE8501861A priority patent/SE460326B/en
Publication of JPS60219856A publication Critical patent/JPS60219856A/en
Publication of JPH088593B2 publication Critical patent/JPH088593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2334Demodulator circuits; Receiver circuits using non-coherent demodulation using filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • H04L27/2071Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states in which the data are represented by the carrier phase, e.g. systems with differential coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To simplify the constitution by constituting the titled circuit with a phase detector comprising an amplitude limit circuit, a frequency detector and an integration device and with a decider deciding an output of the phase detector in response to a prescribed phase. CONSTITUTION:A digital modulation wave signal received by a reception antenna 710 is inputted to the phase detector 745 via the amplitude limit circuit 730. The phase detector 745 consists of the frequency detector 740 inputting an output of the amplitude limit circuit 730 and detecting the frequency and of the integration circuit 750 integrating the output by a repetitive period of a transmission digital signal. An output of the phase detector 745 is inputted to a deciding circuit 760 and the deciding circuit 70 decides an output proportional to the phase of the phase detector 745 according to the phase to modulus 2pi.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はディジタル信号で変調された受信信号を復調す
る簡単な回路構成のディジタル変調波用復調回路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a digitally modulated wave demodulating circuit having a simple circuit configuration for demodulating a received signal modulated by a digital signal.

(従来技術とその問題点) ディジタル通信における技術的課題のうち、変復調技術
は、%lこ無線通信において、重要である。
(Prior art and its problems) Among the technical issues in digital communication, modulation and demodulation technology is very important in wireless communication.

特に変復調特性のうち、送信(変調)側においては、送
信スペクトルと電力利用効率が、受信(復調)側におい
ては、誤り率特性が問題となる。その他、送信機および
受信機の回路実現性も実用上の大きな課題である。この
うち、送信スペクトルについては、ベースバンドlこお
ける帯域制限フィルタのみによって原理的に帯域が決ま
る線形変調方式が最も優れている。従来、線形変調方式
は、マイクロ波多重通信などのように、回路実現がやや
困難で全体では高価であっても、多重化が行われている
ために、チャンネル当りの価格にするとさほど問題dな
らないようなシステム擾こ採用されてきた。ところが、
移動通信などのように、通常、1チヤンネル・Dシステ
ムでは、回路実現の困難さlこよる価格増加は大きな問
題となる。特lこ、移動通信においては、送(1回路の
実現性の他に受信電力が例えば80dBはども太き(変
動するために、受信側において、ダイナミックレンジの
大きな自動利得制御回路を必要とすることと、復調方式
が同期検波などのように回路構成が複雑になるためlこ
、線形変調方式はこれまで、使用されていない。
In particular, among the modulation and demodulation characteristics, the transmission spectrum and power utilization efficiency are important on the transmission (modulation) side, and the error rate characteristics are important on the reception (demodulation) side. In addition, the feasibility of transmitter and receiver circuits is also a major practical issue. Among these, the linear modulation method, in which the band is determined in principle only by a band-limiting filter in the baseband l, is the most superior in terms of the transmission spectrum. Conventionally, linear modulation methods, such as microwave multiplex communication, are somewhat difficult to implement in circuits and are expensive overall, but because multiplexing is performed, the price per channel is not much of a problem. Such systems have been adopted. However,
Usually, in a one-channel D system such as in mobile communication, an increase in cost due to the difficulty in realizing the circuit is a major problem. In particular, in mobile communications, in addition to the feasibility of using one transmission circuit, the receiving power fluctuates by, for example, 80 dB, so an automatic gain control circuit with a large dynamic range is required on the receiving side. In addition, since the demodulation method requires a complex circuit configuration such as synchronous detection, the linear modulation method has not been used so far.

実際lこ採用されているのは、例えば、平田、案出など
により、電子通信学会誌昭和57年2月号192ページ
から198ページlこ、「移動通信lこ2けるディジタ
ル伝送技術」と題して発表されてl、還る技術展望記事
のうち、「狭帯域ディジタル変調」の顛周波数帯域が、
ベースバンド信号の帯域のるすらず変調指数lこも依存
するため線形変調方式にくらべて周波数帯域が広くなる
ことがさけられない。
In fact, this article was adopted, for example, by Hirata et al., in the February 1980 issue of the Journal of the Institute of Electronics and Communication Engineers, pages 192 to 198, entitled ``Digital Transmission Technology for Mobile Communications.'' Among the technology outlook articles published in
Since the band of the baseband signal also depends on the modulation index l, it is inevitable that the frequency band will be wider than in the linear modulation method.

(発明の目的) 本発明は、移動通信において、線形変調方式を実現する
ために、受信回路の構成が簡単な復調回路を提供するこ
とにある。
(Object of the Invention) An object of the present invention is to provide a demodulation circuit with a simple receiving circuit configuration in order to realize a linear modulation method in mobile communication.

(発明の構成) 本発明によれば、送信すべきディジタル信号に対応して
、定められた位相点を取るようlこ変調された線形変調
波を復調するディジタル変調波用復調回路tこおいて、
該線形変調波を位相検波する位相検波器であって、前記
線形変調波を入力とする振幅制限回路と、該振幅制限回
路と、該振幅制限回路の出力を入力として、周波数検波
を行う周波数検波器と、該周波数検波器の出力を入力と
して、送信ディジタル信号のくり返し周期だけ構分する
積分器とからなる位相検波器と、該位相検波器の出力を
入力としてディジタル信号を判定する判定器であって、
前記位相検波器の位相に比例する出力を2πを法とする
位相に対応させて判定する判定器とを有するディジタル
変調波用復調回路が得られる。
(Structure of the Invention) According to the present invention, a digital modulation wave demodulation circuit demodulates a linear modulation wave that has been modulated to take a predetermined phase point corresponding to a digital signal to be transmitted. ,
A phase detector that performs phase detection of the linearly modulated wave, the amplitude limiting circuit receiving the linearly modulated wave as an input, the amplitude limiting circuit, and a frequency detector performing frequency detection using the output of the amplitude limiting circuit as an input. a phase detector consisting of an integrator that uses the output of the frequency detector as input and divides the repetition period of the transmitted digital signal; and a determiner that uses the output of the phase detector as input to determine the digital signal. There it is,
A demodulating circuit for digitally modulated waves is obtained, which includes a determiner that determines the output proportional to the phase of the phase detector in correspondence with the phase modulo 2π.

(実施例) 本発明は上述の!NIhy、のうち、振幅制限回路によ
って、賛信電力が大きく変動することに対して、簡単な
回路で対処できる。また、検波器として周波数検波器を
使用することで、検波(ロ)斬簡単に実現できる。さら
ζこ、信号判定を2πを法とする位相に対応させて行う
ことで、周波数検波器を使用することIC帰因する誤り
率特性の劣化を改善している。
(Example) The present invention is as described above! Among NIhy, the amplitude limiting circuit can cope with large fluctuations in the input power with a simple circuit. Furthermore, by using a frequency detector as a wave detector, detection (b) can be easily realized. Furthermore, by performing signal determination in accordance with the phase modulo 2π, the deterioration of error rate characteristics caused by the IC due to the use of a frequency detector is improved.

以下、本発明の実施例について、図面を参照して詳mI
こ説明する。第1図は本発明の復調器の対象となる線形
変調波の第1の例を発生させる賀調器のプロ、り図を示
し、第2図は、この場合の変調波の位相点および伯゛号
−り跡を複素振幅平面上に示しKものである。送信すべ
きディジタルイぎ号は入力端子111 、112より入
力され、低域通過フィルタ121および122に入力さ
れる。低域通過フィルタ121 、122の出カイ百号
はそれぞれ、ミクサ131 、132に入力され、同時
に入力される局部発儀イぎ号を振幅f調する。局部発振
信号は、局部発振器140の出力を90°位相差分離回
路に入力することによって得られ、二つの局部発振信号
の間の位相は90°だけ異なる。ミクサ131 、13
2の出力は加算回路160−こ入力されたのち、出力端
子170−こ出力されて送イgされる。このような変*
′aは直交変調器としてよく知られている。この変調器
は、低域通過フィルタの出力信号であるベースバンド(
g号を搬送波帯1こ周波数変換したものであるので、線
形変調器である。したがって、送信スペクトルは、原理
的tこ低域通過フィルタのみによって定まり、スペクト
ル帯域を狭(できる。これに対し周波数変調などの非線
形変調方式は、そのスペクトルが、ベースバンド信号ス
ペクトル以外にも変調指数にも依存するので、線形変調
方式に比べて、スペクトラム帯域が広くなることは避け
られない。
Embodiments of the present invention will be described in detail below with reference to the drawings.
I will explain this. FIG. 1 shows a professional diagram of a modulator that generates a first example of a linearly modulated wave that is the target of the demodulator of the present invention, and FIG. 2 shows the phase point and frequency of the modulated wave in this case. The signal trace is shown on the complex amplitude plane. A digital signal to be transmitted is inputted from input terminals 111 and 112 and inputted to low-pass filters 121 and 122. The output signals of the low-pass filters 121 and 122 are input to mixers 131 and 132, respectively, and the locally generated signal input at the same time is modulated in amplitude by f. The local oscillation signal is obtained by inputting the output of the local oscillator 140 to a 90° phase difference separation circuit, and the phases between the two local oscillation signals differ by 90°. Mixa 131, 13
The output of 2 is inputted to the adder circuit 160, and then outputted to the output terminal 170 and sent to the output terminal 170. Strange things like this *
'a is well known as a quadrature modulator. This modulator uses the baseband (
It is a linear modulator because it is a signal obtained by converting the frequency of signal g by one carrier wave band. Therefore, in principle, the transmission spectrum is determined only by a low-pass filter, and the spectral band can be narrowed.On the other hand, in nonlinear modulation methods such as frequency modulation, the spectrum is determined by the modulation index as well as the baseband signal spectrum. Therefore, it is inevitable that the spectrum band will be wider than that of the linear modulation method.

変調信号の位相点は第2図のΩ印およびN印で示した点
を取る。ここで、入力端子111に入力される2値侶号
によって、N印で示した位相のいずれかが、入力端子1
12に入力される2値信号によって、Q印で示した位相
のいずれかか選ばれる。ここで、二つのディジタル信号
のタイミングをずらすことで、0印とN印で示した位相
点を交互−こ取るものとする。このtき信号軌跡は概略
同図の直線で示したよう憂こなる。このような変調方式
はπ/2シフ1−B)’SK として知られている。
The phase points of the modulated signal are the points indicated by the Ω mark and the N mark in FIG. Here, depending on the binary signal input to the input terminal 111, one of the phases indicated by the N mark is input to the input terminal 111.
Depending on the binary signal input to 12, one of the phases indicated by the Q mark is selected. Here, by shifting the timings of the two digital signals, the phase points indicated by the 0 mark and the N mark are alternately taken. This t signal trajectory is troubling as roughly indicated by the straight line in the same figure. Such a modulation method is known as π/2 shift 1-B)'SK.

第3図は本発明の復#4@10対象となる線形変調波の
第2の例を発生させる変調器のブロック図である。入力
端子311および312に同時に入力される1組の2値
ディジタル信号は、スイッチ回路320により、低域通
過フィルタ321と322の組と323と324のII
!l#こ交互に入力される。低域通過フィルタ321 
、322 、323 、324の出力信号は、それぞれ
ミクサ331 、332 、333 、334に入力さ
れることにより、同時に入力される局部発振信号を振幅
変調する。局部発振信号は、局部発振器340の出力を
0°、90°、45°、135°の位相差分離回路の出
力として得られる。f調信号は加算回路360条こ入力
されたのち、出力端子370に出力される。
FIG. 3 is a block diagram of a modulator that generates a second example of a linearly modulated wave to which the present invention is applied. A pair of binary digital signals inputted simultaneously to input terminals 311 and 312 are passed through a pair of low-pass filters 321 and 322 and a pair of low-pass filters 323 and 324 by a switch circuit 320.
! l# are input alternately. Low pass filter 321
, 322, 323, and 324 are input to mixers 331, 332, 333, and 334, respectively, to amplitude-modulate the simultaneously input local oscillation signals. The local oscillation signal is obtained from the output of the local oscillator 340 as the output of the phase difference separation circuit of 0°, 90°, 45°, and 135°. The f-tone signal is input to the adder circuit 360 and then output to the output terminal 370.

この場合も、第1図11:示したのと同様に線形変調波
が得られるので、送信スペクトルの帯域は狭い。
In this case as well, since a linearly modulated wave is obtained in the same way as shown in FIG. 1, the band of the transmission spectrum is narrow.

2F¥4図は、この場合の信号点および軌跡を示す複素
振幅平面図である。p印で示した点はミクサ333 、
334の組によって与えられ、N印で示した点はミクサ
331 、332の組によって与えられる。
Figure 2F\4 is a complex amplitude plan view showing signal points and loci in this case. The point marked with p is mixer 333,
The point marked N is given by the set of mixers 331 and 332.

スイッチ回路によって、交互lこミクサの二つの組が選
択されるので、信号軌跡は概略同図の直線で示したよう
になる。D印方よび閃の4つの信号点のうちどれが選ば
れるかは二つの2値信号の組み合わせで決まる。このよ
うな変調方式は“/4シフトQPSKとしてよく知られ
ている。
Since the two sets of alternating mixers are selected by the switch circuit, the signal trajectory is approximately as shown by the straight line in the same figure. Which of the four signal points D-inkata and flash is selected is determined by the combination of two binary signals. Such a modulation method is well known as "/4 shift QPSK."

第7図は、本発明の彼調器を用いた受信機の構成例を示
すブロック図である。入力アンテナ710に受持された
線形に調波は、帯域通過フィルタ720で帯域制限され
たのち、振幅制限回路730に入力される。振幅制限回
路は、周波数変調波用の通常の移動無線装置に用いられ
るものでよい。振幅制限回路の代わりに、自動利得制御
回路を用いても、原理的fこは同様な効果が得られるけ
れども、前述した通り回路構成が複雑になることは避け
られな積分放電フィルタ750とで構成される位相検波
器745に入力される。周波数検波器も、通常の移動無
線装置−こ使用されるものでよい。周波数検波器は、例
えば、同期検波器tこ比べて、t゛4成がは6かlこ容
易であることは、よく知られている事実である。本発明
における位相検波の原理を、第5図に示した複素振幅平
面図と第6図に示した@調波形図を用いて説明する。こ
こではシ2シフト13P8にの場合を考え、第5図奢こ
おいて信号点がAからBをこ変化した場合を考える。雑
音が無い場合、入力変調波の信号軌跡11点Aから点B
へ直膨上に進む軌跡aとなる。この信号を振幅制限回路
730に入力することをこより、その出力の信号軌跡は
円周上の軌#bとなる。周波数検波器740は軌跡すの
原点0に対する位相角の変化速度である瞬時角周波数を
出力する。その出力は、積分放電回路750に入力され
て積分される。したがって、積分放電回路750の出力
には、信号点Aから信号点Bの位相差すなわちこの場合
では“/2が得られる。このように、周波数検波器74
0と積分放電回路750を接続した回路745は位相検
波回路を形成する。信号点Aから0に変化した場合多こ
は、先と同様にして、位相検波回路745の出力には、
位相差づ/2 が得られる。したがって、送信すべき2
値信号に応じて、位相の変化がf/あるいは−”/2 
ξなるように変調すれば位相検波器の出力を判定回路7
70で判定することによって、出力端子780に送信デ
ータが得られる。
FIG. 7 is a block diagram showing an example of the configuration of a receiver using the helium adjuster of the present invention. The linear harmonics received by input antenna 710 are band-limited by bandpass filter 720 and then input to amplitude limiting circuit 730 . The amplitude limiting circuit may be one used in conventional mobile radio equipment for frequency modulated waves. Even if an automatic gain control circuit is used instead of the amplitude limiting circuit, the same effect can be obtained in principle, but as mentioned above, the circuit configuration inevitably becomes complicated. The signal is input to a phase detector 745. Frequency detectors may also be those used in conventional mobile radio equipment. It is a well-known fact that the frequency detector is six times easier to construct than, for example, a synchronous detector. The principle of phase detection in the present invention will be explained using the complex amplitude plan view shown in FIG. 5 and the @harmonic waveform diagram shown in FIG. Here, we will consider the case of shift 13P8, and consider the case where the signal point changes from A to B in Figure 5. When there is no noise, the signal trajectory of the input modulated wave 11 points A to point B
It becomes a trajectory a that goes directly on the bulge. By inputting this signal to the amplitude limiting circuit 730, the output signal trajectory becomes trajectory #b on the circumference. The frequency detector 740 outputs an instantaneous angular frequency that is the rate of change of the phase angle with respect to the origin 0 of the trajectory. The output is input to an integral discharge circuit 750 and integrated. Therefore, the output of the integral discharge circuit 750 has a phase difference from the signal point A to the signal point B, that is, "/2" in this case.
A circuit 745 in which 0 and the integral discharge circuit 750 are connected forms a phase detection circuit. If the signal point A changes to 0, the output of the phase detection circuit 745 will be as follows, in the same way as before.
A phase difference of /2 is obtained. Therefore, the 2 to send
Depending on the value signal, the phase change is f/ or -”/2
If the modulation is performed so that ξ, the output of the phase detector becomes
By making the determination at 70, transmission data is obtained at the output terminal 780.

第6図は、位相検波器の出力を判定する動作を説明する
ための図である。積分放電フィルタ750はシンボル時
刻t1から積分を始め、シンボル周期Tの後の次のシン
ボル時刻t!には位相変化“今あるいは−“/2が得ら
れる。Cの出力を判定バレを0とした判定をすることt
こよって、送信データが得られる。ここで、積分放電フ
ィルタのタイミングおよび判定のタイミングはクロック
抽出回路770より与えられる。第4図に示したような
信号点配置についても同様−こして、三つの判定レベル
を設定することにより、送信データを得ることができる
FIG. 6 is a diagram for explaining the operation of determining the output of the phase detector. Integrating discharge filter 750 starts integrating from symbol time t1, and the next symbol time t! after symbol period T! A phase change of "now or -"/2 is obtained. Judging the output of C with the judgment error being 0.
Transmission data is thus obtained. Here, the timing of the integral discharge filter and the timing of determination are given by the clock extraction circuit 770. Similarly for the signal point arrangement as shown in FIG. 4, transmission data can be obtained by setting three determination levels.

以上の説明は、雑音を無視した場合を想定したものであ
るが、実際ζこは雑音を避けることはできない。再び第
5図にもどって説明を行う。送信の信号点がAからBへ
変化する場合、雑音によって、帯域通過フィルタ720
の出力の軌跡が例えばCのようになることがある。この
とき、振幅制限回路730の出力は軌跡dのようになり
、積分放電フィルタ750の出力信号は第6図の破線の
よう−こなる。
The above explanation assumes that noise is ignored; however, in reality, noise cannot be avoided. The explanation will be given by returning to FIG. 5 again. When the signal point of transmission changes from A to B, the noise causes the bandpass filter 720
For example, the trajectory of the output may be as shown in C. At this time, the output of the amplitude limiting circuit 730 becomes as shown by the locus d, and the output signal of the integral discharge filter 750 becomes as shown by the broken line in FIG.

この場合には、仮iこ、軌跡の終点か正しくB点になっ
たとしても、判定レベルを0とする限り誤りに追加する
ことによって、誤り率を改善しようとするものである。
In this case, even if the end point of the trajectory is the correct point B, the error rate is improved by adding the error as long as the determination level is set to 0.

これは、同じ信号軌跡の終点に対して、時計廻りおよび
反時計廻りに廻って得られた位相検波出力信号を同一の
信号点とみなすものである。すなわち、位相変化分を2
πを法として判定するものである。先の例では第6図に
示した領域R1とR3、凡!と凡4の領域に入る位相点
を同一の信号点として判定するので、信号軌跡がCのよ
うな場合−こでも正しく判定されることになる。第4図
に示したような信号点配置についても、同様にして、判
定誤り率を改善することができる。
This is to consider phase detection output signals obtained by rotating clockwise and counterclockwise with respect to the end point of the same signal trajectory as the same signal point. In other words, the phase change is 2
The determination is made using π as the modulus. In the previous example, the regions R1 and R3 shown in FIG. Since the phase points falling in the region of approximately 4 are determined as the same signal point, even when the signal trajectory is C, the determination will be made correctly. Regarding the signal point arrangement as shown in FIG. 4, the decision error rate can be improved in the same manner.

(発明の効果) 本発明では、すでに述べたようlこ、振幅制限回路およ
び周波数検波回路を用いることができるので、復調回路
が簡単になる効果がある。さらに、本発明の2πを法と
して判定する判定回路の効果として、例えば、第4図に
示したような信号点配置lこ対して、計算機シシーレー
ションを行った結果によれば、誤り率が1(r3となる
搬送波電力と雑音電力の比fこ換算して3dBの改善が
得られることが分った。
(Effects of the Invention) As already mentioned, the present invention has the effect of simplifying the demodulation circuit because the amplitude limiting circuit and the frequency detection circuit can be used. Furthermore, as an effect of the decision circuit of the present invention that makes decisions modulo 2π, for example, when the signal point arrangement is as shown in FIG. (It was found that an improvement of 3 dB can be obtained by converting the ratio f of carrier power to noise power, which is r3.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第3図はそれぞれ、本発明の復調回路が対象す
る線形変調波を発生する変調器の第lおよび第2の構成
例を示す図、第2図および第4図はそれぞれ第1図およ
び第3図に示した変調器の信号点および軌跡を示す複素
振幅平面図、第5図は、復調回路の動作を説明するため
の複素振幅平面図、第6図は、本発明の判定回路の動作
を説明するための信号波形の例を示す図、第7図は本発
明の復調回路を用いた受信機の構成例を示すブロック図
である。 これらの図において、121 、122 、321 、
322323 、324は低域通過フィルタ、131 
、132.331332 、333 、334はミクサ
、160 、360は加算回路、140 、340は局
部発振器、145 、345は位相差分離回路、320
はスイッチ回路、710は受信アンテナ、720は帯域
通過フィルタ、730は振幅制限回路、740は周波数
検波器、745は位相検波器、750は積分放電フィル
タ、760は判定回路、770はクロック再生回路、7
80は判定出力信号出力端亭 1回 半 3 図 &σ 〃θ 亭 5 起 キ 乙 閏
1 and 3 are diagrams respectively showing first and second configuration examples of a modulator that generates a linearly modulated wave targeted by the demodulation circuit of the present invention, and FIGS. FIG. 5 is a complex amplitude plan view showing signal points and trajectories of the modulator shown in FIGS. A diagram showing an example of a signal waveform for explaining the operation of the circuit, and FIG. 7 is a block diagram showing an example configuration of a receiver using the demodulation circuit of the present invention. In these figures, 121 , 122 , 321 ,
322323, 324 are low pass filters, 131
, 132.331332, 333, 334 are mixers, 160, 360 are adder circuits, 140, 340 are local oscillators, 145, 345 are phase difference separation circuits, 320
is a switch circuit, 710 is a receiving antenna, 720 is a band pass filter, 730 is an amplitude limiting circuit, 740 is a frequency detector, 745 is a phase detector, 750 is an integral discharge filter, 760 is a determination circuit, 770 is a clock regeneration circuit, 7
80 is the judgment output signal output terminal 1 and a half times 3 Figure & σ 〃θ

Claims (1)

【特許請求の範囲】 送信すべきディジタル信号lこ対応して、定めら〜、 れた位相点を取るように変調された線形変調波を復調す
るディジタル変調波用移調回路tこおいて、該線形変調
波を位相検波する位相検波器であって、前記線形変調波
を入力とする振幅制限回路と、該振幅制限回路の出力を
入力として周波数検波を行う周波数検波器と該周波数検
波器の出力を入力さして、送信ディジタル信号の繰り返
し周期たけ積分する積分器とからなる位相検波器と、該
位相検波器の出力を入力として、ディジタル信号を判定
する判定器であって、前記位相検波器の位相lこ比例す
る出力を2πを法とする位相に対応させて判定する判定
器とからなることを特徴とするディジタル変調波用復調
回路。
[Claims] Corresponding to the digital signal to be transmitted, a digital modulated wave transposing circuit demodulates a linearly modulated wave modulated to take a predetermined phase point. A phase detector that performs phase detection on a linearly modulated wave, comprising an amplitude limiting circuit that receives the linearly modulated wave as an input, a frequency detector that performs frequency detection using the output of the amplitude limiting circuit as an input, and an output of the frequency detector. and an integrator that integrates the transmission digital signal over the repetition period of the transmitted digital signal; and a determiner that determines the digital signal by inputting the output of the phase detector, the phase detector comprising: 1. A demodulation circuit for a digital modulated wave, comprising a determiner that determines an output proportional to l in correspondence with a phase modulo 2π.
JP7678884A 1984-04-17 1984-04-17 Demodulation circuit for digitally modulated wave Expired - Lifetime JPH088593B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP7678884A JPH088593B2 (en) 1984-04-17 1984-04-17 Demodulation circuit for digitally modulated wave
AU41074/85A AU589119B2 (en) 1984-04-17 1985-04-12 Digital radio communication system utilizing quadrature modulated carrier waves
US06/722,256 US4817116A (en) 1984-04-17 1985-04-12 Digital radio communication system utilizing quadrature modulated carrier waves
NO85851489A NO169269C (en) 1984-04-17 1985-04-15 DIGITAL RADIO COMMUNICATION SYSTEM
FI851513A FI80175C (en) 1984-04-17 1985-04-16 Digital telecommunication system where quadrature modulated carrier signals are used
CA000479247A CA1236168A (en) 1984-04-17 1985-04-16 Digital radio communication system utilizing quadrature modulated carrier waves
SE8501861A SE460326B (en) 1984-04-17 1985-04-16 DIGITAL RADIO COMMUNICATION SYSTEM USING QUADRATURE-MODULATED EMERGENCIES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7678884A JPH088593B2 (en) 1984-04-17 1984-04-17 Demodulation circuit for digitally modulated wave

Publications (2)

Publication Number Publication Date
JPS60219856A true JPS60219856A (en) 1985-11-02
JPH088593B2 JPH088593B2 (en) 1996-01-29

Family

ID=13615352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7678884A Expired - Lifetime JPH088593B2 (en) 1984-04-17 1984-04-17 Demodulation circuit for digitally modulated wave

Country Status (1)

Country Link
JP (1) JPH088593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022857A1 (en) * 2003-08-29 2005-03-10 Matsushita Electric Industrial Co., Ltd. Tsm type radio communication method, radio communication system, radio reception device, and base station device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022857A1 (en) * 2003-08-29 2005-03-10 Matsushita Electric Industrial Co., Ltd. Tsm type radio communication method, radio communication system, radio reception device, and base station device

Also Published As

Publication number Publication date
JPH088593B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
FI80175C (en) Digital telecommunication system where quadrature modulated carrier signals are used
EA031912B1 (en) Combined amplitude-time modulation and phase modulation
EP0412291B1 (en) Quadrature FSK receiver with compensation for frequency offset
EP0259867B1 (en) Demodulator for psk-modulated signals
JP3307217B2 (en) Receiver for spread spectrum communication system
GB2188517A (en) Spread-spectrum receivers
EP0151394B1 (en) Demodulator for ditital fm signals
JPS60219856A (en) Demodulation circuit for digital modulation wave
JPH07177054A (en) Digital radio communication terminal
EP0940005B1 (en) Method and device for use with phase modulated signals
JP3595478B2 (en) Frequency deviation detector and frequency deviation detection method
Hodgart et al. A robust MSK demodulator through DSP
JPH07143025A (en) Spread spectrum communication equipment
JPH05304542A (en) Demodulation method and demodulator
EP0534180B1 (en) MSK signal demodulating circuit
KR100226994B1 (en) DIGITAL DEMODULATING METHOD AND DEVICE OF ó /4 QPSK
GB2318229A (en) Costas loop carrier recovery circuit
RU2175463C2 (en) Direct-conversion radio receiver
KR100368013B1 (en) Direct conversion receiver
KR100285756B1 (en) Apparatus for tracking carrier in wireless transfer system
JPH0548664A (en) Delay detection circuit with soft judgement error correcting circuit
JP2692440B2 (en) FSK data reception method
JPH066397A (en) Delay detector
JPH0260263A (en) Frequency stabilization circuit for local oscillator used in radio equipment
JP3311910B2 (en) Phase comparator, demodulator and communication device