JPS626735B2 - - Google Patents

Info

Publication number
JPS626735B2
JPS626735B2 JP58184725A JP18472583A JPS626735B2 JP S626735 B2 JPS626735 B2 JP S626735B2 JP 58184725 A JP58184725 A JP 58184725A JP 18472583 A JP18472583 A JP 18472583A JP S626735 B2 JPS626735 B2 JP S626735B2
Authority
JP
Japan
Prior art keywords
shape memory
less
alloys
content
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58184725A
Other languages
Japanese (ja)
Other versions
JPS6077948A (en
Inventor
Kazuhiko Tabei
Kunio Kishida
Akifumi Hatsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP18472583A priority Critical patent/JPS6077948A/en
Publication of JPS6077948A publication Critical patent/JPS6077948A/en
Publication of JPS626735B2 publication Critical patent/JPS626735B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた形状記憶特性を有し、特
に耐粒界割れ性のすぐれたCu系形状記憶合金に
関するものである。 一般に、形状記憶合金における形状記憶効果
は、高温のβ相から低温の熱弾性型マルテンサイ
ト相への相変化に起因するものであり、これには
温度変化によつて一方向(非可逆的)に、あるい
は可逆的に形状が変化する現象があり、前者の一
方向現象を利用した適用分野としては、例えばコ
ネクターやカツプリングなどの接合部品があり、
また後者の可逆的現象を利用した適用分野には、
窓開閉器、感熱作動スプリンクラー、感熱作動安
全スイツチ、およびヒートエンジンなどの熱駆動
装置がある。 さらに、形状記憶合金には、数%〜10数%の歪
を加えても応力を除去すると元の戻る超弾性効果
があることから、メガネフレームや真空シール用
パツキングなどとして用いられ、さらに、また防
振効果ももつことから、歯車などの防振防音を必
要とされる各種機械部品の製造にも用いられてい
る。 従来、形状記憶合金には多数のものがあり、実
用に供されているが、中でもZn:10〜35%、
Al:1〜12%を含有し、残りがCuと不可避不純
物からなる組成(以上重量%、以下%は重量%を
示す)を有するCu系形状記憶合金は、すぐれた
形状記憶特性をもつことから、注目されている合
金の1つである。 しかし、このように上記の従来Cu系形状記憶
合金は、すぐれた形状記憶特性をもつものの、変
位を拘束したり、負荷をかけたりして内部応力を
発生させた場合、比較的低い内部応力で粒界割れ
を起すものであつた。 そこで、本発明者等は、上述のような観点か
ら、上記の従来Cu系形状記憶合金に着目し、こ
の合金のもつすぐれた形状記憶特性を損なうこと
なく、これにすぐれた耐粒界割れ性を付与すべく
研究を行なつた結果、 (a) 従来Cu系形状記憶合金が比較的低い内部応
力で粒界割れを起すのは結晶粒界に原因がある
ものと解されること。すなわち、第1図に焼入
後の従来Cu系形状記憶合金(Zn:20.8%、
Al:6.0%含有)の顕微鏡による組織写真(50
倍)を示したが、図示されるように従来Cu系
形状記憶合金においては結晶粒界が直線的(平
面的)であり、したがつて粒界に応力が集中し
易く、かつ割れ起点が生じると比較的容易に成
長し、伝搬するようになることに原因するもの
と考えられること。 (b) 一方、上記の従来Cu系形状記憶合金に合金
成分としてFeを含有させると、第2図に同じ
く焼入後の合金(Zn:20.9、Al:5.9%、Fe:
0.48%含有)の顕微鏡による組織写真(50倍)
で示されるように、結晶粒界が複雑に屈曲した
ものとなり、このような状態では、応力が集中
し難く、また割れの起点が生じても成長および
伝搬がしにくいことから、粒界割れが生じ難く
なるばかりでなく、形状記憶特性に何らの悪影
響を及ぼさないこと。 (c) さらに、合金成分として、B、Zr、Ti、Siお
よびPのうちの1種または2種以上を含有させ
ると、Fe成分との共存において、耐粒界割れ
性が一段と改善されるようになること。 以上(a)〜(c)に示される知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、 Zn:15〜35%、 Al:3.2〜10%、 Fe:0.01〜1%、 を含有し、さらに、 B:0.001〜0.01%未満、 Zr:0.001〜0.2%、 Ti:0.001〜0.05%未満、 Si:0.001〜0.5%、 P:0.001〜0.01%未満、 のうちの1種または2種以上を含有し、残りが
Cuと不可避不純からなる組成を有する、耐粒界
割れ性および形状記憶特性にすぐれたCu系形状
記憶合金に特徴を有するものである。 つぎに、この発明のCu系形状記憶合金におい
て、成分組成を上記の通りに限定した理由を説明
する。 (a) ZnおよびAl ZnおよびAl成分は形状記憶効果を発現させ
るための成分であり、したがつてその含有量が
それぞれZn:15%未満およびAl:3.2%未満で
は所望の形状記憶効果を確保することができ
ず、さらにAl成分には、変態温度を調整し、
かつ高温での脱亜鉛を防止するばかりでなく、
Fe成分による耐粒界割れ性の改善作用を十分
に発揮せしめる作用があるが、その含有量が
3.2%未満では、形状記憶効果を付与するに際
して施されるβ化処理温度が850℃を越えて高
くなるので、脱亜鉛現象も起き易くなり、さら
にFe成分の含有量に関係なく、所望の耐粒界
割れ性を得ることができなくなり、一方その含
有量がそれぞれZn:35%およびAl:10%を越
えると脆化傾向が現われるようになることか
ら、その含有量を、それぞれZn:15〜35%、
Al:3.2〜10%と定めた。 (b) Fe Fe成分には、特にAl:3.2%以上の含有にお
いて、結晶粒界の形状を複雑化し、もつて耐粒
界割れ性を著しく向上させる作用があるが、そ
の含有量が0.01%未満では前記作用に所望の効
果が得られず、一方1%を越えて含有させる
と、形状記憶付与のための熱処理条件がわずか
に変化しても、特性が著しく変化するようにな
つて均質な特性をもつた製品を量産するのが困
難になるばかりでなく、ヒステリシスが大きく
なつて可逆的使用の場合に問題となることか
ら、その含有量を0.01〜1%、望ましくは0.1
〜0.6%と定めた。 (c) B、Zr、Ti、Si、およびP これらの成分には、Fe成分との共存におい
て、さらに一段と耐粒界割れ性を向上させる作
用があるが、その含有量が、それぞれ0.001%
未満では所望の耐粒界割れ性向上効果が得られ
ず、一方、その含有量が、それぞれB:0.01%
以上、Zr:0.2%超、Ti:0.05%以上、Si:0.5
%超、およびP:0.01%以上になると、Fe成
分の場合と同様に均質な特性をもつた製品を量
産することが困難になるばかでなく、ヒステリ
シスも大きくなり過ぎることから、その含有量
を、それぞれB:0.001〜0.01%未満、Zr:
0.001〜0.2%、Ti:0.001〜0.05%未満、Si:
0.001〜0.5%、およびP:0.001〜0.01%未満と
定めた。 つぎに、この発明のCu系形状記憶合金を実施
例により具体的に説明する。 実施例 実周波誘導加熱炉を用い、それぞれ第1表に示
される成分組織をもつたCu合金溶湯を調製し、
インゴツトに鋳造した後、通常の条件で熱間鍛造
および熱間圧延を施して幅:5mm×厚さ:1mmの
板材に加工し、引続いて580〜850℃の範囲内の所
定温度に1時間保持の条件でβ化処理を行なつた
後水冷することによつて本発明Cu合金1〜13お
よび従来Cu合金の板材をそれぞれ製造した。 ついで、この結果得られた本発明Cu合金1〜
13および従来Cu合金の板材について、第3図に
斜視図で示される形状を有し、かつ曲率半径Rが
それぞれ50mm、25mm、20mm、および16mmの4種類
が変形拘束治具T1,T2を用い、これらの治具
T1,T2間に前記の板材の試片Sを、マルテンサ
イト相組織とした状態で、それぞれ図示されるよ
うにはさんで変形させ、この状態で、Ms点+40
℃の温度に加熱して内部応力を発生させた後、
Ms点−20℃の温度に冷却を1サイクルとし、こ
の熱サイクルを10回繰り返し行ない、試験後、実
体顕微鏡により粒界割れの有無を観察することに
よつて耐粒界割れ性を評価した。この結果を第1
表に示した。なお、第1表には、粒界割れのない
場合を〇印で、また粒界割れの発生があつた場合
を×印で示した。
The present invention relates to a Cu-based shape memory alloy that has excellent shape memory properties, and particularly excellent resistance to intergranular cracking. In general, the shape memory effect in shape memory alloys is caused by a phase change from a high-temperature β phase to a low-temperature thermoelastic martensitic phase. There is a phenomenon in which the shape changes reversibly or reversibly. Application fields that utilize the former one-way phenomenon include, for example, joining parts such as connectors and couplings.
In addition, in the field of application that utilizes the latter reversible phenomenon,
There are thermally driven devices such as window openers, thermally activated sprinklers, thermally activated safety switches, and heat engines. In addition, shape memory alloys have a superelastic effect that returns to their original state when the stress is removed even when a strain of several to several tens of percent is applied, so they are used as eyeglass frames and packing for vacuum seals. Because it also has a vibration-proofing effect, it is also used in the manufacture of various mechanical parts such as gears that require vibration and soundproofing. Conventionally, there are many shape memory alloys in practical use, among which Zn: 10-35%,
Cu-based shape memory alloys containing 1 to 12% Al and the rest consisting of Cu and unavoidable impurities (the above weight percent, the below weight percent) have excellent shape memory properties. , is one of the alloys that is attracting attention. However, although the above-mentioned conventional Cu-based shape memory alloys have excellent shape memory properties, when internal stress is generated by restraining displacement or applying a load, the internal stress is relatively low. This caused grain boundary cracking. Therefore, from the above-mentioned viewpoint, the present inventors focused on the conventional Cu-based shape memory alloy described above, and developed an excellent intergranular cracking resistance without impairing the excellent shape memory properties of this alloy. As a result of our research, we found that (a) grain boundaries are the cause of grain boundary cracking in conventional Cu-based shape memory alloys with relatively low internal stress; In other words, Figure 1 shows the conventional Cu-based shape memory alloy (Zn: 20.8%,
Al: 6.0% content) microscopic structure photograph (50
However, as shown in the figure, in conventional Cu-based shape memory alloys, the grain boundaries are linear (planar), so stress tends to concentrate at the grain boundaries and crack initiation points occur. This is thought to be due to the fact that it grows and spreads relatively easily. (b) On the other hand, when Fe is added as an alloy component to the above conventional Cu-based shape memory alloy, the alloy after quenching (Zn: 20.9, Al: 5.9%, Fe:
0.48% content) microscopic structure photograph (50x magnification)
As shown in Figure 2, the grain boundaries are complicatedly curved, and in this state, it is difficult for stress to concentrate, and even if a crack starts, it is difficult for it to grow and propagate, making it difficult for grain boundary cracks to occur. Not only should this be less likely to occur, but it should not have any adverse effect on shape memory properties. (c) Furthermore, when one or more of B, Zr, Ti, Si, and P are included as alloy components, intergranular cracking resistance is further improved in coexistence with Fe components. To become. The findings shown in (a) to (c) above were obtained. This invention was made based on the above knowledge, and contains Zn: 15 to 35%, Al: 3.2 to 10%, Fe: 0.01 to 1%, and further contains B: 0.001 to less than 0.01%. , Zr: 0.001 to 0.2%, Ti: 0.001 to less than 0.05%, Si: 0.001 to 0.5%, P: 0.001 to less than 0.01%.
It is a Cu-based shape memory alloy that has a composition consisting of Cu and unavoidable impurities, and has excellent intergranular cracking resistance and shape memory properties. Next, the reason why the composition of the Cu-based shape memory alloy of the present invention is limited as described above will be explained. (a) Zn and Al Zn and Al components are components for expressing the shape memory effect. Therefore, if their content is less than 15% Zn and less than 3.2% Al, the desired shape memory effect is ensured. In addition, the Al component can be adjusted by adjusting the transformation temperature.
It not only prevents dezincing at high temperatures, but also
The Fe component has the effect of fully exerting the effect of improving intergranular cracking resistance, but its content is
If the content is less than 3.2%, the temperature of the beta treatment used to impart the shape memory effect will exceed 850°C, making it easy for dezincification to occur, and furthermore, regardless of the Fe component content, the desired resistance will not be achieved. It becomes impossible to obtain intergranular crackability, and on the other hand, if the content exceeds Zn: 35% and Al: 10%, embrittlement tendency will appear, so the content should be adjusted to Zn: 15 to 15%. 35%,
Al: set at 3.2 to 10%. (b) Fe The Fe component has the effect of complicating the shape of grain boundaries and significantly improving intergranular cracking resistance, especially when the content is Al: 3.2% or more, but the content is 0.01%. If the content is less than 1%, the desired effect cannot be obtained; on the other hand, if the content exceeds 1%, the properties will change significantly even if the heat treatment conditions for imparting shape memory change slightly, resulting in a homogeneous shape. Not only will it be difficult to mass-produce products with these characteristics, but the hysteresis will increase and become a problem in reversible use, so the content should be reduced to 0.01 to 1%, preferably 0.1%.
It was set at ~0.6%. (c) B, Zr, Ti, Si, and P These components have the effect of further improving intergranular cracking resistance when coexisting with the Fe component, but their content is 0.001% each.
If the content is less than 0.01%, the desired effect of improving intergranular cracking resistance cannot be obtained.
Above, Zr: over 0.2%, Ti: over 0.05%, Si: 0.5
% and P: 0.01% or more, it is not only difficult to mass produce products with homogeneous characteristics as in the case of Fe components, but also the hysteresis becomes too large. , respectively B: 0.001 to less than 0.01%, Zr:
0.001 to 0.2%, Ti: 0.001 to less than 0.05%, Si:
0.001 to 0.5%, and P: 0.001 to less than 0.01%. Next, the Cu-based shape memory alloy of the present invention will be specifically explained using examples. Example Using a real frequency induction heating furnace, molten Cu alloys having the composition structures shown in Table 1 were prepared,
After casting into an ingot, it is hot-forged and hot-rolled under normal conditions to form a plate with a width of 5mm x thickness of 1mm, and then heated to a specified temperature within the range of 580 to 850℃ for 1 hour. Plate materials of Cu alloys 1 to 13 of the present invention and conventional Cu alloys were produced by β-izing treatment under holding conditions and then water cooling. Next, the resulting Cu alloys of the present invention 1~
13 and conventional Cu alloy plates, four types of deformation restraint jigs T 1 and T 2 have the shape shown in the perspective view in Fig. 3 and have curvature radii R of 50 mm, 25 mm, 20 mm, and 16 mm, respectively. using these jigs
The specimen S of the plate material, which has a martensitic phase structure, is sandwiched between T 1 and T 2 and deformed as shown in the figure, and in this state, the Ms point +40
After heating to a temperature of °C to generate internal stress,
One cycle was cooling to a temperature of -20° C. at the Ms point, and this thermal cycle was repeated 10 times. After the test, intergranular cracking resistance was evaluated by observing the presence or absence of intergranular cracking using a stereoscopic microscope. This result is the first
Shown in the table. In Table 1, the cases where there was no intergranular cracking are indicated by ◯, and the cases where intergranular cracking occurred are indicated by x.

【表】【table】

【表】 また、形状記憶効果を評価する目的で、上記本
発明Cu合金1〜13および従来のCu合金のヒステ
リシスをそれぞれ求め、第1表に示した。 なお、ヒステリシスの算出は、上記の板材試片
を加熱炉内で所定温度に加熱した後冷却し、この
加熱冷却中に変化する電気抵抗を連続的に測定し
て、第4図に示されるヒステリシス曲線を作成
し、このヒステリシス曲線により、加熱時におけ
るマルテンサイト相からβ相へ変化する際の電気
抵抗の最大値(A1)および最小値(A2)、並びに
冷却時におけるβ相からマルテンサイト相へ変化
する際の電気抵抗の最大値(M1)および最小値
(M2)を求め、(A2−A1)/2に相当する温度をA
点(℃)とし、かつ(M2−M1)/2に相当する温
度をM点(℃)とし、(A−M)をもつてヒステ
リシスとした。 第1表に示される結果から、本発明Cu合金1
〜13は、いずれも従来Cu合金に比して一段とす
ぐれた耐粒界割れ性を示し、かつ従来Cu合金と
同等のヒステリシスを有し、すぐれた形状記憶特
性をもつことが明らかである。 上述のように、この発明のCu系形状記憶合金
は、すぐれた形状記憶特性を保持した状態で、す
ぐれた耐粒界割れ性を有するのである。
[Table] In addition, for the purpose of evaluating the shape memory effect, the hysteresis of the Cu alloys 1 to 13 of the present invention and the conventional Cu alloy were determined and shown in Table 1. The hysteresis is calculated by heating the above-mentioned plate specimen to a predetermined temperature in a heating furnace, cooling it, and continuously measuring the electrical resistance that changes during this heating and cooling. Create a curve, and use this hysteresis curve to determine the maximum value (A 1 ) and minimum value (A 2 ) of the electrical resistance when changing from the martensite phase to the β phase during heating, and the change from the β phase to martensite during cooling. Find the maximum value (M 1 ) and minimum value (M 2 ) of the electrical resistance when changing to the phase, and calculate the temperature equivalent to (A 2 - A 1 )/2 by A
The temperature corresponding to (M 2 -M 1 )/2 was defined as point M (°C), and (A-M) was defined as hysteresis. From the results shown in Table 1, the present invention Cu alloy 1
It is clear that all of No. 1 to No. 13 exhibit better intergranular cracking resistance than conventional Cu alloys, have hysteresis equivalent to conventional Cu alloys, and have excellent shape memory properties. As mentioned above, the Cu-based shape memory alloy of the present invention has excellent intergranular cracking resistance while maintaining excellent shape memory properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCu−Zn−Al系形状記憶合金の顕微鏡
による組織写真、第2図はCu−Zn−Al−Fe系形
状記憶合金の顕微鏡による組織写真、第3図は耐
粒界割れ性を評価する試験で用いた変形拘束治具
の使用状態を示す斜視図、第4図はヒステリシス
曲線を示す図である。 図面において、T1,T2……変形拘束治具、S
……板材試片。
Figure 1 is a microscopic micrograph of the Cu-Zn-Al shape memory alloy, Figure 2 is a microscopic micrograph of the Cu-Zn-Al-Fe shape memory alloy, and Figure 3 is the intergranular cracking resistance. FIG. 4 is a perspective view showing the state of use of the deformation restraint jig used in the evaluation test, and FIG. 4 is a diagram showing a hysteresis curve. In the drawing, T 1 , T 2 ... deformation restraint jig, S
...Plate specimen.

Claims (1)

【特許請求の範囲】 1 Zn:15〜35%、 Al:3.2〜10%、 Fe:0.01〜1%、 を含有し、さらに、 B:0.001〜0.01%未満、 Zr:0.001〜0.2%、 Ti:0.001〜0.05%未満、 Si:0.001〜0.5%、 P:0.001〜0.01%未満、 のうちの1種または2種以上、 を含有し、残りがCuと不可避不純物からなる組
成(以上重量%)を有することを特徴とする耐粒
界割れ性のすぐれたCu系形状記憶合金。
[Claims] 1 Contains Zn: 15-35%, Al: 3.2-10%, Fe: 0.01-1%, and further contains: B: 0.001-less than 0.01%, Zr: 0.001-0.2%, Ti : 0.001 to less than 0.05%, Si: 0.001 to 0.5%, P: 0.001 to less than 0.01%, a composition containing one or more of the following, with the remainder consisting of Cu and unavoidable impurities (by weight) A Cu-based shape memory alloy with excellent intergranular cracking resistance.
JP18472583A 1983-10-03 1983-10-03 Shape memory cu alloy having superior resistance to intercrystalline cracking Granted JPS6077948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18472583A JPS6077948A (en) 1983-10-03 1983-10-03 Shape memory cu alloy having superior resistance to intercrystalline cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18472583A JPS6077948A (en) 1983-10-03 1983-10-03 Shape memory cu alloy having superior resistance to intercrystalline cracking

Publications (2)

Publication Number Publication Date
JPS6077948A JPS6077948A (en) 1985-05-02
JPS626735B2 true JPS626735B2 (en) 1987-02-13

Family

ID=16158271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18472583A Granted JPS6077948A (en) 1983-10-03 1983-10-03 Shape memory cu alloy having superior resistance to intercrystalline cracking

Country Status (1)

Country Link
JP (1) JPS6077948A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138032A (en) * 1983-12-26 1985-07-22 Mitsubishi Metal Corp Cu base shape memory alloy
JPS61101732A (en) * 1984-10-23 1986-05-20 Shimizu Constr Co Ltd Clean room
JPS6473035A (en) * 1987-09-14 1989-03-17 Yoshida Kogyo Kk Cu shape memory alloy
CN113930693B (en) * 2021-10-14 2022-07-15 哈尔滨工程大学 Fe-Mn-Al-Ni-Cu super-elastic alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171542A (en) * 1982-03-31 1983-10-08 Dowa Mining Co Ltd Functional cu-zn-al alloy
JPS59145744A (en) * 1983-02-08 1984-08-21 Furukawa Electric Co Ltd:The Shape memory cu-zn-al alloy
JPS6045696A (en) * 1983-08-22 1985-03-12 日本ゼオン株式会社 Paper coating composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171542A (en) * 1982-03-31 1983-10-08 Dowa Mining Co Ltd Functional cu-zn-al alloy
JPS59145744A (en) * 1983-02-08 1984-08-21 Furukawa Electric Co Ltd:The Shape memory cu-zn-al alloy
JPS6045696A (en) * 1983-08-22 1985-03-12 日本ゼオン株式会社 Paper coating composition

Also Published As

Publication number Publication date
JPS6077948A (en) 1985-05-02

Similar Documents

Publication Publication Date Title
Remy et al. Twinning and strain-induced fcc→ hcp transformation on the mechanical properties of Co Ni Cr Mo alloys
US3174851A (en) Nickel-base alloys
Otsuka et al. Effects of alloying additions on Fe-Mn-Si shape memory alloys
Nam et al. Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys
EP0176272B1 (en) Shape memory alloy and method for producing the same
US4740253A (en) Method for preassembling a composite coupling
JPS60121247A (en) Shape memory alloy
KR870004156A (en) Copper alloy and its manufacturing method
EP0161066B1 (en) Nickel/titanium-base alloys
JPS626738B2 (en)
JPS626735B2 (en)
US3773570A (en) Construction element having strongly negative temperature coefficients of elasticity moduli
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
SHIBATA et al. Serration of Fe-Ni austenitic steels at very low temperatures and its computer simulation
JP3964360B2 (en) Ferromagnetic shape memory alloys for magnetic field responsive actuators or magnetic sensors
JPH0547620B2 (en)
JPH01180930A (en) Cu alloy for terminal and connector
US4076560A (en) Wrought copper-silicon based alloys with enhanced elasticity and method of producing same
JPH0480097B2 (en)
JPH0647700B2 (en) Long range ordered alloy
Genevray The martensitic transformation in muntz metal
Ilczuk et al. Change of dislocation density during reversible martensitic transformation in Cu Zn Al
JP2002105561A (en) Low thermal expansion alloy
JPS5935978B2 (en) shape memory titanium alloy
JPS60155657A (en) Production of ti-ni superelastic alloy