JPS593835A - Temperature responsive element - Google Patents

Temperature responsive element

Info

Publication number
JPS593835A
JPS593835A JP11223182A JP11223182A JPS593835A JP S593835 A JPS593835 A JP S593835A JP 11223182 A JP11223182 A JP 11223182A JP 11223182 A JP11223182 A JP 11223182A JP S593835 A JPS593835 A JP S593835A
Authority
JP
Japan
Prior art keywords
alloy
temperature
transformation
sensitive element
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11223182A
Other languages
Japanese (ja)
Inventor
長崎 昌司
稔 横田
澤田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11223182A priority Critical patent/JPS593835A/en
Publication of JPS593835A publication Critical patent/JPS593835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermally Actuated Switches (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、濡度度化に応じて形状が変化覆る形式の温
度感応素子の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a temperature sensitive element whose shape changes depending on wetness.

従来、温度感応素子どじでは、渇度変1ヒにWう金属の
熱1kl′J張や溶断を利用しl;バイメタル、ヒユー
ズなどが一般に使用されている。しかしながら、バイメ
タルでは、成る程度の温度範凹内で連続的に感渇し得る
が、特定の温度で鋭敏に反応するこどは不可能である。
Conventionally, in temperature-sensitive elements, bimetals, fuses, and the like have been generally used, which utilize the heat 1 kl'J of the metal and its fusing when the temperature changes. However, although bimetals can be continuously sensitized within a certain temperature range, it is not possible to react sharply at a specific temperature.

温度に対して連続的に漸次変化づるにすぎない熱膨張を
利用するものだからである。それゆえに湿度変化に対応
する変位量を増大させることも不可能であった。
This is because it utilizes thermal expansion, which only changes continuously and gradually with respect to temperature. Therefore, it was also impossible to increase the amount of displacement corresponding to humidity changes.

他方、近年、形状記憶合金からなる感)島素子あるいは
サーマルアクチュエータが提案されている。
On the other hand, in recent years, island elements or thermal actuators made of shape memory alloys have been proposed.

形状記憶合金は、フルテンサイ1〜変態に基づく結晶構
造の変化によりその形状を変化させるものである。しか
しながら、マルテンサイト変態の変態温度および逆変態
温度は材料固有のものであるため、材料の組成を変える
ことによりあるいはばねなどとの併用により、変態)B
度および変位を一応制御可能であるが、その制御幅はか
なり小さく、極めて不充分なものにすぎなかった。
A shape memory alloy changes its shape by changing its crystal structure based on transformation from full tensile strength to 1. However, the transformation temperature and reverse transformation temperature of martensitic transformation are material-specific, so by changing the composition of the material or by using it in combination with a spring etc.
Although it is possible to control the degree and displacement, the control range is quite small and is extremely insufficient.

さらに、上)ホされた従来の感温材料、プなわちバイメ
タル、ヒユーズまたは形状記憶合金はイベて1個の温度
範囲または成る特定の温度で感温づるにすぎず、多数の
温度において段階的に感温し得るものではなかった。
Furthermore, the conventional temperature-sensitive materials mentioned above, i.e., bimetals, fuses, or shape memory alloys, are only sensitive in one temperature range or a specific temperature range, and are only sensitive in stages at multiple temperatures. It was not possible to feel the temperature.

それゆえに、この発明は、複数個の温度値において感温
づることができ、かつ温度変化に基づく形状の変化間を
大きくとることができる、温度感応素子を提供すること
である。
Therefore, it is an object of the present invention to provide a temperature sensitive element that can sense temperature at a plurality of temperature values and that can have a large change in shape based on temperature changes.

この発明は、要約ゴれば、熱弾性型マルテンサイト変態
に基づく形状記憶効果を有し、かつ変態温度おJ:び逆
変態)B度が異なる複数個の合金部材を連結してなる、
温度感応素子である。
In summary, this invention has a shape memory effect based on thermoelastic martensitic transformation, and is made by connecting a plurality of alloy members having different transformation temperatures and degrees of reverse transformation.
It is a temperature sensitive element.

「熱弾性型マルテンリイ[・変態」とは、変態温度と逆
変態1m度との差が比較的小さなマルテンサイト変態を
いう。この発明は、仰態温麿および逆変態温度が相互に
jli!なる複数個の熱弾性型マルテンサイト変態を生
じる合金部材を連結することにより、複数の温度範囲あ
るいは温度値にC13いて感応しく!する温度感応素子
を提供づるものである。
"Thermoelastic martenlitic transformation" refers to martensitic transformation in which the difference between the transformation temperature and 1 m degree of reverse transformation is relatively small. In this invention, the upper temperature and reverse transformation temperature are mutually equal! By connecting multiple alloy members that undergo thermoelastic martensitic transformation, C13 becomes responsive to multiple temperature ranges or temperature values! The present invention provides a temperature sensitive element that

この発明に用いられる[熱弾性型マルテンサイト変態」
を生じる「合金部材」としては、具体的には、(1)5
0〜60重量%のN1と40〜50比聞%のT1からな
るNI T1合金、またはこのNI T1合金のN1も
しくはTIの一部が、[e、Co、CU、AI 、V、
lrなどの元素からなる群から選択される一種以上の元
素で[換されたNI T1合金、あるいはCl−7n合
金、 C1−△1合金、もしくはCU−3n合金などの
銅合金、または8銅合金の一部が7−n、Δ1,3n。
[Thermoelastic martensitic transformation] used in this invention
Specifically, the "alloy member" that produces
NI T1 alloy consisting of 0 to 60% by weight of N1 and 40 to 50% by weight of T1, or a part of N1 or TI of this NI T1 alloy is [e, Co, CU, AI, V,
NI T1 alloy, or copper alloy such as Cl-7n alloy, C1-△1 alloy, or CU-3n alloy, or 8-copper alloy, which has been replaced with one or more elements selected from the group consisting of elements such as lr. A part of 7-n, Δ1,3n.

Sl、Mn、!vlo、Qa、Go、l”1.Zr、B
Sl, Mn,! vlo,Qa,Go,l”1.Zr,B
.

もしくは希土類元素などから構成さけるl!Yから)n
択される一種以上の元素で置換されたベータ黄銅型4M
通を有する銅合金が用いられ(qる。
Or it can be composed of rare earth elements, etc. from Y)n
Beta brass type 4M substituted with one or more selected elements
Copper alloys with a certain thickness are used.

複数個の合金部材の「連結」は、様々な公知の連結方法
により行なわれ得る。たとえば各合金部材は相互に直接
接合されていてもよく、あるいは各合金部材間に公知の
連結手段が取付けられていてもよい。また、各合金部材
は「?!数個」連結されていればよいのであって、2個
以上であればいくつ連結されていてもよい。さらに、必
ずしも各合金部材は「直列」に連結される必要はなく、
「並列Jに連結されていてもよい。
"Connection" of the plurality of alloy members can be performed by various known connection methods. For example, the alloy members may be directly joined to each other, or known connecting means may be installed between the alloy members. Moreover, it is sufficient that "several pieces" of each alloy member are connected, and any number of alloy members may be connected as long as it is two or more. Furthermore, each alloy member does not necessarily need to be connected in “series”;
“They may be connected in parallel J.

好ましくは、変態温度および逆変a温度の各合金部材間
の差は、最も近いもので20℃以下に選ばれ得る。これ
によって、各合金部材の形状変化を近接した湿度で達成
することができ、ピたがって多段に感温するだ(〕でな
く、連袂的にも広範な温度範囲で変化し1りるようにづ
ることができる。
Preferably, the difference in transformation temperature and inverse transformation a temperature between each alloy member may be selected to be 20° C. or less at the closest value. This allows the shape change of each alloy member to be achieved at close humidity levels, so that it changes temperature over a wide range of temperatures in conjunction with each other, rather than in multiple stages. can be written.

さらに、各合金61)材を、7目源に接続し、通7ば加
熱し、かつこの電流を制囲づることにより、湿度変化に
lづく形状の駐止Jなわち仰位をli flに1lII
IllIIすることも可能である。
Furthermore, by connecting each alloy 61) material to a power source, heating it through it, and restricting this current, the parking position J, that is, the elevation position, is changed to li fl, depending on the humidity change. 1lII
IllII is also possible.

以上のように、この発明によれば、熟弾性型マルテンリ
イト変態に糾づく形状記憶効果をイjし、かつ変M、温
度および逆変憇温j衰が異なる複数個の合金部材を連結
づるため、広範な温度範囲て・多段に感応(るこができ
、かつ温度変化に基づく変位を任廖、に制御し1qる温
度感応素子を1qることができる。この発明の導度感応
素子は、たとえIJ第1段で瀾の洲いたことを検知し、
第2段′C沸かし過ぎを検知するような多段温度検知器
、あるいは多段動作が賛求されるマニピュレータなどの
ロボット4にど、広範な産業分野において用いられ伺る
As described above, according to the present invention, it is possible to eliminate the shape memory effect caused by the mature elastic martenreith transformation, and to connect a plurality of alloy members having different deformities, temperatures, and inverse thermal decays. The conductivity sensing element of the present invention is capable of sensing a wide temperature range and in multiple stages, and can control displacement based on temperature changes. Even if the first stage of the IJ detects that it has gone into a troubled state,
It is used in a wide range of industrial fields, such as multi-stage temperature detectors that detect over-boiling of the second stage 'C, and robots 4 such as manipulators that require multi-stage operation.

以下、実施例につぎIJ明リする。In the following, IJ will be explained in Examples.

衷、11工 Cu、Zr+JJよびA1からなり、逆変amfflが
40℃、60℃および100℃となるような合金部材を
準備した。各合金部材を、直径2111111、長さ1
Qcmに加工し、第1図に示すように長手方向に延びる
よう相互にバツ]−ウエルダにより接合したつ第1図で
は、遠度B温度が40℃の合金部材1、逆変Fil温度
が60℃の合金部材2および逆変態温度が100℃の合
金部材3が順次左側から右側へ接続されて一直線に延ば
されているのが理解されるであろう。このようにして形
成した実施例1の温度感応素子4を、直線形状に固定し
たまま750℃から水中焼き入れした。次に、0℃の氷
水中で第2図に示すようなリング形状に曲げ加工を施し
た。次に、50℃、70℃および100℃に順次加熱づ
゛ると、各合金部材1,2.3が、それぞれ第3図、第
4図および第5図に示すように、各温度に感応し、順次
直線形状に戻った。づなわち、40℃で合金部材1が直
線形状となり、60℃−(−合金部材2が直線形状とな
り、100℃で合金部材3が直線形状に廓化し、したが
って100℃で前記合金部材は一直線となり温度感応水
子4全体が直線となった。
On the other hand, alloy members were prepared which were made of 11% Cu, Zr+JJ, and A1 and had inverse change amffl of 40°C, 60°C, and 100°C. Each alloy member has a diameter of 2111111 and a length of 1
In Fig. 1, the alloy member 1 has a distance B temperature of 40°C and an inversely variable Fil temperature of 60°C. It will be appreciated that the alloy member 2 having a temperature of 100° C. and the alloy member 3 having a reverse transformation temperature of 100° C. are connected sequentially from left to right and extend in a straight line. The temperature sensitive element 4 of Example 1 thus formed was quenched in water at 750° C. while being fixed in a linear shape. Next, it was bent into a ring shape as shown in FIG. 2 in ice water at 0°C. Next, when heated to 50°C, 70°C and 100°C, each alloy member 1, 2.3 becomes sensitive to each temperature, as shown in Figs. 3, 4 and 5, respectively. Then, it gradually returned to its straight shape. That is, at 40°C, the alloy member 1 becomes a straight line, at 60°C the alloy member 2 becomes a straight line, and at 100°C the alloy member 3 becomes a straight line, so at 100°C the alloy member becomes straight. Therefore, the entire temperature sensitive water element 4 becomes a straight line.

) X瀞」[と Nl 、TIから、逆変fil濡度ツメ60℃、70℃
および80℃となる組成の直径1mmの合金線を準備し
た。各合金111.12.13をハツトウエルダで接続
し、全体を第6図に示すように密にコイリングした。こ
のようにして形成した各合金線11.12.13からな
るコイル14を、(野に二Jイリンクした状態を保らつ
つ500℃て10+)間1711熱した(娶に、至濡で
第7図に示すように引き仲IJ’ した。なJ3、第6
図おJ:び第7図から明らかなように、逆変態)島度が
60℃、70″Cおよび80℃の各合金線11,12.
13は、左側から順に合金線11,12.13が弁、ト
ように接合され工いる。次に、このようにして形成した
コイル14を、60℃、70’CJ3J:び80℃に順
次加熱したところ、それぞれ第8図、第9図J3よび第
10図に示づように、順次収縮した。ブなわら、)温度
が60℃となったとき合金線11が収縮し、70℃では
合金I!12からなるコイルが収縮し、80℃では合金
線13からなるコイルが収縮し、したがって80℃では
コイル14全体が収縮し第6図に示した密にコイリング
されたコイル′14と同一形状となった。
) Xtori' [and Nl, from TI, reverse variable fil wetness claw 60℃, 70℃
An alloy wire having a diameter of 1 mm and having a composition of 80° C. was prepared. Each of the alloys 111, 12, and 13 was connected with a hat welder, and the whole was tightly coiled as shown in FIG. The coil 14 consisting of each of the alloy wires 11, 12, and 13 thus formed was heated for 1711 hours (10+ at 500° C. while keeping the wires 11, 12, and 13 connected in the open) for a period of 1711 hours. As shown in the figure, IJ' was made.J3, 6th
As is clear from Figure J: and Figure 7, the alloy wires 11, 12.
13, alloy wires 11, 12, and 13 are joined in order from the left side to form a valve. Next, the coil 14 thus formed was sequentially heated to 60°C, 70'CJ3J, and 80°C, and as shown in Fig. 8, Fig. 9 J3, and Fig. 10, respectively, it contracted sequentially. did. However, when the temperature reaches 60°C, the alloy wire 11 contracts, and at 70°C, the alloy wire I! At 80°C, the coil made of alloy wire 13 contracts, and therefore, at 80°C, the entire coil 14 contracts and has the same shape as the densely coiled coil '14 shown in Figure 6. Ta.

K瀞」シシ 実施例2で用いたコイル14と同一のコイルを準備し、
第11図に示すように固定部材25と可動部材26との
間に取付けた。第11図から明らかなように、固定部材
25から可動部02Gの方に順次逆変態潤度が60℃、
70℃および80℃の合金線11,12.13からなる
コイルが連結されている。可動部材26の反対側には、
固定部材27との間に通常の鋼で形成されたコイルばね
28を最何けた。したがって、コイル14とコイルばね
25との力の釣り合いにより、可動部材26の位置が定
まっている。一方の固定部材25と、可動部材26との
間に、電源29および制御JII装買30を直列に接続
した。すなわち固定部材25および゛可動部材26を介
してコイル14に電源29および!bll tll装r
Ij130で制御されるパルス電流を通電した。このよ
うにパルス電流を通m ケ−ることににす、コイル14
の各合金線11,12.13を加熱したところ、各合金
線11,12.13の逆変態温度60℃、70℃113
よび80℃で順次コイル14が収縮し、可動部材26の
位置△が第12図、第13図および第14図に示プよう
に順次左方に移動しt;。ところで、コイル14に流づ
電流を制御11HIffi30で制御IIツることによ
り、コイル14にお()る発熱を畠精度に制御し得るた
め、このパルス制御にJzり可動部材26の位置Aを任
唐にjll定りることが円曲て゛あった。
Prepare the same coil as the coil 14 used in Example 2,
As shown in FIG. 11, it was attached between the fixed member 25 and the movable member 26. As is clear from FIG. 11, from the fixed member 25 to the movable part 02G, the reverse transformation moisture level is 60°C,
Coils made of alloy wires 11, 12, and 13 at 70°C and 80°C are connected. On the opposite side of the movable member 26,
A coil spring 28 made of ordinary steel is disposed between the fixing member 27 and the fixing member 27. Therefore, the position of the movable member 26 is determined by the force balance between the coil 14 and the coil spring 25. A power source 29 and control JII equipment 30 were connected in series between one fixed member 25 and the movable member 26. That is, the power source 29 and ! are connected to the coil 14 via the fixed member 25 and the movable member 26. bll tll outfit
A pulsed current controlled by Ij130 was applied. In this way, we will pass a pulse current to the coil 14.
When each alloy wire 11, 12.13 was heated, the reverse transformation temperature of each alloy wire 11, 12.13 was 60°C, 70°C113
and 80° C., the coil 14 sequentially contracts, and the position Δ of the movable member 26 sequentially moves to the left as shown in FIGS. 12, 13, and 14. By the way, by controlling the current flowing through the coil 14 with the control 11HIffi 30, the heat generation in the coil 14 can be controlled with high precision. In the Tang Dynasty, there was a turning point that Jll was established.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1よ、この発明の第1の実施例の温度感応素子に
用いられる合金部材を示づ平面図である。 第2図は1.第1図に示された合金部材を変態温度以下
で加工”したIべ態を示づ平面図である。第3図ないし
第5図°は、この発明の第1の実施例にお()る形状回
復の状態を示4平面図である。第6図は、この発明の1
2の実施例に用いられる合金部材を示プ平面図である。 第7図は第6図に示された合金部材を変態温度以下で引
張り加工した状態を示づ平面図である。第8図ないし第
10図は、この発明の第2の実施例における形状回復の
状態を示づ平面図である。第11図は、この発明の第3
の実施例を示す略図的側面図である。第12図ないし第
14図は、この発明の第3の実施例における形状回復の
状態を示す略図的側面図である。 図において、1,2.3.11.12,1]Jl!1弾
性型マルテンサイト変態を生じる合金部材、4.14は
各合金部材を連結してなる温度感応素子を示す。 特許出願人 住友電気工業株式会社 第 1凹             猟乙凶毛ろ図 卑 4の
FIG. 1 is a plan view showing an alloy member used in a temperature sensitive element according to a first embodiment of the present invention. Figure 2 shows 1. FIG. 3 is a plan view showing the alloy member shown in FIG. 1 in an I-beam state processed at a temperature below the transformation temperature. FIGS. 6 is a plan view showing a state of shape recovery according to the present invention.
FIG. 3 is a plan view showing an alloy member used in Example 2; FIG. 7 is a plan view showing the state in which the alloy member shown in FIG. 6 has been subjected to tension processing at a temperature below the transformation temperature. 8 to 10 are plan views showing the state of shape recovery in the second embodiment of the present invention. FIG. 11 shows the third embodiment of this invention.
FIG. 2 is a schematic side view showing an embodiment of the invention. 12 to 14 are schematic side views showing the state of shape recovery in the third embodiment of the present invention. In the figure, 1, 2. 3. 11. 12, 1] Jl! 1 indicates an alloy member that undergoes elastic martensitic transformation, and 4.14 indicates a temperature sensitive element formed by connecting each alloy member. Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1) 熱弾性型マルテンサイ]−変態に基づく形状記
憶効果を有し、かつ変B調度および逆変態温度がV4な
る複数個の合金部材を連結してなる、温度感応素子。
(1) Thermoelastic Martensia] - A temperature sensitive element which has a shape memory effect based on transformation and is formed by connecting a plurality of alloy members having a B modulation degree and a reverse transformation temperature of V4.
(2) 前記各合金部材間の変Pt!!温度および逆変
態温度の差が20℃以下である、特許請求の範囲wSI
項記載の温度感応素子。
(2) Variation Pt between each of the alloy members! ! Claim wSI in which the difference between the temperature and the reverse transformation temperature is 20°C or less
Temperature-sensitive element as described in Section.
(3) 前記合金部材は、50〜60重量%のN1と4
0〜50重量%の王1とからなるNlT1合金、または
前記NI T1合金のN1もしくはT1の一5部がFe
、Co、C0,AI 、■、7−r、などits ’I
うなる群から選択される一種以上の元素で@換されてい
るNi’l1合金から構成される、特許請求の範囲第1
項または第2項記載の温度感応素子。
(3) The alloy member contains 50 to 60% by weight of N1 and 4.
0 to 50% by weight of NIT1 alloy, or 5% of N1 or T1 of the NI T1 alloy is Fe.
, Co, C0, AI, ■, 7-r, etc. its'I
Claim 1 consisting of a Ni'l1 alloy substituted with one or more elements selected from the group
The temperature sensitive element according to item 1 or 2.
(4) 前記合金部材は、Cu−7n合金、CU−AI
合金もしく1tcu−3n合金の各銅合金、また(よ前
記各銅合金の一部がZn、△l 、3n、Sl 、Mn
、MO,C8,Ge、TI、Zr、[3、希土類元素か
ら(6成される8Yから選択される一種以上の冗素によ
り置換されている、ベータ黄銅型構造を右する銅合金に
より構成されている、特許請求の範囲第1 TJ’iま
たは第2項記載の温度感応素子。
(4) The alloy member is Cu-7n alloy, CU-AI
copper alloys or 1tcu-3n alloys;
, MO, C8, Ge, TI, Zr, [3, rare earth elements (6) composed of a copper alloy having a beta brass type structure, substituted with one or more redundant elements selected from 8Y composed of (6). The temperature sensitive element according to claim 1 or claim 2, wherein
(5) 前記合金部材間の!i!結け、各合金部材を接
合づることににり達成されている、特8Tfi1N求の
範囲第1項ないし第4項のいずれかに記載の温度感応累
T0
(5) Between the alloy members! i! The temperature-sensitive cumulative T0 according to any one of items 1 to 4, which is achieved by bonding and joining each alloy member.
JP11223182A 1982-06-28 1982-06-28 Temperature responsive element Pending JPS593835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11223182A JPS593835A (en) 1982-06-28 1982-06-28 Temperature responsive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11223182A JPS593835A (en) 1982-06-28 1982-06-28 Temperature responsive element

Publications (1)

Publication Number Publication Date
JPS593835A true JPS593835A (en) 1984-01-10

Family

ID=14581523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11223182A Pending JPS593835A (en) 1982-06-28 1982-06-28 Temperature responsive element

Country Status (1)

Country Link
JP (1) JPS593835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208440A (en) * 1984-03-30 1985-10-21 Matsushita Electric Ind Co Ltd Thermosensitive device
US4750953A (en) * 1983-12-26 1988-06-14 Mitsubishi Kinzoku Kabushiki Kaisha Copper-base shape-memory alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750953A (en) * 1983-12-26 1988-06-14 Mitsubishi Kinzoku Kabushiki Kaisha Copper-base shape-memory alloys
JPS60208440A (en) * 1984-03-30 1985-10-21 Matsushita Electric Ind Co Ltd Thermosensitive device

Similar Documents

Publication Publication Date Title
Motzki et al. High-speed and high-efficiency shape memory alloy actuation
JPH0686866B2 (en) Shape memory alloy actuator
JP6596077B2 (en) Thermal actuator device
US4531988A (en) Thermally actuated devices
US6546806B1 (en) Multi-range force sensors utilizing shape memory alloys
JPS593835A (en) Temperature responsive element
US3378357A (en) Temperature compensated magnetic field responsive material
Stöckel Status and trends in shape memory technology
US3336119A (en) Element for sensing and controlling humidity and temperature changes
JP2943298B2 (en) Shape memory alloy device of continuous temperature memory type
JPS6153467A (en) Form memory actuating body
JPS6059054A (en) Thermal response element
JPS61227141A (en) Niti shape memory alloy wire
US3512947A (en) Combined thermoflexural and magnetoflexural material
JPS60166766A (en) Heat-sensitive actuator
US11927179B2 (en) Bi-metal actuator
JPS60169551A (en) Manufacture of shape memory alloy
Bolocan et al. Micro-actuation systems based on phase transformation films
JPS633805Y2 (en)
JPS61197770A (en) Shape deformation member
Stoeckel Fabrication and Properties of Nickel--Titanium Shape Memory Alloy Wires
JPS59107894A (en) Actuator element made of shape memory alloy
JPH0573547U (en) Shape deforming member
JPS60257385A (en) Temperature actuating element
JPS59170508A (en) Actuator