JPH0548664A - Delay detection circuit with soft judgement error correcting circuit - Google Patents

Delay detection circuit with soft judgement error correcting circuit

Info

Publication number
JPH0548664A
JPH0548664A JP3201683A JP20168391A JPH0548664A JP H0548664 A JPH0548664 A JP H0548664A JP 3201683 A JP3201683 A JP 3201683A JP 20168391 A JP20168391 A JP 20168391A JP H0548664 A JPH0548664 A JP H0548664A
Authority
JP
Japan
Prior art keywords
phase
symbol
soft decision
circuit
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3201683A
Other languages
Japanese (ja)
Inventor
Kimihide Misaizu
公英 美細津
Hiromichi Yamamoto
裕理 山本
Hiroshi Onishi
博 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3201683A priority Critical patent/JPH0548664A/en
Publication of JPH0548664A publication Critical patent/JPH0548664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To provide a delay detection circuit with a soft judgement error correcting circuit for DQPSK and PI/43 shift QPSK which are appropriate to travelling object communication. CONSTITUTION:A digital orthogonal demodulating part 4 and an absolute phase detecting circuit 10 directly detect an absolute phase as against a reference signal in the absolute phase detecting circuit 11 and detected phase difference between successive reception symbols is detected by a phase difference calculating circuit 11. The quantization converting part 13 of phase difference data where the phase difference data between the reception symbols is quantized on a phase plane and a soft judgement error correcting circuit 16 directly detect the phase at every time t=kTs (k is an integer, Ts is a symbol and data time interval) of reception modulation wave and difference between the phase of reception modulation wave in time t=kTs and the phase of reception modulation wave in time t=(k-1) Ts which is one symbol time in advance is detected. Thus, transmission symbol and data information is obtained and phase difference data is quantized on the phase plane in accordance with the signal point arrangement of modulation wave so as to correct a soft judgement error.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、差動符号化4相位相変
調(以下DQPSKと略す)やπ/4シフト4相位相変
調(以下π/4シフトQPSKと略す)などのディジタ
ル位相変調波を受信する装置に使用される、軟判定誤り
訂正回路付遅延検波回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital phase modulation wave such as differentially coded 4-phase phase modulation (hereinafter abbreviated as DQPSK) or π / 4 shift 4-phase phase modulation (hereinafter abbreviated as π / 4 shift QPSK). The present invention relates to a differential detection circuit with a soft-decision error correction circuit, which is used in a device for receiving the.

【0002】[0002]

【従来の技術】近年、移動体通信においてDQPSKや
π/4シフトQPSKなどの差動符号化位相変調と時分
割多重を用いた自動車電話などの移動体通信システムが
検討されている。差動符号化位相変調波の復調系として
は、復調器内部でディジタル変調波のキャリア信号を再
生し、この再生キャリア信号を基に受信された差動符号
化位相変調波を同期検波した後、得られたシンボル・デ
ータにより差動復号する同期検波復調系と、送信される
ディジタル変調波が、前後のシンボル間での位相変化に
送信情報があることを利用して復調する遅延検波復調系
が知られている。移動通信では、無線伝送路は良く知ら
れているようにフェージング伝送路である。フェージン
グ伝送路では、一般的に、搬送波信号の振幅はレーレ分
布、位相はランダムな一様分布である。この様なフェー
ジング伝送路で差動符号化ディジタル位相変調波を伝送
し同期検波復調系で復調すると、一般的にランダムな位
相変動にキャリア再生系が完全に追従することが困難で
あるため、遅延検波復調系よりも復調特性が劣化する。
この様な理由から、移動体通信における差動符号化位相
変調の復調系には一般的に遅延検波復調系が使用され
る。
2. Description of the Related Art In recent years, mobile communication systems such as car telephones using differential coded phase modulation such as DQPSK and π / 4 shift QPSK and time division multiplexing have been studied in mobile communication. As the demodulation system of the differentially encoded phase modulated wave, the carrier signal of the digitally modulated wave is regenerated in the demodulator, and the differentially encoded phase modulated wave received based on the regenerated carrier signal is synchronously detected, A synchronous detection demodulation system that differentially decodes the obtained symbol data and a differential detection demodulation system that demodulates the transmitted digital modulated wave by utilizing the fact that there is transmission information in the phase change between the preceding and following symbols. Are known. In mobile communication, the radio transmission line is a fading transmission line as is well known. In a fading transmission line, generally, the carrier signal has a Rayleigh distribution in amplitude and a random uniform distribution in phase. When a differentially encoded digital phase-modulated wave is transmitted through such a fading transmission line and demodulated by a coherent detection demodulation system, it is generally difficult for the carrier reproduction system to completely follow random phase fluctuations. The demodulation characteristics are worse than in the detection demodulation system.
For this reason, a differential detection demodulation system is generally used as a demodulation system for differentially encoded phase modulation in mobile communication.

【0003】以下、従来の遅延検波復調系について、図
4を用いてπ/4シフトQPSK変調の場合について説
明する。なお、DQPSK変調の場合については、図4
において遅延素子43の後で、乗算器46の前に−45
゜の位相器を追加することにより、同様に遅延検波復調
系を構成できる。(「ディジタル コミュニケーショ
ン」 McGrow Hill,1983,John
G.Proahis P173 を参照)図4は従来の
中間周波数帯で処理する、π/4シフトQPSK変調用
の遅延検波復調系を示すものである。図4において、4
2はBPF、43は・シンボル・レート間隔Tsの遅延
素子、44は90゜位相器、45、46は乗算器、4
7、48はLPF、49はシンボルクロック再生器、5
0、51は判定器、52は誤り訂正回路である。
A conventional differential detection demodulation system will be described below with reference to FIG. 4 for the case of π / 4 shift QPSK modulation. In the case of DQPSK modulation, FIG.
-45 after delay element 43 and before multiplier 46 at
A delay detection demodulation system can be constructed in the same manner by adding a phase shifter of °. ("Digital Communication" McGrow Hill, 1983, John
G. FIG. 4 shows a conventional differential detection demodulation system for .pi. / 4 shift QPSK modulation, which is processed in the intermediate frequency band. In FIG. 4, 4
2 is a BPF, 43 is a delay element having a symbol rate interval Ts, 44 is a 90 ° phaser, 45 and 46 are multipliers, 4
7, 48 LPF, 49 symbol clock regenerator, 5
Reference numerals 0 and 51 are determiners, and 52 is an error correction circuit.

【0004】以上のように構成された遅延検波復調系に
ついて、以下その動作について説明する。まず、入力端
子41に入力された受信変調波は、広帯域雑音を抑圧す
るBPF42により帯域制限された後、シンボル・レー
ト間隔Tsの遅延素子43により1シンボル・レート間
隔時間Tsだけ遅延され、一方は90゜位相器44で位
相シフトされ、それぞれ乗算器45および46の一方の
入力となる。乗算器45および46の他方の入力には、
BPF42の出力がそのまま入力される。乗算器45お
よび46の出力は、高周波成分を除去するためLPF4
7および48により低域通過された後、判定器50およ
び51に入力される。このとき、時間t=(k−1)T
sでの受信変調波をVk−1=Acos(Wct+φk
−1+θ)+Nn−1、時間t=kTsでの受信変調波
をVk=Acos(Wct+φk+θ)+Nnとする
と、LPF47および48の出力は、それぞれA2co
s(φk−φk−1)+Nn・Nn−1と、A2sin
(φk−φk−1)+Nn・Nn−1となり、図3
(a)に示すπ/4シフトQPSKの位相シフトに対応
したビット・マップに応じて、判定器50および51
で、シンボルクロック再生器49で再生されたシンボル
クロック毎に判定される。ここで、φk−1、φkおよ
びNn−1、Nnは、それぞれ時間t=(k−1)T
s、t=kTsでの送信変調波の位相および雑音であ
る。また、θは受信機での固定位相ずれ、Wcは搬送波
角周波数である。そして、上記判定出力は誤り訂正回路
52に入力され復号され復調データのビット出力を得
る。ここで、一般に上記判定出力をA/D変換器で多値
に量子化することにより誤り訂正回路で軟判定誤り訂正
した場合、2値の硬判定誤り訂正をした時に比べ、誤り
率特性を改善できることが知られている。例えば、加法
的白色ガウス雑音下の通信路において、畳込み符号を用
いて3ビットの量子化による軟判定誤り訂正を行うと、
2値の硬判定誤り訂正をしたときに比べ、誤り率特性が
約2dB改善される。
The operation of the differential detection demodulation system configured as described above will be described below. First, the received modulated wave input to the input terminal 41 is band-limited by the BPF 42 that suppresses wideband noise, and then delayed by one symbol rate interval time Ts by the delay element 43 having the symbol rate interval Ts. The 90 ° phase shifter 44 is phase-shifted and becomes one input of the multipliers 45 and 46, respectively. The other input of the multipliers 45 and 46 is
The output of the BPF 42 is input as it is. The outputs of the multipliers 45 and 46 are supplied to the LPF 4 for removing high frequency components.
After being low-passed by 7 and 48, they are input to decision devices 50 and 51. At this time, time t = (k-1) T
The received modulated wave at s is Vk−1 = Acos (Wct + φk
−1 + θ) + Nn−1, and the received modulated wave at time t = kTs is Vk = Acos (Wct + φk + θ) + Nn, the outputs of the LPFs 47 and 48 are A 2 co respectively.
s (φk−φk−1) + Nn · Nn−1 and A 2 sin
(Φk−φk−1) + Nn · Nn−1, and FIG.
Depending on the bit map corresponding to the phase shift of π / 4 shift QPSK shown in (a), the decision units 50 and 51 are
Then, determination is made for each symbol clock reproduced by the symbol clock regenerator 49. Here, φk−1, φk and Nn−1, Nn are time t = (k−1) T, respectively.
It is the phase and noise of the transmitted modulated wave at s, t = kTs. Further, θ is a fixed phase shift in the receiver, and Wc is a carrier angular frequency. Then, the judgment output is input to the error correction circuit 52 and decoded to obtain the bit output of the demodulated data. Here, in general, when a soft-decision error correction is performed by an error correction circuit by quantizing the decision output into a multi-value by an A / D converter, an error rate characteristic is improved as compared with the case where binary hard-decision error correction is performed. It is known to be possible. For example, in a channel under additive white Gaussian noise, when soft decision error correction is performed by quantization of 3 bits using a convolutional code,
The error rate characteristic is improved by about 2 dB as compared with the case of performing binary hard-decision error correction.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、中間周波数帯での正確なシンボル・レー
ト間隔の遅延素子および中間周波数帯での90゜位相器
が必要であること。また、軟判定誤り訂正をするために
はA/D変換器が必要であるという課題を有していた。
However, the above-mentioned conventional structure requires a delay element having an accurate symbol rate interval in the intermediate frequency band and a 90 ° phaser in the intermediate frequency band. In addition, there is a problem that an A / D converter is required to perform soft decision error correction.

【0006】本発明は上記従来技術の課題を解決するも
ので、DQPSKおよびπ/4シフトQPSKなどのデ
ィジタル変調方式に対して、移動体通信に好適な、軟判
定誤り訂正を可能とした軟判定誤り訂正回路付遅延検波
回路を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art and is a soft-decision method capable of error correction, which is suitable for mobile communication, with respect to digital modulation systems such as DQPSK and π / 4 shift QPSK. An object is to provide a differential detection circuit with an error correction circuit.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明は、受信位相変調波から、内部基準信号に対す
る絶対位相を検出し、検出された受信シンボルの絶対位
相と、上記受信シンボルの1シンボル・データ時間間隔
前に検出された絶対位相との位相差を検出する手段と、
上記遅延検波器より得られた位相差データを、位相平面
上で量子化する位相量子化変換手段とを有する。
In order to achieve this object, the present invention detects the absolute phase with respect to an internal reference signal from a received phase modulated wave, detects the absolute phase of the received symbol, and the received symbol. Means for detecting a phase difference from the absolute phase detected one symbol data time interval before;
And a phase quantization conversion means for quantizing the phase difference data obtained by the differential detector on the phase plane.

【0008】[0008]

【作用】本発明は上記構成により、DQPSKおよびπ
/4シフトQPSKなどに対して、変調波の信号点配置
に応じて位相平面上で量子化することにより、軟判定誤
り訂正可能な遅延検波回路を実現することができる。
The present invention has DQPSK and π due to the above configuration.
For / 4 shift QPSK or the like, by performing quantization on the phase plane according to the signal point arrangement of the modulated wave, it is possible to realize a delay detection circuit capable of soft-decision error correction.

【0009】[0009]

【実施例】以下、本発明の一実施例について、図面を参
照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は本発明の一実施例における軟判定誤
り訂正回路付遅延検波回路のブロック結線図である。図
1において、1は入力端子、2はBPF、3はリミッ
タ、4はディジタル直交復調部、5は1/4分周器、
6、7はEX−ORロジック、8、9はディジタルLP
F、10は絶対位相検出回路、11は位相差計算回路、
12はシンボルクロック再生回路、13は位相差データ
量子化変換部、14は位相量子化メモリアドレス判定回
路、15は位相軟判定用メモリ、16は軟判定誤り訂正
回路、17は復調データ出力端子、18は基準信号入力
端子である。
FIG. 1 is a block connection diagram of a differential detection circuit with a soft decision error correction circuit according to an embodiment of the present invention. In FIG. 1, 1 is an input terminal, 2 is a BPF, 3 is a limiter, 4 is a digital quadrature demodulation unit, 5 is a 1/4 frequency divider,
6 and 7 are EX-OR logic, 8 and 9 are digital LP
F, 10 are absolute phase detection circuits, 11 is a phase difference calculation circuit,
12 is a symbol clock recovery circuit, 13 is a phase difference data quantization conversion unit, 14 is a phase quantization memory address determination circuit, 15 is a phase soft decision memory, 16 is a soft decision error correction circuit, 17 is a demodulation data output terminal, Reference numeral 18 is a reference signal input terminal.

【0011】以上のように構成された軟判定誤り訂正回
路付遅延検波回路について、図2および図3を用い、π
/4シフトQPSK変調の場合についてその動作を説明
する。図2は遅延検波回路の動作を説明するための各部
の波形図である。図3(a)はπ/4シフトQPSK変
調のシンボル間位相差の信号点配置を示す図、同図
(b)は上記遅延検波回路の基準信号frefの位相平
面を示す図、(c)は位相軟判定方法を示す図である。
まず、図2で入力端子1より入力された受信変調波は、
広帯域雑音を抑圧するためBPF2で帯域制限される。
BPF2で帯域制限された後に、振幅を一定とするため
リミッタ3でエンベロープ一定とされ、ディジタル直交
復調部4に入力される。ディジタル直交復調部4は、2
つのEX−ORロジック6、および7と、1/4分周器
5で構成される90゜位相器およびディジタルLPF
8、9で構成される。図2はディジタル直交復調部4の
動作を説明する波形図で、図2(a)は図1のBPF2
で帯域制限された後、リミッタ3で一定振幅とされた受
信変調波を示したもので、振幅一定の位相変調波であ
る。図2(b)および(c)は、直交復調器内部の基準
信号を示したもので、(b)および(c)は90゜の位
相差をもている。図2(d)は、同図(a)の受信変調
波と(b)の基準信号とのEX−OR出力、図2(e)
は(a)の受信変調波と(c)の基準信号とのEX−O
R出力である。同図(d)と(e)の出力は基準信号f
refの2倍の周期をもつパルス変調波である。図2
(f)は図2(d)と(e)を周波数軸上で示したもの
で、ベースバンドの変調波成分21が基準信号の2倍の
間隔で現れる。ディジタル直交復調器4は、上記ベース
バンド変調波成分21をディジタルLPF8および9を
とうして、図1のベースバンド出力I、Qとして取り出
すことができる。上記ベースバンド出力IおよびQはそ
れぞれの振幅の2乗和が常に一定となる信号であり、図
3(b)の位相点31あるいは32に示すような、上記
基準信号frefの位相平面上の1つの位相点と対応づ
けることができる。絶対位相検出回路10は0゜から3
60゜の位相を適当に分割した(128分割あるいは6
4分割程度とした)位相データをメモリーに保持するこ
とにより、上記ディジタル直交復調器4のIおよびQ出
力を、上記基準信号frefの位相に対応する、0゜か
ら360゜に等分割した絶対位相のディジタル・データ
φkとして得ることができる。位相差計算回路11は、
絶対位相検出回路10で、シンボル・データ時間間隔T
s毎に検出された絶対位相をもとに、時間t=(k−
1)Tsでの検出位相φ(k−1)と、時間t=kTs
(ここでkは整数)での検出位相φkとの位相差φd=
φk−φ(k−1)を計算する。以上説明した遅延検波
回路については、特許2−300827に示されてい
る。次に、上記遅延検波回路により得られた位相差φd
を位相平面上で量子化し、軟判定誤り訂正する方法につ
いて説明する。上記位相差φdは位相差データ量子化変
換部13に入力される。位相量子化変換部13は、図3
(c)に示すような、π/4シフトQPSKのシンボル
間位相差配置に応じた、位相平面上での量子化データを
メモリ15に有し、位相量子化メモリアドレス判定回路
14で、上記位相量子化変換部13へ入力された上記位
相差φdに対応するメモリアドレスを指定することによ
り、軟判定データを得る。そして、上記軟判定データを
軟判定誤り訂正回路16に入力し、誤り訂正を行うこと
により復調データ17を得る。ここで、図3(c)にお
いて、位相差φdは次のように位相平面上で量子化され
る。領域i(1)、i(2)、q(1)、q(2)は、
それぞれ量子化ビット数に応じて位相平面が等分割さ
れ、それぞれに軟判定値が与えられる。図3(c)は量
子化ビット数が3ビットの場合である。位相差φdが領
域i(1)、i(2)上にある場合、Iシンボルには位
相差φdの値に応じて0から7の軟判定値を与える。そ
して、Qシンボルには、位相差φdが領域i(1)上に
ある場合は軟判定値7を与え、領域i(2)上にある場
合は軟判定値0与える。また、位相差φdが領域q
(1)、q(2)上にある場合、同様に、Qシンボルに
は位相差φdの値に応じて0から7の軟判定値を与え
る。そして、Iシンボルには、位相差φdが領域q
(1)上にある場合は軟判定値7を与え、領域q(2)
上にある場合は軟判定値0を与える。
A differential detection circuit with a soft-decision error correction circuit configured as above will be described with reference to FIG. 2 and FIG.
The operation will be described for the case of / 4 shift QPSK modulation. FIG. 2 is a waveform diagram of each part for explaining the operation of the differential detection circuit. FIG. 3A is a diagram showing signal point arrangement of inter-symbol phase difference of π / 4 shift QPSK modulation, FIG. 3B is a diagram showing a phase plane of the reference signal fref of the differential detection circuit, and FIG. It is a figure which shows the phase soft decision method.
First, the reception modulated wave input from the input terminal 1 in FIG.
Bandwidth is limited by BPF2 to suppress wideband noise.
After the band is limited by the BPF 2, the envelope is made constant by the limiter 3 in order to make the amplitude constant, which is input to the digital quadrature demodulation unit 4. The digital quadrature demodulation unit 4 has two
90 ° phaser and digital LPF composed of two EX-OR logics 6 and 7 and 1/4 frequency divider 5
It is composed of 8 and 9. 2 is a waveform diagram for explaining the operation of the digital quadrature demodulation unit 4, and FIG. 2 (a) is a BPF2 of FIG.
The received modulated wave having a constant amplitude after being band-limited by the limiter 3 is shown, which is a phase modulated wave with a constant amplitude. FIGS. 2B and 2C show the reference signal inside the quadrature demodulator, and FIGS. 2B and 2C have a phase difference of 90 °. 2D is an EX-OR output of the received modulated wave of FIG. 2A and the reference signal of FIG. 2B, FIG.
Is an EX-O of the received modulated wave of (a) and the reference signal of (c)
R output. The outputs of FIGS. 7D and 7E are reference signals f
It is a pulse-modulated wave having a cycle twice that of ref. Figure 2
FIG. 2F shows FIGS. 2D and 2E on the frequency axis, and the modulated wave component 21 of the baseband appears at an interval twice the reference signal. The digital quadrature demodulator 4 can extract the baseband modulated wave component 21 as the baseband outputs I and Q of FIG. 1 through the digital LPFs 8 and 9. The baseband outputs I and Q are signals whose sums of squares of the respective amplitudes are always constant, and are 1 on the phase plane of the reference signal fref as shown by the phase points 31 or 32 in FIG. 3B. It can be associated with one phase point. The absolute phase detection circuit 10 is from 0 ° to 3
The 60 ° phase is divided appropriately (128 divisions or 6
By holding the phase data in the memory, the I and Q outputs of the digital quadrature demodulator 4 are equally divided into 0 ° to 360 ° corresponding to the phase of the reference signal fref. Can be obtained as digital data φk. The phase difference calculation circuit 11
In the absolute phase detection circuit 10, the symbol data time interval T
Based on the absolute phase detected every s, time t = (k−
1) Detection phase φ (k-1) at Ts and time t = kTs
(Where k is an integer) the phase difference φd with the detected phase φk =
Calculate φk−φ (k−1). The differential detection circuit described above is disclosed in Japanese Patent No. 2-300827. Next, the phase difference φd obtained by the differential detection circuit
A method of performing soft-decision error correction by quantizing ω on the phase plane will be described. The phase difference φd is input to the phase difference data quantization conversion unit 13. The phase quantization conversion unit 13 is shown in FIG.
As shown in (c), the memory 15 has quantized data on the phase plane according to the inter-symbol phase difference arrangement of π / 4 shift QPSK, and the phase quantization memory address determination circuit 14 uses the phase Soft decision data is obtained by designating a memory address corresponding to the phase difference φd input to the quantization conversion unit 13. Then, the soft decision data is input to the soft decision error correction circuit 16 and error correction is performed to obtain demodulated data 17. Here, in FIG. 3C, the phase difference φd is quantized on the phase plane as follows. Regions i (1), i (2), q (1), q (2) are
The phase plane is equally divided according to the number of quantization bits, and a soft decision value is given to each. FIG. 3C shows a case where the number of quantization bits is 3. When the phase difference φd is in the regions i (1) and i (2), the I symbol is given a soft decision value of 0 to 7 depending on the value of the phase difference φd. Then, the Q symbol is given a soft decision value of 7 when the phase difference φd is on the region i (1) and a soft decision value of 0 when it is on the region i (2). In addition, the phase difference φd is
In the case of (1) and q (2), similarly, a soft decision value of 0 to 7 is given to the Q symbol according to the value of the phase difference φd. Then, in the I symbol, the phase difference φd has a region q
If it is above (1), a soft decision value of 7 is given, and the region q (2)
If it is above, a soft decision value of 0 is given.

【0012】以上のように本実施例によれば、受信位相
変調波と内部基準信号に対する絶対位相を直接検出する
絶対位相検出手段と、上記絶対位相検出手段により検出
された、連続する受信シンボル間の位相差を検出する、
位相差検出手段と、上記位相差検出手段により検出され
た、上記受信シンボル間の位相差データ位相平面上で量
子化する位相差データの量子化変換手段を設ける構成に
より、遅延検波復調方式に軟判定誤り訂正方式を適用す
ることができ、移動通信用受信機に好適な、軟判定誤り
訂正回路付遅延検波回路を実現できるものである。ま
た、上記実施例はπ/4シフトQPSKについて説明し
たがDQPSKについても同様に行うことができる。
As described above, according to the present embodiment, the absolute phase detecting means for directly detecting the absolute phase with respect to the reception phase modulated wave and the internal reference signal, and the continuous reception symbols detected by the absolute phase detecting means. Detect the phase difference of
The phase difference detecting means and the phase difference data quantization conversion means for quantizing the phase difference data between the received symbols detected by the phase difference detecting means are provided in the differential detection demodulation method. The decision error correction system can be applied, and a delay detection circuit with a soft decision error correction circuit suitable for a mobile communication receiver can be realized. Further, although the above embodiment has been described with respect to π / 4 shift QPSK, the same can be applied to DQPSK.

【0013】[0013]

【発明の効果】以上のように本発明はエンベロープ一定
とされた受信位相変調波と内部基準信号とを比較して、
内部基準信号に対する絶対位相を直接検出する絶対位相
検出手段と、上記絶対位相検出手段により検出された受
信シンボルの絶対位相と、上記受信シンボルの1シンボ
ル・データ時間間隔前に検出された絶対位相との差を検
出する、位相差検出手段と、上記位相差検出手段により
検出された、上記受信シンボル間の位相差データ位相平
面上で量子化する位相差データの量子化変換手段を設け
ることにより、遅延検波復調方式に軟判定誤り訂正方式
を適用することができ、移動通信用受信機に好適な、軟
判定誤り訂正回路付遅延検波回路を実現できるものであ
る。
As described above, the present invention compares the received phase-modulated wave with a constant envelope with the internal reference signal,
An absolute phase detecting means for directly detecting the absolute phase with respect to the internal reference signal; an absolute phase of the received symbol detected by the absolute phase detecting means; and an absolute phase detected one symbol data time interval before the received symbol. The phase difference detection means for detecting the difference between the phase difference data detected by the phase difference detection means and the phase difference data between the received symbols on the phase plane of the phase difference data provided by the quantization conversion means. The soft-decision error correction method can be applied to the delay-detection demodulation method, and a delay-detection circuit with a soft-decision error correction circuit suitable for a mobile communication receiver can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における軟判定誤り訂正回路
付遅延検波回路のブロック結線図
FIG. 1 is a block connection diagram of a differential detection circuit with a soft decision error correction circuit according to an embodiment of the present invention.

【図2】同実施例における遅延検波回路の直交直交復調
器の動作を説明する波形図
FIG. 2 is a waveform diagram for explaining the operation of the orthogonal quadrature demodulator of the differential detection circuit in the embodiment.

【図3】同実施例における軟判定誤り訂正回路付遅延検
波回路の動作を説明する位相図
FIG. 3 is a phase diagram for explaining the operation of the differential detection circuit with soft decision error correction circuit in the same embodiment.

【図4】従来のπ/4シフトQPSK変調波の復調に用
いられるベースバンド帯での遅延検波復調回路のブロッ
ク結線図
FIG. 4 is a block connection diagram of a baseband band differential detection demodulation circuit used for demodulating a conventional π / 4 shift QPSK modulation wave.

【符号の説明】[Explanation of symbols]

1 入力端子 2 BPF 3 リミッタ 4 ディジタル直交復調部 5 1/4分周器 6 EX−ORロジック回路 7 EX−ORロジック回路 8 ディジタルLPF 9 ディジタルLPF 10 絶対位相検出回路 11 位相差計算回路 12 シンボルクロック再生回路 13 位相差データ量子化変換部 14 位相量子化メモリアドレス判定回路 15 メモリ 16 軟判定誤り訂正回路 17 復調データ出力端子 18 基準信号入力端子 1 Input Terminal 2 BPF 3 Limiter 4 Digital Quadrature Demodulator 5 1/4 Divider 6 EX-OR Logic Circuit 7 EX-OR Logic Circuit 8 Digital LPF 9 Digital LPF 10 Absolute Phase Detection Circuit 11 Phase Difference Calculation Circuit 12 Symbol Clock Reproduction circuit 13 Phase difference data quantization conversion unit 14 Phase quantization memory address determination circuit 15 Memory 16 Soft decision error correction circuit 17 Demodulated data output terminal 18 Reference signal input terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 差動符号化4相位相変調やπ/4シフト
4相位相変調などのディジタル変調された受信変調波
の、内部基準信号に対する絶対位相を検出する手段と、
上記絶対位相検出手段により検出された絶対位相と、上
記絶対位相の1シンボル・データ間隔前に検出された絶
対位相との位相差を、位相平面上で量子化する手段とを
備えた軟判定誤り訂正回路付遅延検波回路。
1. A means for detecting an absolute phase of a digitally modulated received modulated wave such as differentially encoded four-phase modulation or π / 4 shift four-phase modulation, with respect to an internal reference signal.
Soft decision error comprising means for quantizing on the phase plane the phase difference between the absolute phase detected by the absolute phase detection means and the absolute phase detected one symbol data interval before the absolute phase. Delay detection circuit with correction circuit.
【請求項2】 請求項1記載のの位相平面上の量子化方
法は、I−Q位相平面を4相位相変調のシンボル点とI
−Q位相平面の原点を結ぶ線分により4等分し、上記4
等分した領域を、Iシンボルの領域とQシンボルの領域
がそれぞれ隣接するように、IシンボルとQシンボルに
対し領域を割当て、そして、上記IシンボルおよびQシ
ンボルに割り当てた領域を、それぞれ量子化ビット数に
応じて分割し、上記量子化ビット数に応じて分割された
領域に対してそれぞれ軟判定値を与える。そして、量子
化する位相データが上記Iシンボル領域にある場合は、
Iシンボルに対して量子化ビット数に応じた軟判定値を
与え、Qシンボルに対しては一定の軟判定値値を与える
とともに、量子化する位相データが上記Qシンボル領域
にある場合は、Qシンボルに対して量子化ビット数に応
じた軟判定値を与え、Iシンボルに対しては一定の軟判
定値を与えることにより、位相平面上で位相データを量
子化することを特徴する請求項1記載の軟判定誤り訂正
回路付遅延検波回路。
2. The quantization method on the phase plane according to claim 1, wherein the IQ phase plane is defined by symbol points of quadrature phase modulation and I points.
-Q is divided into 4 equal parts by the line segment connecting the origin of the phase plane,
The equally divided regions are assigned to the I and Q symbols so that the I and Q symbol regions are adjacent to each other, and the regions assigned to the I and Q symbols are quantized. The region is divided according to the number of bits, and a soft decision value is given to each of the regions divided according to the number of quantization bits. Then, when the phase data to be quantized is in the I symbol area,
A soft decision value according to the number of quantization bits is given to the I symbol, a constant soft decision value is given to the Q symbol, and when the phase data to be quantized is in the Q symbol area, The phase data is quantized on a phase plane by giving a soft decision value according to the number of quantization bits to the symbol and a constant soft decision value to the I symbol. Delay detection circuit with soft decision error correction circuit described.
JP3201683A 1991-08-12 1991-08-12 Delay detection circuit with soft judgement error correcting circuit Pending JPH0548664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201683A JPH0548664A (en) 1991-08-12 1991-08-12 Delay detection circuit with soft judgement error correcting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201683A JPH0548664A (en) 1991-08-12 1991-08-12 Delay detection circuit with soft judgement error correcting circuit

Publications (1)

Publication Number Publication Date
JPH0548664A true JPH0548664A (en) 1993-02-26

Family

ID=16445176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201683A Pending JPH0548664A (en) 1991-08-12 1991-08-12 Delay detection circuit with soft judgement error correcting circuit

Country Status (1)

Country Link
JP (1) JPH0548664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718509B2 (en) 2000-01-26 2004-04-06 Nec Corporation Error bit correcting method for use in time-division multiple access system and bit correcting circuit
JP2008541629A (en) * 2005-05-10 2008-11-20 クゥアルコム・インコーポレイテッド Improve DPSK demodulation of SPS data using soft bit decision

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718509B2 (en) 2000-01-26 2004-04-06 Nec Corporation Error bit correcting method for use in time-division multiple access system and bit correcting circuit
JP2008541629A (en) * 2005-05-10 2008-11-20 クゥアルコム・インコーポレイテッド Improve DPSK demodulation of SPS data using soft bit decision

Similar Documents

Publication Publication Date Title
CA2025232C (en) Carrier recovery system
FI80175B (en) DIGITALT RADIOKOMMUNIKATIONSSYSTEM.
EP0772330A2 (en) Receiver and method for receiving OFDM signals
US7477707B2 (en) Computationally efficient demodulation for differential phase shift keying
US4438524A (en) Receiver for angle-modulated carrier signals
JP2003018230A (en) Demodulator, broadcasting system and semiconductor device
US7046743B2 (en) Demodulator for demodulating digital modulated signals
US5504784A (en) Viterbi algorithm decoding method and apparatus
JPH0621992A (en) Demodulator
US5588026A (en) Method of compensating phase shift keying frequency offset
US6002725A (en) M-ary FSK receiver
US6700940B1 (en) Carrier reproduction circuit
JPH0548664A (en) Delay detection circuit with soft judgement error correcting circuit
JP3252820B2 (en) Demodulation and modulation circuit and demodulation and modulation method
US20060269015A1 (en) Receivers for DPSK signals
JP3167341B2 (en) Continuous phase modulation signal demodulation circuit
JP3278669B2 (en) Receiver demodulator
JP3089835B2 (en) Frequency offset compensation method
US6246730B1 (en) Method and arrangement for differentially detecting an MPSK signal using a plurality of past symbol data
JPH0225306B2 (en)
KR970000163B1 (en) Modulator and demodulator in tdma
JPH06311195A (en) Apsk modulated signal demodulator
JP4730219B2 (en) Synchronous detection demodulator
JP3633174B2 (en) Synchronous detection demodulator
JP2988338B2 (en) Wireless data transmission equipment