JPS60208440A - Thermosensitive device - Google Patents

Thermosensitive device

Info

Publication number
JPS60208440A
JPS60208440A JP6407284A JP6407284A JPS60208440A JP S60208440 A JPS60208440 A JP S60208440A JP 6407284 A JP6407284 A JP 6407284A JP 6407284 A JP6407284 A JP 6407284A JP S60208440 A JPS60208440 A JP S60208440A
Authority
JP
Japan
Prior art keywords
phase
alloy
hysteresis
displacement
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6407284A
Other languages
Japanese (ja)
Inventor
Tsunehiko Todoroki
轟 恒彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6407284A priority Critical patent/JPS60208440A/en
Publication of JPS60208440A publication Critical patent/JPS60208440A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermosensitive device which has an extremely small hysteresis range and good repetitive service life characteristics by forming an NiTi shape memory alloy in such a way that the two-way motion combined with bias load is the displacement to change the crystal structure of the alloy from a cubic crystal to a rhombohedral crystal when cool and is the displacement reverse thereto when heated. CONSTITUTION:This invention is obtd. as a result of studying the relation between the hysteresis and service life of the two-way motion of a shape memory alloy (MSA) consisting of an NiTi alloy system. More specifically, the two-way motion combining bias load with said MSA is made into the displacement by the transformation of the crystal structure of said MSA changing from a cubic crystal (B2 phase) to a penta-rhombohedral crystal (R phase) when cool and to the displacement by the transformation restoring the B2 phase from the R phase when heated. The provision of the intended thermosensitive device of which the hysteresis of the two-way direction is <=3 deg.C and the change of the working temp. and permanent set in fatigue are considerably decreased in the repetitive service life is made possible by the above-mentioned limitation of the motion.

Description

【発明の詳細な説明】 産業上の利用分野 未発141Iは形状記憶合金を利用した熱感応装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application No. 141I relates to a heat sensitive device using a shape memory alloy.

1忙来例の構成とその問題点 近年、形状記憶合金(以下、S M A (Shape
memory alloyの略)と呼ぶ)の1業的K1
、月1 (1’(究が盛んである。SMAとしては多く
のA、金か知られているが、現在、実用的にはCu Z
 n A I j7金とN i T i jl金が使用
されている。
1 Traditional configurations and their problems In recent years, shape memory alloys (hereinafter referred to as SMA)
(abbreviation for memory alloy))
, Month 1 (1') is actively researched.Many A and gold are known as SMA, but currently, in practical terms, Cu Z
n A I j7 gold and N i T i jl gold are used.

熱感応装置への応用を考えた場1’l、加熱時と冷却時
KSMAが11〕逆的に変形する一4方回+1動作を示
し、かつ、加熱時の変形温度と冷却時の変形浩、1度と
の差(いわゆるヒステリシス)か小く、さらに、加熱、
冷却のくり返しによるノを命劣化の少ないことが望まれ
る。N i T i i、’金−加熱時にのみ変形する
一方向動作のSMAであるが、合金のセI質」二、疲労
ノす命はCu合金に比へ極めて優れている。
Considering the application to a heat-sensitive device, the KSMA during heating and cooling is 11], and the deformation temperature during heating and the deformation height during cooling are inversely deformed. , the difference from 1 degree (so-called hysteresis) is small, and further heating,
It is desired that there is less deterioration in life due to repeated cooling. Gold - Although it is a unidirectional SMA that deforms only when heated, the alloy's thermal properties are extremely superior to Cu alloys in terms of fatigue life.

このため、α金中独では一力回i’L Ot作しか示さ
ないN1Tit″r分ヲ−4方向0J作VC使う−L天
かなされている。例えば、第1図に示すように、品温て
密着巻き伏兵に形状512憶処理したN i T i合
金線のコイルげね1をつくり、これに重鐘2を吊りFけ
る構成が知られている。形状記憶により形状変化を示す
温度(変庸温度)以下で1iNiTib金の+1賀とし
てす11性係数や降伏り力等の強度が低く、IR重鍾に
よりシS力、σダ起マルテンサイト変1占による翼形が
おこりNiTiα金コイルはね1rI′i伸びるか、こ
れ全加熱すると、大作温度で形状記憶効果により几の形
状に仄ろうとする大きな複フし力が発生し、NiTi島
金線のコイルばね1は縮み、重#!l!2は持ら上けら
れる。従−)で、y悪温度以−Fてid、’ N i 
T i合金線のコイルばね1は伸び、変恵温度以1.で
は縮み、03作範囲りの一1方向動作とlる。
For this reason, in α, China, and Germany, N1Tit''r minute, which only shows one-time i'L Ot work, is used -4 direction 0J work VC-L heaven.For example, as shown in Figure 1, A configuration is known in which a coil wire 1 made of N i Ti alloy wire treated with a shape 512 is made in a heated and tightly wrapped ambush, and a heavy bell 2 is hung from this. At temperatures below 1iNiTib gold's tensile strength coefficient and yield strength are low, and due to IR heavy ironing, the airfoil shape due to S force and σ-induced martensite deformation occurs, resulting in NiTiα gold coils. When the spring 1rI'i is stretched or fully heated, a large double bending force is generated that tries to fit the shape of the spring due to the shape memory effect at the production temperature, and the coil spring 1 of the NiTi Shimagane wire contracts and becomes heavy #! l!2 is raised.
The coil spring 1 made of Ti alloy wire is elongated, and the coil spring 1 is made of T i alloy wire. Then, it shrinks and moves in 11 directions within the 03 working range.

この中#ll[2のように形状記憶効果と逆の動き金さ
せる力を・・イー1′ス11:工屯といい5通常のばね
1料よりなるコイルはねの力に利用することも多い。
Among these, the force that causes movement, which is the opposite of the shape memory effect, as shown in #ll [2] can also be used as the force of a coil made of a normal spring material. many.

カカル、SMAK屯紳(・jIIlliK コイルげね
灼の対抗パイ−〕′ス11:I重金組Gせた一゛方向m
ノ作の熱感応装置、′’、1において、温1廷Tと友位
S(SMAの叶び)の関係は第21′X目・ζ示す如く
なり、加熱時の動作温度と冷却時のω1作温度とはずれ
て、いわゆるヒステリシス現象が生ずる6、従来のN 
i T i f”、全使用の熱感応装置にありでは、ヒ
ステリシスの温度+1JΔTは10〜30 ’Cてあっ
た。また、くり返しにより動作温度が低下する問題があ
った。かかるヒステリシス中では精度よく温度制御した
り、物体を動かしたりする熱感応装置としての使用に〜
せず、また、くり返し寿命特性の良いN i T i 
e:・金の工業的応用に対し、大きな妨げとなっていた
Kakaru, SMAK Tunshin (・jIIlliK Coil Gene Burning's counterattack)'s 11: I Heavy Metal Group G Seta One Direction m
In Nosaku's heat sensitive device, '', 1, the relationship between temperature T and friendly position S (SMA's fruit) is as shown in the 21'X, ζ, and the operating temperature during heating and cooling ω1 The so-called hysteresis phenomenon occurs due to the operating temperature6.
In all the heat sensitive devices used, the hysteresis temperature +1JΔT was 10 to 30'C.There was also the problem that the operating temperature decreased due to repeated use.During such hysteresis, the For use as a heat sensitive device to control temperature or move objects.
N i T i with good repeat life characteristics.
e:・This was a major hindrance to the industrial application of gold.

発明の目的 本発明はこのような問題を解決するもので、ヒステリシ
スIIJが極めて小さく、かつ、くり返し寿命特性の良
好な熱感応装置を得ることをにI的とする。
OBJECTS OF THE INVENTION The present invention is intended to solve these problems, and its primary purpose is to provide a heat sensitive device with extremely small hysteresis IIJ and good repeated life characteristics.

発明の構成 未発り1は、N I T l &金糸のSMAの二方向
動作について合金の変具と二方向Uノ作のヒステリシス
および寿命との関係を広範囲に検耐した結果なされたも
のであり、バイアス荷重を組合せた一゛、方向仙作が、
冷却時には合金の結晶構造が立方晶から菱面体晶へ変る
変禾による変位とし、加熱時には菱面体晶から立方晶へ
戻る変態による変位としたものである。
Structure of the Invention Undiscovered 1 was made as a result of extensive testing of the relationship between the alloy transformer and the hysteresis and life of the two-way U operation for the two-way operation of the SMA of N I T l & gold thread. Yes, there is a combination of bias loading and directional influence,
During cooling, the crystal structure of the alloy changes from a cubic crystal to a rhombohedral crystal structure, and when heated, the crystal structure changes from a rhombohedral crystal structure back to a cubic crystal structure.

この01作上の限定によって、二方向動作のヒステリシ
スを3C以1ことし、かつ、くり返し寿(+f+にυい
でdAIJ作11,1度のy化やへた9を極めて少くす
ることが1り能となる。
Due to this limitation in the 01 work, it is possible to reduce the hysteresis of the two-way operation to 3C or more, and to minimize the repetition life (by setting υ to +f+, the dAIJ work 11, 1 degree y change and heta 9. Becomes Noh.

NiTi糸音金は変1島d111度以」の、;iIぎI
IIてはB2相と11fば7する)ン方晶であり、これ
を冷却してゆくと変11q W、iS度で直接にIll
、斜晶のマルテンサイト相(M相)になる場自と、一度
、菱面体晶の相をへ(lit 41品のマルテンサイト
相に7!i:る場^の二種類が知られている1、ここで
、菱面体晶は一般にR相と呼はれている。これらは、応
力がかけられていないh合について電気抵抗11111
定やX線回折で(11rかめられているが、応力がかけ
られた状庸の二方向dl〕4’lに関してはどのような
影響を1.1つかはり1らかeこされていない。そして
、冷却時に立方晶から菱1111G品にyる食1占はR
変1占、逆に、加熱時に菱面1ト品から會一方晶に変る
変態は逆R変店と呼ばれている。
NiTi Itonekin is Hen 1 Island d111 degree and above, ;iigiI
II is a B2 phase and a 11f 7) square crystal, and when it is cooled, it directly changes to 11q W, Ill at iS degrees.
There are two known types: one in which the martensitic phase (M phase) of an orthorhic crystal is formed, and the other in which the martensitic phase of the 41 products is changed to a rhombohedral phase (7!i: ^). 1. Here, the rhombohedral crystals are generally called R phase.They have an electrical resistance of 11111 for the unstressed h-phase.
1.1 and X-ray diffraction (11r is observed, but the two directions dl in the stressed state) 4'l have no effect on 1.1 or 1e. And, the eclipse that changes from cubic crystal to diamond 1111G product during cooling is R
On the other hand, a metamorphosis that changes from a diamond-faced one-point product to a one-sided crystal when heated is called a reverse R-henten.

実施例の説り」 以F、不発uiJをその実施例により説明する。Explanation of Examples” Hereinafter, the unfired uiJ will be explained with reference to its examples.

、tlt: FtはN i T i fJ金、N i 
T i Cu 合金およびNiTiFe合金で動作温度
(変@温度)が20〜40℃の6金組成ものを使用した
。(uJ作温度は6金組成の他、熱処理あるいけ・くイ
アス前重により影響される)。
, tlt: Ft is N i T i fJ gold, N i
A T i Cu alloy and a NiTiFe alloy having a hexagonal gold composition and an operating temperature (variable temperature) of 20 to 40° C. were used. (The uJ production temperature is affected by the 6-karat gold composition as well as the heat treatment and the weight of the alloy).

以下でViNi T i u金を代表例として示す。ViNiTiu gold will be shown below as a representative example.

直径0.75J11の線材を素材とし、この線材をコイ
ル平均直径5.6朋の密着コイル状に巻き、形状記憶処
理を行った。形状記憶処理Vi450 ”C〜550°
Cの間で行った。
A wire rod with a diameter of 0.75 J11 was used as a raw material, and this wire rod was wound into a tight coil shape with an average coil diameter of 5.6 mm and subjected to shape memory treatment. Shape memory processing Vi450 ”C ~ 550°
I went between C.

かかる、SMAコイルばねについて第1図の79412
411重を重錘とした方法て、種々のイ’d7重におい
て、加熱・冷却し、温度とSMAコイルばねのたわみの
開保全調べた。なお、バイアス荷重はせん断応力にたわ
みはせん断ひずみに換1うした。
79412 in FIG. 1 for such an SMA coil spring.
Using a method using a 411 weight as a weight, various types of 7 weights were heated and cooled, and the temperature and deflection of the SMA coil spring were investigated for openness. Note that the bias load was converted into shear stress, and the deflection was converted into shear strain.

第3図に代表的な動作ヒステリシス曲線と電気抵抗測定
との対応を示す。これは475°C,t!憶処理でバイ
アス荷重6に9/mrAO例である。この関係から、ω
ノ作ヒステリシス曲線上の特異点RMs、RMf、M 
!l 、 RA s 、 RA fおよびAIは各々電
気抵抗曲線のM s’、M iI、Ms、As’、Al
1およびAIVC対応することがf4jL力した1゜電
気抵抗曲線の変化に1lJL ’(Vi応力がかか−)
でいない状庸での基1ノ的filf究にあ・いて次のこ
とが知らノ1でいる。
FIG. 3 shows the correspondence between typical operating hysteresis curves and electrical resistance measurements. This is 475°C, t! This is an example of bias load 6 and 9/mrAO in memory processing. From this relationship, ω
Singular points RMs, RMf, M on the Nosaku hysteresis curve
! l, RA s, RA f and AI are the electric resistance curves M s', M iI, Ms, As', Al, respectively.
1 and AIVC corresponds to the change in the electrical resistance curve of 1° caused by f4jL force 1lJL' (Vi stress applied -)
The following is the first thing we know when we investigate fundamental filf in a situation where it is not.

冷却1隨には、M s’ Mf’てR貴意をおこし、電
気抵抗の商い領域がR柑の存イ1域、抵抗の低下する点
Msがマルテンサイト相へf床間始点であり、加熱時に
はAs’、A I’で逆R変古かおこり、Af点で高温
のB2相へ仄る。
During cooling, Ms'Mf' and R values are expressed, and the electrical resistance trade region is the R range, and the point where the resistance decreases is the starting point of the interfloor transition to the martensitic phase. Occasionally, reverse R deformation occurs at As' and A I', and the transition to the high temperature B2 phase occurs at the Af point.

このように、バイアス荷重全組合わせた動作ヒステリシ
ス曲線における特異点が音金変域と関係つけられること
が初めてりjらかになった。
In this way, it has become clear for the first time that the singular point in the operating hysteresis curve of all combinations of bias loads is related to the tone metal domain.

各種記憶熱処理の試料についr、B2相、R相およびM
相のrf(Ef8を域を下すと第4図となる。RHlの
(f在するfirJ Mは最大τRのせん断心力に相当
するバイアス仕す重までである。そしてτRは形状記1
゜ω処理条(!1に影響され、その関係は第5図となる
1、すなわら、記憶処理温度か低いほどR柑は晶いバイ
アス荷重ても存在し、−か、記憶処理温度が525 C
iこえるとR相はほとんど存在しなくなる。
r, B2 phase, R phase and M for samples subjected to various memory heat treatments.
Figure 4 is obtained by lowering the phase rf (Ef8).The phase rf (firJ M is up to the bias force corresponding to the maximum shear center force of τR. And τR is the shape notation 1
゜ω Treatment condition (!1), and the relationship is shown in Figure 5. 525C
When it exceeds i, the R phase almost no longer exists.

以上のように、N i T i fj金ココイルねにバ
イアス荷重を組みDわせた−1方向ω]作において、B
2相、R相およびM柑のせん断心カ一温度相図がI−J
jらかとなった。
As described above, in the -1 direction ω] production in which N i T i fj gold-cocoil wire is combined with a bias load and set to D, B
The shear core temperature phase diagrams of 2-phase, R-phase and M-kan are I-J.
It became a big deal.

そこて、二方向σσノ作特性と変内との関係を次に検討
した。本発明になる条件■はせん断心力がτR以下とな
るバイアス荷重を組合わせ、冷却最低温度(1−R相の
存在域として、R相−B2相の加熱・冷却くり返しをし
た場合、従来例である条件111″tせん断心力がrR
以下となるバイアス荷重?組Gわせ、冷却最低温度f 
M s意思下つ捷りM(11が生1戊する領域として、
M用′X、R相−、B2相の加熱・冷却くり返しをした
場自、他の従来例である条件■はせん断心力が18以上
となるバイアス荷重を組合わせ、M 411= B 2
相の加熱・冷却くり返しをした場りである。
Therefore, we next examined the relationship between the two-way σσ cropping characteristics and the variation. Condition (2) for the present invention is a combination of a bias load that makes the shear core force less than τR, and a minimum cooling temperature (1-R phase existing region, when heating and cooling of R phase-B2 phase is repeated). A certain condition 111″t shear center force is rR
Bias load below? Set G, minimum cooling temperature f
M s will-cutting M (as the area where 11 is born,
For M, when heating and cooling of the X, R, and B2 phases are repeated, another conventional example, condition (2), is a combination of bias loads that result in a shear center force of 18 or more, and M411 = B2.
This is where the phases are repeatedly heated and cooled.

この三条件での加熱・冷却くり返しによるヒステリシス
曲線の差を第6図に示す。条件■では極めて小さい3°
C以下のヒステリシスが得られた。
FIG. 6 shows the difference in hysteresis curves due to repeated heating and cooling under these three conditions. In condition ■, the extremely small 3°
A hysteresis of C or less was obtained.

また、加熱・冷却くり返しによる動作温度の変化を第7
図に示す。条件1ては動作111(1度の変化が極めて
少なくなる。さらに、高温時(B2相)のせん断ひず与
1辻の変化(へたり)を第8図に示すが、この牛4性変
化も条件Iが最も小さい。
In addition, changes in operating temperature due to repeated heating and cooling are
As shown in the figure. Condition 1 is operation 111 (1 degree change is extremely small.Furthermore, the change in shear strain applied at high temperature (B2 phase) per 1 turn (settling) is shown in Figure 8, and this cow 4 sex change Condition I is also the smallest.

以、1の説1月て−N r T 10 *を例にと・)
たが、Ni T i Cu i’i金およびNiTiF
eα金においても全く同様の結果が得られた。
Hereinafter, let's take the theory 1 -N r T 10 * as an example.)
However, Ni Ti Cu i'i gold and NiTiF
Exactly the same results were obtained for eα gold.

木兄1Jllになる条件Iを得るためには、使用−14
のせん断心力と最低11n’r度が第4図のR相の饋M
、Vc<るようにすれば良い。この条件を満たすならは
NiTi糸り金の形状がコイルばねてあ、)でも単なる
線材てあっても、板イ4てあっても良い。捷た、記(ね
熱処理に関しても、音金糸によって温度は異なるか、R
(11の1irJ域が形成される熱処理条件とすれば良
い3、 発1月のをυ宋 木兄Ivlの熱感応装置i”+”は、使用せん断心力範
囲と使用最低温度を限定し、B2相とR相との間の貴店
のみ(L−01作として収り出すものであ′す、その結
果、ヒステリシスが極めて小さく、加熱 冷却くり返し
によるa]作温度の変化やへたりが極めて少なくなる。
In order to obtain condition I to become Ki-ni 1Jll, use -14
The shear center force and the minimum 11 n'r degree are the R-phase feed M in Figure 4.
, Vc<. As long as this condition is met, the shape of the NiTi thread may be a coil spring, a simple wire, or a plate. As for the heat treatment, does the temperature differ depending on the metal thread?
(The heat treatment conditions should be such that the 1irJ region of 11 is formed3). Only your shop between the phase and the R phase (it is produced as L-01, as a result, the hysteresis is extremely small, and the change and settling of the operating temperature due to repeated heating and cooling are extremely small) .

このため、従来は精度上制御が困雉であった各種制御機
器、例えば、恒温槽の温度設定器、流体経路の感熱弁、
空調機の風向変更機構、高寿命全必彎とするロボソ]・
用アクチュエータ全はじめとする各種アクチュエータへ
の応用がIJIf肚となり、熱感応装置として優れた効
果を奏するものである。
For this reason, various control devices that were difficult to control in the past due to accuracy, such as temperature setting devices for constant temperature baths, thermal valves for fluid paths,
Air conditioner's wind direction changing mechanism, Roboso which requires long life]・
The application to various actuators including all types of actuators is suitable for IJIF, and provides excellent effects as a heat sensitive device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は形状記憶す金とバイアス荷重を組合わせた二方
向動作熱感応装置の説明図、第2図−二方向動作熱感応
装置の動作を説明する温度と変位の関係図(ヒステリシ
ス曲線)、第3図は口方向Oノ作の実際のヒステリシス
曲線と電気抵抗変化との対応を示す関係図、第4図は二
方向動作における6金の相の正形1M (B 2相、R
相およびM相)のせん断心カ一温度相図、第5図ViR
相の存在する領域のせん断心力の最大値τRの記憶処理
温度依存性を示す図、第6図は本発明の効果を示すヒス
テリシス曲線の従来例との比較図、第7図は本発E月の
効果を示す動作湿度寿命特性図、第8図は不発り1の効
果を小すへたり寿命特性図である。 1・・・・・・形状記憶6金コイルばね、2・・・・・
・重錘((バイノ′スイli工i1j )、。 代理Nの氏と+ プr理[: 中 尾 敏 男 ほか1
名第1図 第。図 1膚(1C) 第4図 第5図 就億閂恒社/1 6図 7図 第8因 力P訟ン食却くり返し老(
Figure 1 is an explanatory diagram of a two-way thermal sensing device that combines shape-memory gold and bias loading. Figure 2 is a diagram of the relationship between temperature and displacement (hysteresis curve) to explain the operation of a two-directional thermal sensing device. , Fig. 3 is a relational diagram showing the correspondence between the actual hysteresis curve and electrical resistance change in the operation in the mouth direction O, and Fig. 4 shows the normal 1M (B 2 phase, R
phase and M phase), shear core temperature phase diagram, Fig. 5ViR
A diagram showing the amnestic temperature dependence of the maximum value τR of the shear core force in the region where the phase exists, FIG. 6 is a comparison diagram of the hysteresis curve with a conventional example showing the effect of the present invention, and FIG. 7 is a diagram showing the effect of the present invention. FIG. 8 is an operating humidity life characteristic diagram showing the effect of 1, and FIG. 1... Shape memory 6 gold coil spring, 2...
- Weight ((Bino'suili engineering i1j), Mr. N's deputy + Pruri [: Toshio Nakao and 1 others)
Figure 1. Fig. 1 Skin (1C) Fig. 4 Fig. 5 实银采社/1 6 Fig. 7 Fig. 8 Factor P

Claims (2)

【特許請求の範囲】[Claims] (1)NiTi系形状記憶合金にバイアス111f重全
組音わせて一方向動作の構成とし、その動11が、冷却
時にtま合金の結晶構造が立方晶(B2相)から菱面本
市(R相)へ変るy悪による変位とし、加熱時にけR相
からB2相へ仄る変1島による変位とした熱感応装置i
710
(1) A NiTi-based shape memory alloy is configured to operate in one direction by applying a bias 111f to the crystal structure of the alloy, which changes from cubic (B2 phase) to rhombic ( Thermal sensitive device i is defined as the displacement due to y changing to the R phase), and the displacement due to the change 1 island passing from the R phase to the B2 phase during heating.
710
(2)NiTi系形状記憶合金が、形状記憶効果を下す
NiTi合金、NiT1Cu1金もしくiJ:NiTi
Fe合金である特J「請彊直囲第1項記載の熱す心装置
(2) NiTi-based shape memory alloy has a shape memory effect. NiTi alloy, NiT1Cu1 gold or iJ:NiTi
The heating core device according to item 1 of the special J.
JP6407284A 1984-03-30 1984-03-30 Thermosensitive device Pending JPS60208440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6407284A JPS60208440A (en) 1984-03-30 1984-03-30 Thermosensitive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6407284A JPS60208440A (en) 1984-03-30 1984-03-30 Thermosensitive device

Publications (1)

Publication Number Publication Date
JPS60208440A true JPS60208440A (en) 1985-10-21

Family

ID=13247519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6407284A Pending JPS60208440A (en) 1984-03-30 1984-03-30 Thermosensitive device

Country Status (1)

Country Link
JP (1) JPS60208440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127081A (en) * 2007-11-22 2009-06-11 Nec Tokin Corp Wear resistant and erosion resistant alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779138A (en) * 1980-09-05 1982-05-18 Raychem Corp Nickel / titanium / copper shape memory alloy
JPS58151445A (en) * 1982-02-27 1983-09-08 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape storage effect and its manufacture
JPS58164745A (en) * 1982-03-05 1983-09-29 レイケム・コーポレイション Nickel/titanium/copper shape memory alloy
JPS593835A (en) * 1982-06-28 1984-01-10 住友電気工業株式会社 Temperature responsive element
JPS59150047A (en) * 1983-02-15 1984-08-28 Hitachi Metals Ltd Shape memory alloy and its manufacture
JPS59150069A (en) * 1983-02-15 1984-08-28 Hitachi Metals Ltd Manufacture of shape memory alloy
JPS6056038A (en) * 1983-09-08 1985-04-01 Hitachi Metals Ltd Shape memory alloy and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779138A (en) * 1980-09-05 1982-05-18 Raychem Corp Nickel / titanium / copper shape memory alloy
JPS58151445A (en) * 1982-02-27 1983-09-08 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape storage effect and its manufacture
JPS58164745A (en) * 1982-03-05 1983-09-29 レイケム・コーポレイション Nickel/titanium/copper shape memory alloy
JPS593835A (en) * 1982-06-28 1984-01-10 住友電気工業株式会社 Temperature responsive element
JPS59150047A (en) * 1983-02-15 1984-08-28 Hitachi Metals Ltd Shape memory alloy and its manufacture
JPS59150069A (en) * 1983-02-15 1984-08-28 Hitachi Metals Ltd Manufacture of shape memory alloy
JPS6056038A (en) * 1983-09-08 1985-04-01 Hitachi Metals Ltd Shape memory alloy and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127081A (en) * 2007-11-22 2009-06-11 Nec Tokin Corp Wear resistant and erosion resistant alloy

Similar Documents

Publication Publication Date Title
Piao et al. Characteristics of deformation and transformation in Ti44Ni47Nb9 shape memory alloy
Leinenbach et al. Creep and stress relaxation of a FeMnSi-based shape memory alloy at low temperatures
Shechtman et al. The plastic deformation of TiAl
Miyazaki et al. Texture of Ti–Ni rolled thin plates and sputter-deposited thin films
Miyazaki et al. Martensitic transformations in sputter-deposited Ti− Ni− Cu shape memory alloy thin films
JP2014015681A (en) Method for working nickel-titanium shape memory alloy
US4829843A (en) Apparatus for rocking a crank
KR100807393B1 (en) Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby
KR101183650B1 (en) Fabrication method of unique two way shape memory coil spring and unique two way shape memory coil spring fabricated by using the same
GB2142724A (en) Shape memory effect devices
KR20080068579A (en) Coil spring having two-way shape memory effect and the fabrication method thereof, and adiabatic product using the same
Casati et al. Effect of current pulses on fatigue of thin NiTi wires for shape memory actuators
JPS60208440A (en) Thermosensitive device
US4416706A (en) Process to produce and stabilize a reversible two-way shape memory effect in a Cu-Al-Ni or a Cu-Al alloy
RU2495946C1 (en) METHOD OF THERMAL TREATMENT OF Fe-Ni-Co-Al-Nb FERROMAGNETIC ALLOY MONOCRYSTALS WITH THERMOELASTIC CONVERSIONS
Bhaumik et al. Nickel–Titanium shape memory alloy wires for thermal actuators
Ohkata et al. The R-phase transformation in the Ti-Ni shape memory alloy and its application
JPS61183455A (en) Manufacture of ni-ti type shape memory material
US20170240995A1 (en) Shape memory alloy comprising ti, ni and si
JPS61227141A (en) Niti shape memory alloy wire
JPH059686A (en) Production of shape memory niti alloy
Casati et al. Electrical Pulse Shape Setting of Thin Ni 49 Ti 51 Wires for Shape Memory Actuators
JPS6152224B2 (en)
JPH0762506A (en) Production of superelastic spring
JPS6059054A (en) Thermal response element