JPS58171542A - Functional cu-zn-al alloy - Google Patents

Functional cu-zn-al alloy

Info

Publication number
JPS58171542A
JPS58171542A JP5344182A JP5344182A JPS58171542A JP S58171542 A JPS58171542 A JP S58171542A JP 5344182 A JP5344182 A JP 5344182A JP 5344182 A JP5344182 A JP 5344182A JP S58171542 A JPS58171542 A JP S58171542A
Authority
JP
Japan
Prior art keywords
alloy
grain size
functional
martensite
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5344182A
Other languages
Japanese (ja)
Other versions
JPS6045695B2 (en
Inventor
Shigeru Ooyama
大山 繁
Hiroyuki Kai
博之 甲斐
Toshio Asano
浅野 敏夫
Takefumi Kasashima
笠嶋 武文
Takeshi Asakura
浅倉 健
Toshio Kurosawa
黒沢 利夫
Tadaaki Kato
加藤 忠昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA KINZOKU KOGYO KK
NIPPON BURASU KOGYO KK
Dowa Holdings Co Ltd
Original Assignee
DOWA KINZOKU KOGYO KK
NIPPON BURASU KOGYO KK
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA KINZOKU KOGYO KK, NIPPON BURASU KOGYO KK, Dowa Mining Co Ltd filed Critical DOWA KINZOKU KOGYO KK
Priority to JP5344182A priority Critical patent/JPS6045695B2/en
Publication of JPS58171542A publication Critical patent/JPS58171542A/en
Publication of JPS6045695B2 publication Critical patent/JPS6045695B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a functional Cu-Zn-Al alloy with especially stabilized temp. sensitivity and enhanced resistance to thermal fatigue due to repeated use, by adding a specified precentage of Fe and/or P to a Cu-Zn-Al alloy and by alloying them. CONSTITUTION:0.01-1.0% Fe, 0.01-0.05% P and/or 0.01-0.1% B are added to a Cu-Zn-Al alloy consisting of 68-72% Cu, 2.8-4.5% Al and the balance Zn to obtain a functional Cu-Zn-Al alloy. This alloy is a shape memory alloy contg. martensite having <=500mum, especially <=100mum average grain size. This shape memory alloy has remarkably improved temp. sensitivity, shape restoring power and fatigue resistance. Unsatisfactory shape restoring power and fatigue resistance are considered to be the maximum defects of a convertional alloy.

Description

【発明の詳細な説明】 本発明Its Cu −Zn−Al系形状記憶合金に関
するもので、特に温度感応性の安定化及び繰り返し熱疲
労性を向上させた形状記憶合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shape memory alloy based on Cu-Zn-Al, and particularly relates to a shape memory alloy with stabilized temperature sensitivity and improved repeated thermal fatigue resistance.

近年、金属材料開発の指向として特殊性質の発現可能な
機能材が重要視されつつあり、中でも形状記憶合金は、
温度感応性と振動減衰性の性質全発現しうる新規合金と
して脚光を浴びている。
In recent years, functional materials that can exhibit special properties have been gaining importance in the development of metallic materials, and among them, shape memory alloys are
It is attracting attention as a new alloy that can exhibit both temperature sensitivity and vibration damping properties.

通常、形状記憶効果を示す金属材料vca、N1−At
系、Au −Cd系、Cu−、At系、Cu −Zn系
、Ti−Ni系など十数種類の合金が知られているが、
これらの合金の中でも特に形状記憶効果の顕著なTi 
−Ni系・(商品名ニチノール)と、その効果はTtL
−N1系程敏感でないが加工性vcllれ且つ経済的な
Cu −Zn −Al系が主たる対象となり、何れも精
力的に研究開発が実施されている。
Metal material vca, N1-At, which usually exhibits shape memory effect
More than a dozen types of alloys are known, such as alloys based on copper, Au-Cd, Cu-, At, Cu-Zn, and Ti-Ni.
Among these alloys, Ti has a particularly remarkable shape memory effect.
-Ni-based (trade name Nitinol) and its effect is TtL
The main target is the Cu--Zn--Al system, which is not as sensitive as the -N1 system but has low processability and is economical, and research and development on both of them is being carried out vigorously.

形状記憶合金とは広義には相変態により可逆的に形状が
変化する合金群を指し、現象面では変態点以上の温度で
成形した製品(以下−次成形品と言う)を冷却後変形さ
せると、変形し交製品(以下二次成形品と言う)は、変
態源、度以下では変形後の形状を維持するが、萱態点以
上の温度では当初の成形状態にもどる現象であり、これ
は合金自体のマルテンサイト変態に基因することが明ら
かにされている。
Shape memory alloys, in a broad sense, refer to a group of alloys whose shape reversibly changes through phase transformation, and in terms of phenomena, when a product formed at a temperature above the transformation point (hereinafter referred to as a "sub-formed product") is deformed after cooling. This is a phenomenon in which a deformed product (hereinafter referred to as a secondary molded product) maintains its deformed shape at temperatures below the transformation point, but returns to its original formed state at temperatures above the transformation point. It has been revealed that this is caused by the martensitic transformation of the alloy itself.

本発明はこれらの形状記憶合金中、Cu −Zn −A
l系合金に関するもので、その目的とするところは、該
合金の特性中、特に温度感応性の安定化及び繰り返し熱
疲労性を向上させることにある。
The present invention utilizes Cu-Zn-A among these shape memory alloys.
This relates to l-based alloys, and its purpose is to stabilize the temperature sensitivity and improve repeated thermal fatigue properties among the properties of the alloys.

一般に形状記憶性は第1図に示す如く縦軸に変位、横軸
に温度をプロットした熱変態履歴曲線で表現する。
In general, shape memory is expressed by a thermal transformation history curve in which displacement is plotted on the vertical axis and temperature is plotted on the horizontal axis, as shown in FIG.

此の場a、冷却時にマルテンサイト変態の始まる温度を
Ms点、終了温度をMf点、加熱時にマルテンサイトの
消失の始まる温■をA8点、その完全消失する温度iA
f点とすると、主に組成依存の変態点の差異により、夫
々特徴のある熱弾性ヒステリシスを示す。  。
In this case, a, the temperature at which martensite transformation begins during cooling is the Ms point, the ending temperature is the Mf point, the temperature at which martensite begins to disappear during heating is the A8 point, and the temperature at which it completely disappears is iA.
Assuming point f, each exhibits a characteristic thermoelastic hysteresis mainly due to composition-dependent differences in transformation point. .

発明者等はCu −Zn −Al系合金において、Cu
70チ、Zn 30 %の黄銅を主材に、Cu68〜7
2チ、At含有量ケ2.8%(Ms点80 c) カら
4.6チ(Me点−1oo t:” )と変化させた合
金全試作、夫々について通常の熱処理、加工条件17i
:より各種板材、線材を試作し、その温度感応性いわば
加熱、冷却時における製品の変位状態を検討した。しか
し、何れの製品も変位の安定性と繰り返し熱疲労性に関
して、マルテンサイト結晶粒度が重要力木となる事を確
認した。
The inventors have discovered that in Cu-Zn-Al alloys, Cu
70mm, mainly made of brass with 30% Zn, Cu68~7
All prototype alloys with At content changed from 2.8% (Ms point 80c) to 4.6chi (Me point -1oot:"), each subjected to normal heat treatment and processing conditions 17i
: Various types of plate materials and wire materials were prototyped, and their temperature sensitivity, so to speak, the state of displacement of the products during heating and cooling was investigated. However, it was confirmed that the martensite grain size is an important strength factor for both products in terms of displacement stability and repeated thermal fatigue resistance.

例えばM8点30 t: (Mf点10C)の製品を試
作するに当り組成を、(:u 70%、At 3.5%
、亜鉛残部とし溶解、鋳造温度を夫々1080 t:、
1040Cで、50朋巾×40朋長さ×100111!
摩さのケークを作り、30龍巾×40朋長さX100m
m厚さの素材を切り出し、650〜750Cで厚さ5龍
迄熱間圧延し、焼鈍と冷間圧延を数回繰り返し10龍巾
×100龍長さ×1龍厚さの薄板を作成した。次に此の
平坦な薄板を二次成形品として乃θ〜850 Cの温度
範囲で加熱、冷水中に焼入れを行ない、結晶粒度が10
00〜3000μmのマルテンサイト組成を得た。
For example, when prototyping a product with M8 point 30 t: (Mf point 10 C), the composition is (: u 70%, At 3.5%
, the remaining zinc and the melting and casting temperatures were respectively 1080 t:,
1040C, 50 mm width x 40 mm length x 100111!
Make a Masa cake, 30 length x 40 length x 100m
A material with a thickness of m was cut out, hot rolled at 650 to 750C to a thickness of 5 mm, and annealing and cold rolling were repeated several times to create a thin plate of 10 mm width x 100 mm length x 1 mm thickness. Next, this flat thin plate was made into a secondary molded product, heated in a temperature range of ~850 C, and quenched in cold water to obtain a crystal grain size of 10.
A martensite composition of 00 to 3000 μm was obtained.

最後に此の焼入れ試料を第2図に示すように長手方向の
中心部で曲率半径20朋、傾斜角10°で折り曲げて二
次成形品とじた。此の試片Vi40〜50Cの温湯と0
〜5Cの冷水で曲げの回復性全示しはしたが約5000
回で曲げの変位、いわば形状の回復性が微弱となった。
Finally, this quenched sample was bent at the center in the longitudinal direction with a radius of curvature of 20 mm and an angle of inclination of 10 degrees to form a secondary molded product. This sample was heated with 40~50C warm water and 0
~5C cold water showed full bending recovery, but it was about 5000
In this case, the bending displacement, so to speak, the recovery of the shape became weak.

発明者等はかかる形状回復性、言わば繰り返し熱疲労性
の改善に当たり結晶粒度を微細化する事に着眼し、その
添加元素としてFe、P、B1Cu−Zn −Az金合
金一種又は二種以上を同時に添加する事により結晶微細
化の優れた効果を示すことを確認した。
The inventors focused on refining the crystal grain size in order to improve the shape recovery property, so to speak, repeated thermal fatigue resistance, and simultaneously added one or more of Fe, P, and B1Cu-Zn-Az gold alloy as additive elements. It was confirmed that the addition of this compound had an excellent effect on crystal refinement.

即ち、前記試片と同一製造条件においてFe、P、B夫
々を0.01−以下で単独に添加した場合には何れも溶
湯に固溶し、得られたマルテンサイト結晶粒度も600
〜1000μmと多式微細化はするが、その結果は微弱
であった。又同様1cFe、0.2%、P [1,Q5
%、8011%以上を単独に夫々添加すると固溶体形成
と同時に一部分散析出し、マルテンサイト結晶粒度は5
00μm以下と微細化はするがこの組成を越えると急激
に脆化し、さらに相当硬化するため加工性と形状回復性
が阻害される傾向が顕著であった、 又、’Fe、 B、 Pの中の一元素添加については、
相応の微細化は可能で500μm程度の結晶粒度は保証
(〜うるが、出来得ればより一層の微細化が望ましく、
発明者等はFe O,01〜1.0%、P O,01〜
0.05%、B O,01〜0.04チの範囲で同時に
添加することvc工り粒度結晶全100μm以下と微細
化する事に成功した。この場合、Fe O,01〜1.
0チまたはP O,01〜0.05チ01種またげ2種
を添加する場合と、Fe0.01〜1.0%また9 0
.01〜0.05チの1種または2種にさらにB O,
01〜0.04%を複合添加する場合においてマルテン
サイト結晶粒度の微細化が有利に行なわれ得ることがわ
力・つた。
That is, when Fe, P, and B were individually added in amounts of 0.01 or less under the same manufacturing conditions as the sample, they all dissolved in the molten metal, and the resulting martensite crystal grain size was 600.
Although multiple refinement was performed to ~1000 μm, the results were weak. Similarly, 1cFe, 0.2%, P [1,Q5
%, 8011% or more is added individually, solid solution formation and partial dispersion precipitation occur, martensite crystal grain size is 5.
However, when the composition exceeds this composition, it rapidly becomes brittle and hardens considerably, which tends to impede workability and shape recovery. Regarding the addition of one element,
It is possible to achieve a certain degree of refinement, and a grain size of about 500 μm is guaranteed, but if possible, further refinement is desirable.
The inventors have Fe O, 01~1.0%, P O, 01~
By simultaneously adding 0.05% and BO in the range of 0.01 to 0.04%, it was possible to refine the vc grain size crystals to a total of 100 μm or less. In this case, FeO,01-1.
When adding 0 or 0.0% or 0.01 to 0.05% of Fe0.01 to 1.0% or 90% of Fe0.01 to 1.0%,
.. 01 to 0.05 chi or two, and further BO,
It has been found that when 0.01 to 0.04% of martensite is added in combination, the grain size of martensite can be advantageously refined.

本発明に係る合金試片の前記的げの回復性についてげい
づれも10,000回以上も可能であった。
Regarding the recovery properties of the target marks of the alloy specimens according to the present invention, it was possible to recover them over 10,000 times.

発明者等は更に結晶微細化の効果を確認するために一次
二次成形を行なわない薄板そのものについて、マルテン
サイト結晶粒度の繰り返し応力に対する疲労試験も実施
した。その結果Cu −Zn −At組成だけのものに
比較すると、本発明に係るFe、P、Bを添加したもの
は約2.5倍の耐力がある事が分った。実施例では試験
片(10朋巾×100朋長さ×1朋厚)を片支持梁とし
自由端に繰り返し応力を付加したがOu −Zn −A
t組成のもので結晶粒度1500 ttm(D 4 (
7)H30kMJT 3 X 10’回で破断したが、
本発明に係るP’e、 P、 Bft添加したものは1
0X105回に達してもなお破断しなかった。
In order to further confirm the effect of crystal refinement, the inventors also conducted a fatigue test against repeated stress on the martensitic grain size of the thin plate itself, which was not subjected to primary and secondary forming. As a result, it was found that the yield strength of the material containing Fe, P, and B according to the present invention was about 2.5 times higher than that of the material containing only the Cu-Zn-At composition. In the example, a test piece (10 mm wide x 100 mm long x 1 mm thick) was used as a single support beam, and stress was repeatedly applied to the free end.
The crystal grain size is 1500 ttm (D 4 (
7) H30kMJT broke after 3 x 10' cycles, but
The P'e, P, and Bft-added product according to the present invention is 1
Even after reaching 0x105 times, it did not break.

以上、本発明に係るFe O,01〜CO%、p o、
o1〜0,05チ、El O,01〜0.1%全単独ま
たは同時添加した形状記憶合金に、温度感応性に関し、
また従来最大欠点とされていた形状復元性と耐疲労性に
関して、これを著しく改善したものであり画期的な合金
製造法を提供するものである。
As mentioned above, Fe O,01~CO%, po, according to the present invention
o1 to 0.05%, El O,01 to 0.1% all alone or simultaneously added to the shape memory alloy, regarding temperature sensitivity,
Furthermore, the shape recovery properties and fatigue resistance, which were considered to be the biggest drawbacks in the past, have been significantly improved, and this provides an epoch-making alloy manufacturing method.

以下実施例vcより本発明の詳細な説明する、実施例 
1 Cu 70%、At 5.5%、Zn残部を黒鉛ルツボ
で1o80Cで1.5kgk溶解し、黒鉛鋳型に鋳造し
水冷の後、35朋巾×45間長gX100厚のケーキを
得た。次に此のケーキから30朋巾X40朋長さ×15
am厚の素試料全切出した後、圧下率約20%、  7
00Cで熱間圧延全行ない厚さ5朋の板を作った。その
板を10%硫酸で酸洗後、冷間圧延と焼鈍全数回繰り返
し切断加工の上、10 ll巾X100+m長さ×1龍
厚の試片(A)となした。この試片を750 r:で5
分間加熱し、冷水中に焼入れをし九〇次に焼入後の試片
を中心部で曲率半径20m1で10’曲げて二次成形品
とした。此の際のマルテンサイトの平均結晶粒度げ約1
500μmであった。
The present invention will be explained in detail from Example VC below.
1 Cu 70%, At 5.5%, and the remainder Zn were melted in a graphite crucible at 1 o 80 C in an amount of 1.5 kg, cast in a graphite mold, and after cooling with water, a cake of 35 mm width x 45 mm length x 100 thickness was obtained. Next, from this cake, measure 30 mm wide x 40 mm long x 15 mm.
After cutting out the entire am-thick raw sample, the reduction rate was approximately 20%, 7
A plate with a thickness of 5 mm was produced by hot rolling at 00C. The plate was pickled with 10% sulfuric acid, cold-rolled, annealed, and cut several times to obtain a specimen (A) of 10 ll width x 100+ m length x 1 dragon thickness. This specimen was heated at 750 r: 5
The sample was heated for 10 minutes, quenched in cold water, and the quenched specimen was bent 10' at the center with a radius of curvature of 20 m1 to obtain a secondary molded product. The average crystal grain size of martensite in this case is approximately 1
It was 500 μm.

温度感応性について確認するため5ocの温湯と5Cの
冷水中に繰り返し浸漬し、その形状回復性を調べた結果
5200回程度7、その変位変化が不平滑となり組織的
欠陥も知見されるようになった。
In order to confirm temperature sensitivity, the material was repeatedly immersed in 5°C hot water and 5C cold water, and its shape recovery properties were examined. After approximately 5,200 times7, the displacement change became uneven and structural defects were also observed. Ta.

発明者等は此の理由が明らかに結晶粒度に依存する事に
着眼し次の様な元素を添加し、その微細化を行なった。
The inventors noticed that the reason for this clearly depends on the crystal grain size, and added the following elements to refine the grain size.

上記組成においてFe O,05チ、PO,02%、B
 O,01%を添加同一製造条件により同一形状の試片
(B) ?作ったが此の時のマルテンサイトの平均結晶
粒度は90μmであった。此の試片を同一温度条件の温
水と冷水で繰り返し浸漬し、その形状回復性を調べた結
果15,000回に到っても変位変化が滑らかで特に表
面組織上の欠陥も発見出来なかった。
In the above composition, Fe O, 05%, PO, 02%, B
Sample (B) of the same shape under the same manufacturing conditions with the addition of O.01%? The average grain size of martensite was 90 μm. This sample was repeatedly immersed in hot and cold water under the same temperature conditions, and its shape recovery properties were investigated. As a result, even after 15,000 cycles, the displacement change was smooth and no defects in the surface structure were found. .

実施例 2 発明者等は実施例1全再確認するために実施例1vc供
した同一試験片A、”E3について繰り返し応力に対す
る疲労試験を実施した。先づ試片の一端を固定し、水平
に保持した上、他の自由端に垂直 ゛荷重20 kg/
mtn 、 30 kg/minを50回/m i n
の割合で負荷し、その破断限界値全床めた。その結果を
表−1に示す。
Example 2 In order to reconfirm everything in Example 1, the inventors conducted a fatigue test against repeated stress on the same specimens A and ``E3'' used in Example 1vc.First, one end of the specimen was fixed, and the Hold it vertically to the other free end ゛Load 20 kg/
mtn, 30 kg/min 50 times/min
The rupture limit value was determined for all floors. The results are shown in Table-1.

テ 実施例 3 実施例1と同じ製造条件において添加元素fFe1.1
チ、P O,06%、B O,2%にした場合(7) 
−? /L/テンサイド結晶粒度1’1100 pm以
下と微細化けしだが、回復性試験では10,000回に
達しなかった。
Example 3 Additive element fFe1.1 under the same manufacturing conditions as Example 1
When CH, P O, 06%, B O, 2% (7)
−? /L/Tenside Although the grain size was refined to 1'1100 pm or less, it did not reach 10,000 cycles in the recovery test.

これは結晶粒度に未固溶の添加元素が析出し材料が脆化
したためである。
This is because the undissolved additive elements precipitate in the crystal grain size and the material becomes brittle.

実施例 4 実施例1と同じ製造条件において添加元素全Fe090
5チ、p o、os%、B O,03チの中、二種類を
同時添加した場合のマルテンサイト結晶粒■はいずれも
300〜400μmの範囲で微細化し、形状性回復試験
ではいずれも12,000回以上の繰り返しが可能であ
った。
Example 4 Under the same manufacturing conditions as Example 1, all added elements were Fe090
When two types of 5CH, PO, OS%, and BO, 03CH are added simultaneously, the martensite crystal grains (■) are refined in the range of 300 to 400 μm, and in the shape recovery test, they are all 12 ,000 or more repetitions were possible.

実施例 5 実施例1と同じ製造条件におい又添加元素をFeO,0
7%、P O,05%をそれぞれ単独に添加した場合の
マルテンサイト結晶粒IJ[ij 400〜500μm
の範囲で微細化し、形状性回復試験ではいずれもin、
000回以上の繰り返しが可能であった。
Example 5 Under the same manufacturing conditions as Example 1, the additive element was FeO, 0.
Martensite crystal grains IJ [ij 400 to 500 μm
In the shape recovery test, both in and
It was possible to repeat the test more than 000 times.

【図面の簡単な説明】 第1図は形状記憶合金の熱変態履歴曲線の例を示す図、
第2図は二次成形品の形状例を示す図である。 第1図 渦度 第2図 第1頁の続き ■出 願 人 同和金属工業株式会社 静岡県磐田郡豊岡村松之木島76 手 続 袖 11:、書(自発) 飄 1 小1牛の表示 昭和57年特許 願第53441  号2 発−の名称
  Cu −Zn−A7系機能合金3 補正をする者 事件との関係  特許出願人 代表者 西 1) 尭 4  代  理  人  〒162 6、補正の内容 明細書の発明の詳細な説明を下記のとおり補正します。 記 (イ)明細書5頁8行の「30咽巾X40++on長さ
×100団厚さの素材」を「6Dwn巾×40配長さ×
15咽厚さの素材」に補正します。 ←)明細書6頁11行の「その結果」を「その効果」に
補正します。 (ハ)明細書9頁10行の「知見」をr見知」に補正し
ます。 に)明細書10頁7行の[20kg/min 、  5
0kg/min Jk「20kg/mJ  3okg/
m1fLJlに補正します。 (ホ)明細書10頁の「表−1」を次のとおり補正しま
す(klil/min″fkg/mtiにする補正)。 表−1 241−
[Brief explanation of the drawings] Figure 1 is a diagram showing an example of a thermal transformation history curve of a shape memory alloy.
FIG. 2 is a diagram showing an example of the shape of the secondary molded product. Figure 1 Vorticity Figure 2 Continuation of page 1 Applicant Dowa Metal Industry Co., Ltd. 76 Matsunogijima, Toyooka Village, Iwata District, Shizuoka Prefecture Procedures Sleeve 11:, Calligraphy (self-motivated) Sleeve 1 Display of 1st grade cow 1982 Patent Application No. 53441 2 Issued Name Cu-Zn-A7 Functional Alloy 3 Person making the amendment Relationship to the case Patent applicant representative Nishi 1) Yao 4 Agent 〒162 6, Details of the amendment The detailed description of the invention is amended as follows. Note (a) “30 throat width x 40++ on length x 100 thickness material” on page 5, line 8 of the specification is “6Dwn width x 40 length x
Corrected to 15mm thick material. ←) "Results" on page 6, line 11 of the specification will be corrected to "effects." (c) Amend "knowledge" on page 9, line 10 of the specification to "r knowledge." ) page 10 line 7 of the specification [20kg/min, 5
0kg/min Jk “20kg/mJ 3okg/
Correct to m1fLJl. (E) “Table 1” on page 10 of the specification will be amended as follows (correction to klil/min″fkg/mti). Table 1 241-

Claims (1)

【特許請求の範囲】 m  Cu −・Zn −At系合金において、0.0
1〜1.0 %のFeまたは0.01〜0.05%のP
の1種またに2種を添加合金化し、マルテンサイト平均
結晶粒度を500μm以下にしたCu −Zn −Al
系機能合金。 (2)マルテンサイト平均結晶粒度は100μm以下で
ある特許請求の範囲第1項記載のCu −Zn −At
系機能合金。 (3)  cu −Zn −At系合金は、Cu 68
〜72 %、At2.8〜4.5%、残部がZnよりな
るものである特許請求の範囲第1項または第2項記載の
Cu−Zn −Al系機能合金。 (4)  Cu −Zn −Al系合金において、0.
01〜1.0チのFeまたに0.01〜0.05チのP
の1種または2種とさらに0.01〜0.1%のBとを
添加合金化し、マルテンサイト平均結晶粒度y soo
μm以下にしたCu −Zn −At系機能合金。 (5)マルテンサイト平均結晶粒度は100μm以下で
ある特許請求の範囲第4項記載のCu −Zn −A7
系機能合金。 (6)  0u−Zn−At系合金は、Cu68〜72
%、At28〜4.5%、残部がZnよりなるものであ
る特許請求の範囲第4項または第5項記載のCu−Zn
 −At系機能合金。 (710,01〜1.0%のFe、0.01〜0.05
%のP、 0.01〜0.1%のBの1種または2種以
上′itC!u −Zn −At系合金に添加合金化し
、塑性加工によって所望形状の製品に加工しtあと、得
られた製品全焼入することにより合金のマルテンサイト
結晶粒度を500μm以下とするCu −Zn −Al
系機能合金の製造方法。
[Claims] m Cu-Zn-At alloy, 0.0
1-1.0% Fe or 0.01-0.05% P
Cu-Zn-Al with an average martensite grain size of 500 μm or less by alloying one or two of the following.
Functional alloys. (2) Cu-Zn-At according to claim 1, wherein the martensite average grain size is 100 μm or less
Functional alloys. (3) The cu-Zn-At alloy is Cu68
3. The Cu-Zn-Al based functional alloy according to claim 1 or 2, wherein the Cu-Zn-Al functional alloy comprises: 72% At, 2.8-4.5% At, and the balance Zn. (4) In Cu-Zn-Al alloy, 0.
01~1.0 inch Fe and 0.01~0.05 inch P
One or two of these and further 0.01 to 0.1% of B are alloyed to obtain martensite average grain size y soo
A Cu-Zn-At-based functional alloy with a thickness of less than μm. (5) Cu-Zn-A7 according to claim 4, wherein the martensite average grain size is 100 μm or less
Functional alloys. (6) 0u-Zn-At alloy is Cu68~72
%, At28 to 4.5%, and the balance is Zn.
-At-based functional alloy. (710,01~1.0% Fe, 0.01~0.05
% of P, 0.01 to 0.1% of one or more types of B'itC! Cu-Zn-Al is added to a u-Zn-At alloy, processed into a product with a desired shape by plastic working, and then completely quenched to reduce the martensite crystal grain size of the alloy to 500 μm or less.
A method for manufacturing functional alloys.
JP5344182A 1982-03-31 1982-03-31 shape memory alloy Expired JPS6045695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5344182A JPS6045695B2 (en) 1982-03-31 1982-03-31 shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5344182A JPS6045695B2 (en) 1982-03-31 1982-03-31 shape memory alloy

Publications (2)

Publication Number Publication Date
JPS58171542A true JPS58171542A (en) 1983-10-08
JPS6045695B2 JPS6045695B2 (en) 1985-10-11

Family

ID=12942936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5344182A Expired JPS6045695B2 (en) 1982-03-31 1982-03-31 shape memory alloy

Country Status (1)

Country Link
JP (1) JPS6045695B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145744A (en) * 1983-02-08 1984-08-21 Furukawa Electric Co Ltd:The Shape memory cu-zn-al alloy
JPS6077948A (en) * 1983-10-03 1985-05-02 Mitsubishi Metal Corp Shape memory cu alloy having superior resistance to intercrystalline cracking

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145744A (en) * 1983-02-08 1984-08-21 Furukawa Electric Co Ltd:The Shape memory cu-zn-al alloy
JPS621460B2 (en) * 1983-02-08 1987-01-13 Furukawa Electric Co Ltd
JPS6077948A (en) * 1983-10-03 1985-05-02 Mitsubishi Metal Corp Shape memory cu alloy having superior resistance to intercrystalline cracking
JPS626735B2 (en) * 1983-10-03 1987-02-13 Mitsubishi Metal Corp

Also Published As

Publication number Publication date
JPS6045695B2 (en) 1985-10-11

Similar Documents

Publication Publication Date Title
JP5847987B2 (en) Copper alloy containing silver
EP1287175A1 (en) Corrosion resistant aluminium alloy
JPH0625388B2 (en) High strength, high conductivity copper base alloy
US5122196A (en) Superplastic sheet metal made from an aluminum alloy
JPS6410588B2 (en)
JP5247010B2 (en) Cu-Zn alloy with high strength and excellent bending workability
NO336134B1 (en) Process for producing AlMn tapes or thin sheets.
JP2007056365A (en) Copper-zinc-tin alloy and manufacturing method therefor
JPS6239215B2 (en)
JPH0762472A (en) Copper-based shape memory alloy having high workability and its production
EP0365367A1 (en) Brazeable aluminum alloy sheet and process for its manufacture
JPS58171542A (en) Functional cu-zn-al alloy
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2000169920A (en) Copper base alloy having shape memory characteristic and superelasticity, and its production
JP5032011B2 (en) Hard α brass and method for producing the hard α brass
WO1999049091A1 (en) Ti-V-Al BASED SUPERELASTICITY ALLOY
TWI821520B (en) Copper alloy plate and method for producing same
US2960401A (en) Precipitation-hardenable, aluminum-containing iron base alloy
US4128418A (en) Enhanced grain growth in arsenic modified copper-zinc brasses
JP3394698B2 (en) High formability aluminum alloy sheet with high strength and good machinability
US2221255A (en) Magnesium base alloy
JPH06256909A (en) Metallic sheet for electric contact spring having superior bendability and excellent spring characteristic and its production
JPH02111828A (en) Manufacture of copper alloy for lead frame
US1789854A (en) Zinc alloy
US2221244A (en) Magnesium base alloy