JPS6059054A - Thermal response element - Google Patents

Thermal response element

Info

Publication number
JPS6059054A
JPS6059054A JP16743783A JP16743783A JPS6059054A JP S6059054 A JPS6059054 A JP S6059054A JP 16743783 A JP16743783 A JP 16743783A JP 16743783 A JP16743783 A JP 16743783A JP S6059054 A JPS6059054 A JP S6059054A
Authority
JP
Japan
Prior art keywords
alloy
shape memory
temp
thermal response
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16743783A
Other languages
Japanese (ja)
Inventor
Tatsuyoshi Aisaka
逢坂 達吉
Naoto Kanbara
蒲原 尚登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16743783A priority Critical patent/JPS6059054A/en
Publication of JPS6059054A publication Critical patent/JPS6059054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a thermal response element having a high coefft. of curvature by forming an element from a shape memory alloy having partially different transformation temps. and by applying a strain to the element beforehand. CONSTITUTION:A thermal response element is formed from a shape memory alloy having partially different transformation temps. such as a Ti-Ni alloy or a Cu-Zn-Al alloy. The element may be formed by bonding plural kinds of such shape memory alloys together. A strain is applied to the element beforehand by carrying out bending or other working at a temp. above or below each transformation temp. When the temp. of the element is raised or dropped, each segment of the element produces the shape memory effect in succession as it attains to the transformation temp., so deformation corresponding to the quantity of the strain applied beforehand is caused to the alloy or vanished. The thermal response element is suitable for use as a temp. sensitive element or an actuator for space machinery or a robot.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は温度変化に対する作動能が大きい高感度熱応動
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a highly sensitive thermally responsive element that has high operability against temperature changes.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に熱応動素子としては、構造が簡単であシ、価格も
低いためバイメタルが多用されている。バイメタルは熱
膨張係数の異なる2種類以上の金属板を圧接した構造を
有するもので、温度変化に比例してわん血液形する作用
を利用している。従っ゛て使用する金属材料の熱膨張差
でバイメタルとしての性能−わん曲係数(温度描シのわ
ん曲率)が決定される。現用の最も高感度なバイメタル
はJIS TMI に分類されるもので、低膨張側がア
ンバー、高膨張側がマンガン合金で構成されたわん曲係
数19.6 Cxlo /”O)のバイメタルである。
Generally, bimetals are often used as thermally responsive elements because they have a simple structure and are inexpensive. Bimetal has a structure in which two or more types of metal plates with different coefficients of thermal expansion are pressed together, and utilizes the effect of forming a dowel shape in proportion to temperature changes. Therefore, the performance as a bimetal - curvature coefficient (curvature of temperature curve) is determined by the difference in thermal expansion of the metal materials used. The most highly sensitive bimetal currently in use is one classified by JIS TMI, and is a bimetal with a curvature coefficient of 19.6 Cxlo/''O) composed of amber on the low expansion side and a manganese alloy on the high expansion side.

しかしながら近年ロボットや人工錆星などのアクチュエ
ータや感温素子には、軽量なものが要求され、同一作動
能ならば小型化がIJTNI K iる。鴎感度熱応動
素子が望まれていた。
However, in recent years, actuators and temperature-sensing elements for robots, artificial rust stars, etc. are required to be lightweight, and if they have the same operational performance, they can be made smaller. A seaweed-sensitive thermoresponsive element has been desired.

一方、高感度な熱応動素子としてはNr −Ti系合金
からなるニチ7ノールなどの合金の形状記憶効果を利用
したものがあるが、こ九らは合金の変態現象に伴なうも
ので、変態温度前後でのみ応動し、バイメタルのように
ある温度範囲で、温度変化に比例した作動力をとりだす
ことができなかった。
On the other hand, there are highly sensitive thermally responsive elements that utilize the shape memory effect of alloys such as Nitinol, which is made of Nr-Ti alloys, but this is due to the transformation phenomenon of the alloy. It only responds around the transformation temperature, and unlike bimetals, it was not possible to generate an operating force proportional to temperature changes within a certain temperature range.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来技術の欠点を克服し、宇宙機器やロボ
ットの感温素子やアクチュエータに好適な高感度の熱応
動素子を提供するものでおる。
The present invention overcomes the drawbacks of the prior art and provides a highly sensitive thermally responsive element suitable for temperature sensing elements and actuators for space equipment and robots.

C発明の概要〕 本発明の高感度熱応動素子は、部分的に異なった変態温
度を有する形状記憶合金で構成し、または異なった変態
温度を複数個接合して構成し各変態温度より高温度また
は低温度で予め歪みを与えたことを特徴としている。
C. Summary of the Invention] The highly sensitive thermally responsive element of the present invention is constructed of shape memory alloys having partially different transformation temperatures, or is constructed by joining a plurality of shape memory alloys having different transformation temperatures, and is constructed of shape memory alloys having partially different transformation temperatures. Or, it is characterized by being pre-strained at low temperature.

〔発明の効果〕〔Effect of the invention〕

本発明の熱応動素子は部分的に異なった変態温度を有す
る形状記憶合金で構成または異なった変態温度を有する
形状記憶合金を複数個接合して構成し且つ各変態温度よ
り高温度または低温度で予め歪みを与えることによシ昇
降温時に、各分割部分が変態温度に到達するに従って順
次その形状記憶効果を出現させて、結果的にその合金全
体として、予め与えられた歪み量に相当する変形を出現
又は消滅きせることか出来るのを特徴としている。
The thermally responsive element of the present invention is partially composed of shape memory alloys having different transformation temperatures, or is composed of a plurality of shape memory alloys having different transformation temperatures joined together, and is made at a temperature higher or lower than each transformation temperature. By applying strain in advance, when the temperature is raised or lowered, the shape memory effect will appear in each divided part as it reaches the transformation temperature, resulting in the alloy as a whole deforming corresponding to the amount of strain given in advance. It is characterized by the ability to appear or disappear.

本発明を構成する形状記憶合金はAg−Cd合金、Au
−Cd合金、0u7AA−Nf金合金0u−Au−Zn
合金、0u−8u合金、0u−Zn合金、0u−Zn−
X (X= S i 、 an 。
The shape memory alloy constituting the present invention is Ag-Cd alloy, Au
-Cd alloy, 0u7AA-Nf gold alloy 0u-Au-Zn
Alloy, 0u-8u alloy, 0u-Zn alloy, 0u-Zn-
X (X=S i , an .

A4.Ga )合金、In−TA!合金、N 1−A1
合金、Ti−Ni゛合金、Fe−Pt合金、Fe−Pd
合金、およびMn−0u合金などがある。
A4. Ga) alloy, In-TA! Alloy, N1-A1
Alloy, Ti-Ni alloy, Fe-Pt alloy, Fe-Pd
alloys, and Mn-0u alloys.

これらの合金系において、部分的に配合組成の変動した
金属粉末を焼結したり、均一組成の合金体に部分的に異
なった熱処理や、加工率の異なった冷間加工を施すこと
でそれぞれに異なった変態温度を有した形状記憶合金を
得ることができる。
In these alloy systems, each can be made by sintering metal powders with partially varied compositions, or by subjecting an alloy body of uniform composition to partially different heat treatments or cold working with different processing rates. Shape memory alloys with different transformation temperatures can be obtained.

さらに部分的に異なった温度に保持して合金元素を拡散
処理したり、イオン注入等の方法を用いても当該形状記
憶合金を得ることができる。
Furthermore, the shape memory alloy can also be obtained by performing a diffusion treatment on alloying elements while partially holding the alloy at different temperatures, or by using methods such as ion implantation.

また所望の熱応動を要求する温度範囲が大きい場合は、
当該熱応動素子の温度変化#1線に不自然さを生じさせ
ないように、異なった変態温度を有する形状記憶合金の
数を増やし分割の数を増加させるのが望ましい。さらに
複数個の形状Δビ憶合金を接合する場合、通常のアーク
溶接を用いてもよいが、形状記憶合金の変態温度は構成
元素の含有率に依存するため、電子線溶接、レーザ溶接
、抵抗溶接、固相および液相の拡散溶接などの溶融幅の
小さい接合方法が望ましい。
Also, if the temperature range that requires the desired thermal response is large,
In order to prevent unnaturalness from occurring in the temperature change #1 line of the thermally responsive element, it is desirable to increase the number of shape memory alloys having different transformation temperatures and increase the number of divisions. Furthermore, when joining multiple shape memory alloys, normal arc welding may be used, but since the transformation temperature of shape memory alloys depends on the content of the constituent elements, electron beam welding, laser welding, resistance welding, etc. Bonding methods with small melt widths such as welding, solid phase and liquid phase diffusion welding are desirable.

実施例1 原子チでTi−50%Ni、 Ti−50゜25%Ni
、 Ti−50,5%Ni、 Ti−50,75%Ni
、 Ti−51%Niの合金粉末を用意し、2511I
II径の円筒型の中へ軸方向に層をなすようにつめ、6
TOn/α2のプレス処理を行なった。
Example 1 Atomic Ti-50%Ni, Ti-50°25%Ni
, Ti-50,5%Ni, Ti-50,75%Ni
, Ti-51%Ni alloy powder was prepared, and 2511I
Fill it in layers in the axial direction into a cylindrical mold with a diameter of II.
Pressing treatment of TOn/α2 was performed.

次に10・ttrmHgの真空炉の中で900℃×3時
間の焼結処理を施し、複合円柱を得た。
Next, a sintering process was performed at 900° C. for 3 hours in a vacuum furnace at 10·ttrmHg to obtain a composite cylinder.

この円柱から、厚さ1朋、幅10順、長さ50+mの板
状TPを切シ出し、700℃で焼鈍後、400℃でR=
= 25 mmの曲げ加工を施した。このTPを一76
℃で直線状に戻し片持ち方式で支持しく作動長45朋)
自由端の変位を測定したところ100℃で4Qmmであ
った。との熱応動素子のわん時係数は112.2 X 
10 /”Oであった。
A plate-like TP with a thickness of 1 mm, a width of 10 mm, and a length of 50+ m is cut out from this cylinder, and after annealing at 700°C, R = 400°C.
= 25 mm bending process was performed. This TP is 176
Return it to a straight line at ℃ and support it with a cantilever method (operating length 45 mm)
When the displacement of the free end was measured, it was 4 Qmm at 100°C. The time coefficient of the thermally responsive element is 112.2
10/”O.

実施例2 原子チで0u−13,5%Zn−8%Al、 0u−1
5,25%Zn−7,56%)J、 0u−17% Z
n−7,13’161’JJ、 0u−18,75%Z
n−6,69% )J、 0u−20,5% Zn−6
,25% !’J の合金を高周波溶解炉にてそれぞれ
溶製した。これらの合金から厚さ3趨、幅15龍、20
間長さの平板を゛切シ出し、原子線溶接によって厚さ3
龍、幅15fiil、長さ100朋の複合円柱を得た。
Example 2 Atomic 0u-13, 5%Zn-8%Al, 0u-1
5,25%Zn-7,56%)J, 0u-17%Z
n-7,13'161'JJ, 0u-18,75%Z
n-6,69%) J, 0u-20,5% Zn-6
,25%! 'J alloys were each melted in a high-frequency melting furnace. From these alloys, the thickness is 3, the width is 15, and the width is 20.
A flat plate with a length of
A composite cylinder with a width of 15 fiils and a length of 100 mm was obtained.

この複合平板から厚さ1um、幅1olI+!、長さ1
00絽の試験片を切シ出し500 ”0で焼鈍した。こ
の試験片を15℃で” = 50111mの曲げ加工を
施し、片持ち方式で支持(作動長90ii)l、自由端
の変位を測定したところ125℃で80inでおった。
This composite flat plate has a thickness of 1um and a width of 1olI+! , length 1
A test piece of 00 silk was cut out and annealed at 500"0. This test piece was bent at 15°C for a distance of 50111 m, supported in a cantilever manner (working length 90 II), and the displacement of the free end was measured. As a result, the temperature was 80 inches at 125°C.

この熱応動素子のわん時係数は79.o X 10−’
/−C! であった。
The momentary coefficient of this thermally responsive element is 79. o X 10-'
/-C! Met.

以上実施例で述べたように本発明は部分的に異なった変
態温度を有する形状記憶合金で構成し予め歪みを付与す
ることにょシ非常に大きなわん時係数を持った熱応@素
子を提供するものでらシ、その工業的価値は大きいもの
でらる。
As described above in the embodiments, the present invention provides a thermally responsive element which is constructed of shape memory alloys having partially different transformation temperatures and has a very large momentary coefficient when strain is applied in advance. However, its industrial value is great.

Claims (1)

【特許請求の範囲】 ′(1) 部分的に異なった変態温度を有する形状記憶
合金で構成し、予め各変態温°度より高温度または低温
度で歪みを与えたことを特徴とする熱応動素子。 (2)異なった変態温度を有する形状記憶合金を
[Scope of Claims] '(1) A thermal response characterized in that it is composed of shape memory alloys having partially different transformation temperatures and is strained in advance at a temperature higher or lower than each transformation temperature. element. (2) Shape memory alloys with different transformation temperatures
JP16743783A 1983-09-13 1983-09-13 Thermal response element Pending JPS6059054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16743783A JPS6059054A (en) 1983-09-13 1983-09-13 Thermal response element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16743783A JPS6059054A (en) 1983-09-13 1983-09-13 Thermal response element

Publications (1)

Publication Number Publication Date
JPS6059054A true JPS6059054A (en) 1985-04-05

Family

ID=15849687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16743783A Pending JPS6059054A (en) 1983-09-13 1983-09-13 Thermal response element

Country Status (1)

Country Link
JP (1) JPS6059054A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115029U (en) * 1987-01-17 1988-07-25
JPH09176765A (en) * 1996-12-13 1997-07-08 Tokin Corp Shape memory alloy wire for clothing
US10047421B2 (en) 2009-08-07 2018-08-14 Smarter Alloys Inc. Methods and systems for processing materials, including shape memory materials
JP2022169459A (en) * 2021-04-20 2022-11-09 華南理工大学 Ultrahigh-superelasticity titanium-nickel shape memory alloy with sequentially structured functional unit, and 4d printing preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115029U (en) * 1987-01-17 1988-07-25
JPH0421780Y2 (en) * 1987-01-17 1992-05-19
JPH09176765A (en) * 1996-12-13 1997-07-08 Tokin Corp Shape memory alloy wire for clothing
US10047421B2 (en) 2009-08-07 2018-08-14 Smarter Alloys Inc. Methods and systems for processing materials, including shape memory materials
JP2022169459A (en) * 2021-04-20 2022-11-09 華南理工大学 Ultrahigh-superelasticity titanium-nickel shape memory alloy with sequentially structured functional unit, and 4d printing preparation method and application thereof

Similar Documents

Publication Publication Date Title
US6622558B2 (en) Method and sensor for detecting strain using shape memory alloys
US6149742A (en) Process for conditioning shape memory alloys
JPS60121247A (en) Shape memory alloy
JPH0433862B2 (en)
JPS6059054A (en) Thermal response element
Pu et al. Martensite transformation and shape memory effect of NiTi-Zr high-temperature shape memory alloys
JPS626738B2 (en)
JPS5818427B2 (en) Method for producing metal articles with repeated shape memory
JP2007211350A (en) Ferromagnetic shape-memory alloy used for magnetic field-sensitive actuator or sensor utilizing magnetism
US4013425A (en) Thermometric bimetallic structure of high strength at high temperature
US4759906A (en) Function alloy and method of producing the same
EP3530765B1 (en) Method to manufacture al-mg-sc-zr alloys for solar cell connectors
Ishida Effects of grain size and Co addition on the transformation temperatures of Ti–Ni–Zr thin films
JPH0645850B2 (en) Magnetostrictive actuator manufacturing method
JPS61227141A (en) Niti shape memory alloy wire
JPS6214216B2 (en)
JPS626735B2 (en)
JPH0128252B2 (en)
US20230184231A1 (en) Bi-metal actuator
Rumpf et al. Superelastic Thin Film NiTi-Polymer Composites and Sputtered Thin-walled Tubes
JPH04247835A (en) Shape memory alloy actuator material
US3678757A (en) Bimetallic elements
JP2724815B2 (en) Shape memory alloy coil spring and method of manufacturing the same
US3591353A (en) Bimetallic elements having heat-expansion characteristic
JP2530716B2 (en) Circuit protection element