JPS6056038A - Shape memory alloy and its production - Google Patents

Shape memory alloy and its production

Info

Publication number
JPS6056038A
JPS6056038A JP16559383A JP16559383A JPS6056038A JP S6056038 A JPS6056038 A JP S6056038A JP 16559383 A JP16559383 A JP 16559383A JP 16559383 A JP16559383 A JP 16559383A JP S6056038 A JPS6056038 A JP S6056038A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
temp
phase
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16559383A
Other languages
Japanese (ja)
Inventor
Hiroki Nakanishi
中西 寛紀
Tsutomu Inui
乾 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP16559383A priority Critical patent/JPS6056038A/en
Publication of JPS6056038A publication Critical patent/JPS6056038A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a shape memory alloy which has small transformation hysteresis of high-temp. phase low-temp. phase and has two-way memory characteristic by incorporating >=1 kind among Cu, Co and Fe at a prescribed ratio into a Ti-Ne shape memory alloy. CONSTITUTION:A Ti-Ni shape memory alloy incorporated with 0.05-10wt%, more preferably 0.08-5wt% >=1 kind among Cu, Co and Fe is prepd. Such shape memory alloy is then melted in an inert gas such as Ar and is then subjected to vacuum annealing and to a homogenizing treatment. The shape memory alloy after the homogenizing treatment is subjected to a soln. heat treatment at 500- 1,100 deg.C in the state of restraining or not restraining the same to a prescribed state and thereafter the alloy is quickly cooled by water, etc. The shape memory alloy after the quick cooling is subjected to an aging treatment in a temp. range of 200-700 deg.C in the state of restraining the same to the prescribed shape to be memorized. As a result, the shape memory alloy which has small transformation hysteresis of high-temp. phase low-temp. phase, more particularly high- temp. phase low-temp. phase transformation and has two-way memory characteristic is obtd.

Description

【発明の詳細な説明】 本発明は’ri−Ni系形状記憶金形状記憶合金−:1
0重量%のOu、 Ooおよび鉄を1種または2種以上
含有せしめた合金を記憶させるべき所定の形状に拘束し
た状態あるいは拘束しない状態で溶体化処理した後−急
冷処理を施し、次に記憶させるべき所定の形状に拘束し
た状態で時効処理を施すことにより高温相、低温相の変
態とくに高温相→低温相の変態ヒステリシスか゛小さく
且つ二方向性を有することを特徴とする形状記憶合金お
よびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides 'ri-Ni shape memory gold shape memory alloy: 1
After the alloy containing 0% by weight of Ou, Oo, and one or more iron is solution-treated with or without restraint in the predetermined shape to be memorized, it is subjected to a quenching treatment and then memorized. A shape memory alloy characterized in that the transformation between a high temperature phase and a low temperature phase, especially the transformation hysteresis from a high temperature phase to a low temperature phase, is small and bidirectional, by subjecting it to an aging treatment while being constrained to a predetermined shape. This relates to a manufacturing method.

高温で0sO1型の体心立方構造を有し熱弾性型のマル
テンサイト変態を生ずる合金はほとんど形状記憶効果を
示すことが知られており、これまでにTi−Ni系合金
をはじめ0u−Zn−AL、 0u−At−1i1.0
u−Zn−Au、 0u−Zn−Ga、 0u−Zn−
anlou−Zn −81,0u−8n、 Au−0d
、 Ag−0d等の合金が見い出されている。
It is known that most alloys that have a 0sO1 type body-centered cubic structure and undergo a thermoelastic martensitic transformation at high temperatures exhibit a shape memory effect. AL, 0u-At-1i1.0
u-Zn-Au, 0u-Zn-Ga, 0u-Zn-
anlou-Zn-81,0u-8n, Au-0d
, Ag-0d and other alloys have been found.

一般に形状記憶合金は単結晶でないと形状記憶効果を示
さないことが知られているが、Ti −Ni系合金は例
外であり、多結晶体で形状記憶効果を有しており、極め
て実用的であり前記合金の中では最も広範囲な検討がな
されているものである。
It is generally known that shape memory alloys do not exhibit shape memory effects unless they are single crystals, but Ti-Ni alloys are an exception; they are polycrystalline and have shape memory effects, making them extremely practical. Among the alloys mentioned above, it has been studied most extensively.

形状記憶効果は低温でマルテンサイト状態にある材料を
変形後加熱するとその材料が変形前の元の形に戻るもの
であり、こうした効果を生ずる温度は通常合金の逆変態
開始温度(AB点)、逆変態終了fM度(Ar点)、マ
ルテンサイト変態開始温度(Ms点)およびマルテンサ
イト変態終了温度(Mf点)によって決定され、A8点
において形状記憶効果が開始されAf点で終了するもの
である。
The shape memory effect occurs when a material that is in a martensitic state at a low temperature is deformed and then heated to return it to its original shape before deformation.The temperature at which this effect occurs is usually the alloy's reverse transformation start temperature (AB point), It is determined by the reverse transformation end fM degree (Ar point), the martensitic transformation start temperature (Ms point), and the martensitic transformation end temperature (Mf point), and the shape memory effect starts at the A8 point and ends at the Af point. .

この形状記憶効果を生ずる際の回復力は50〜60ky
 / m*”に及ぶものであり、この回復力を種々の応
用品へ利用する検討がなされている。
The recovery power when producing this shape memory effect is 50 to 60 ky.
/ m*”, and studies are being conducted to utilize this resilience in various applied products.

その応用の代表例に第1図に示すような形状記憶効果を
可逆的に繰り返し生じさせることを利用したアクチュエ
ータがある。このアクチュエーターはパイアスカとじて
の通常のコイルバネ(バイアスバネ)と形状記憶合金コ
イルバネとか組み合わされたものであり、低温において
は形状記憶合金がバイアスバネよりも降伏応力の小さな
マルテンサイト相の状態であるためにバイアスバネの方
が強く、形状記憶合金を変形するように動作し、逆に高
温においては形状記憶合金がバイアスバネよりも降伏応
力の大きなβ相の状態となり形状記憶合金がバイアスバ
ネを変形するように動作する。
A typical example of its application is an actuator that utilizes the reversible and repeated generation of a shape memory effect, as shown in FIG. This actuator is a combination of a regular coil spring (bias spring) made by Piasuka and a shape memory alloy coil spring, and at low temperatures the shape memory alloy is in a martensitic phase with a lower yield stress than the bias spring. At high temperatures, the bias spring is stronger and acts to deform the shape memory alloy, and conversely, at high temperatures, the shape memory alloy enters a β phase state with a higher yield stress than the bias spring, and the shape memory alloy deforms the bias spring. It works like this.

この場合、高温相=低温相の変態ヒステリシスが小さい
程また二方向性を有している程小さな温度範囲において
アクチュエ−2−とじての□動作が容易に得られる。
In this case, the smaller the transformation hysteresis between the high temperature phase and the low temperature phase, and the more bidirectional the actuator 2 can easily operate in a small temperature range.

しかし、従来のTi−Ni系合金においては一方向性の
形状記憶効果しか得られず、また高温相=低温相の変態
とくに高温相→低温相の変態ヒステリシスが約30°C
程度と大きく、このため低温相、高温相を可逆的に得て
アクチュエーターを動作させる温度範囲か大きくならざ
るを得す、動作温度範囲が限定されることおよび形状記
憶合金と組み合わせるバイアスバネも寸法の大きな強度
の高いものが必要となる欠点があった。
However, in conventional Ti-Ni alloys, only a unidirectional shape memory effect can be obtained, and the transformation hysteresis of high temperature phase = low temperature phase, especially high temperature phase → low temperature phase, is about 30°C.
Therefore, the temperature range in which the actuator operates by reversibly obtaining a low-temperature phase and a high-temperature phase must be increased.The operating temperature range is limited, and the bias spring combined with the shape memory alloy also has a large size. The drawback was that it required a large and strong material.

本発明者はこうした欠点を改善するために、Ti−Ni
糸形状記憶合金に0.05−10重M%のOu、 Oo
および鉄を1種または2種以上含有せしめた合金を50
0℃〜1100°Oの温度範囲において記憶させるべき
所定の形状に拘束した状態あるいは拘束しない状態で溶
体化処理した後急冷処理を施し、次に200〜−7o眞
乃温W範囲において記憶させるべき所定の形状に拘束し
た状態で時効処理を施したところ有益な効果をもたらす
事を発見したものである。
In order to improve these drawbacks, the present inventors have attempted to improve the Ti-Ni
0.05-10% by weight of Ou, Oo in thread shape memory alloy
and 50% alloy containing one or more types of iron.
The material should be memorized in the temperature range of 0°C to 1100°O. It should be solution-treated with or without restraint in a predetermined shape and then subjected to rapid cooling treatment, and then memorized in the 200° to -7° Mano temperature W range. It was discovered that aging treatment while constrained to a predetermined shape produces beneficial effects.

次に本発明における添加元素の含有量の範囲および溶体
化処理・時効処理温度範囲の限定理由について述べる。
Next, the reason for limiting the content range of the additive element and the solution treatment/aging treatment temperature range in the present invention will be described.

Ou、 Ooおよび鉄を1柚または2種以上で10重量
%を越える含有用においては熱間加工性および冷間加工
性が顕著に劣化し、加工か極めて困難となる。また、0
.05重量%未満においては十分な小ヒステリシスおよ
び二方向性が得られなくなるので、0.05〜10重量
%に限定した。尚、形状記憶特性、熱間および冷間加工
性等の兼ね合いの点から0.08−’7重量%の範囲が
好ましいが、より好ましくはα0EF−6重量%の範囲
である。
When one or more of Ou, Oo, and iron are contained in an amount exceeding 10% by weight, hot workability and cold workability are significantly deteriorated, and processing becomes extremely difficult. Also, 0
.. If it is less than 0.05% by weight, sufficient small hysteresis and bidirectionality cannot be obtained, so the content is limited to 0.05 to 10% by weight. Note that from the viewpoint of balance between shape memory properties, hot and cold workability, etc., a range of 0.08-'7% by weight is preferable, and a range of α0EF-6% by weight is more preferable.

次に溶仙化M理温度については500沫満においては十
分な効果が認められず、また1100°0を越えると酷
・化によるT1元素の滅失が問題となる。以上の観虚か
ら50CPCべ100°Cの温度範囲に限定した。
Next, regarding melting temperature, no sufficient effect is observed at 500°C, and when it exceeds 1100°0, loss of T1 element due to thermal melting becomes a problem. Based on the above considerations, the temperature range was limited to 100°C for 50CPC.

尚、この場合、合金を記憶させるべき所定の形状−に拘
束してもしなくても同様な効果か認められる。
In this case, the same effect can be observed whether or not the alloy is constrained to a predetermined shape to be memorized.

また、時効処理温度については200CO未滴において
は十分な効果が認められず、’70(I’d越えると形
状記憶特性(回復率、回復力)の劣“化が顕著となる。
Further, regarding the aging treatment temperature, no sufficient effect is observed when 200 CO is not added, and when it exceeds '70 (I'd), the deterioration of shape memory properties (recovery rate, recovery power) becomes noticeable.

以上の観点から2ONO(6)温度範囲に限定した。From the above point of view, the temperature range was limited to 2ONO(6).

尚、この場合合金に所定の形状を記憶させる点から合金
を所定の形状に拘束する必要がある。
In this case, it is necessary to constrain the alloy to a predetermined shape in order to make the alloy memorize the predetermined shape.

以下本発軒を実施例に基づき説明する。The present invention will be explained below based on examples.

第1表に示すような種々の合金をアルゴン中にてアーク
溶解した後1000COにて2時間真空焼鈍を行なって
均一化処理を施し、その後B oo−e oCPOにて
熱間圧延を行ない06關厚さの板とした。この板を50
0−1100℃の範囲の種々の温度にて3時間溶体化処
理を行なった後水冷した。表中試料A l = Al。
Various alloys as shown in Table 1 were arc melted in argon, vacuum annealed at 1000 CO for 2 hours for homogenization, and then hot rolled in Boo-e oCPO. It was made into a thick plate. 50 pieces of this board
Solution treatment was carried out for 3 hours at various temperatures ranging from 0 to 1100°C, followed by water cooling. In the table, sample A l = Al.

は本発明合金である。is the alloy of the present invention.

次に第2図に示すように内径40φのステンレスパイプ
の内面にサンプルをNi#にて巻きつけ拘束し、200
−7030の範囲の種々の温度にて10時間時効処理を
施した後者サンプルの二方向性の程度および示差走査熱
量計(DSO)を用いた変態点の測定に−よる高温相→
低温相(中間相)の変態ヒステリシスを確認した。
Next, as shown in Figure 2, the sample was wrapped around the inner surface of a stainless steel pipe with an inner diameter of 40φ and restrained with Ni#.
- Determining the degree of bidirectionality and the transformation point using differential scanning calorimetry (DSO) of the latter samples aged for 10 hours at various temperatures in the range of 7030 - 2000 - high temperature phase →
Transformation hysteresis of the low temperature phase (intermediate phase) was confirmed.

その結果を従来のTi−Ni合金と比較して第1表に示
す。
The results are shown in Table 1 in comparison with conventional Ti--Ni alloys.

尚、二方向性の程度は第3図に示すようにサンプルが加
熱時に拘束形状となり、冷却時に自発的に直伸形状にな
ろうとする度合により判定した。
The degree of bidirectionality was determined by the degree to which the sample took on a constrained shape when heated and spontaneously tried to take on a straight-stretched shape when cooled, as shown in FIG.

第1表より本発明合金が二方向性を有して′いることお
よび高温相→低温相(中間相)の変態ヒステリシスが極
めて小さいことが明らかであるλ第 1 表 (Jllfii%)
It is clear from Table 1 that the alloy of the present invention has bidirectional properties and that the transformation hysteresis from high temperature phase to low temperature phase (intermediate phase) is extremely small.Table 1 (Jllfii%)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は形状記憶合金を用いたアクチュエーターを示す
。 図中1は通常のコイルバネを、2は形状記憶合金コイル
バネを示す。第2図はサンプルの拘束状態を示す。図中
1は内径40φのステンレスパイプを2は形状記憶合金
を、3はサンプルを拘束するために巻きつけたNiMを
示す。第3図□0はサンプルの拘束形状を示し、し)お
よび(c)は冷却時に自発的に直伸形状となる状態を示
したものである。
FIG. 1 shows an actuator using a shape memory alloy. In the figure, 1 indicates a normal coil spring, and 2 indicates a shape memory alloy coil spring. FIG. 2 shows the restrained state of the sample. In the figure, 1 is a stainless steel pipe with an inner diameter of 40φ, 2 is a shape memory alloy, and 3 is NiM wrapped around the sample to restrain it. Figure 3 □0 shows the constrained shape of the sample, and (c) and (c) show the state in which the sample spontaneously assumes a straight-stretched shape upon cooling.

Claims (1)

【特許請求の範囲】 L Ti−Ni系形、状記憶合金にα05−10重量%
のOu。 00および鉄を1種または2種以上含有せしめた高温相
=低温相の変態ヒステリシスが小さく且つ二方向性を有
することを特徴とする形状記憶効果。 & Ti−Ni系形状記憶合金にα05−10重量%の
Ou。 00および鉄を1種または2種以上含有せしめた合金を
記憶させるべき所定の形状に拘束した状態萄るいは拘束
しない状態で5OCR3〜1100℃の温度範吠におい
て溶体化処理した後急冷処理を施し、次に200力〜7
00℃の温度範囲において記憶させるべき所定の形状に
拘束した状態で時効処理を施すことを特徴とする形状記
憶合金の製造方法。
[Claims] L Ti-Ni type, shape memory alloy with α05-10% by weight
Ou. A shape memory effect containing one or more types of 00 and iron, characterized in that the transformation hysteresis of the high temperature phase=low temperature phase is small and bidirectional. & α05-10% by weight of O in Ti-Ni shape memory alloy. 00 and an alloy containing one or more types of iron is subjected to solution treatment in a temperature range of 5OCR 3 to 1100°C in a state in which it is constrained to a predetermined shape to be memorized or in an unconstrained state, and then subjected to a rapid cooling treatment. , then 200 force ~ 7
A method for producing a shape memory alloy, characterized in that an aging treatment is performed in a temperature range of 00° C. while the shape is constrained to a predetermined shape to be memorized.
JP16559383A 1983-09-08 1983-09-08 Shape memory alloy and its production Pending JPS6056038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16559383A JPS6056038A (en) 1983-09-08 1983-09-08 Shape memory alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16559383A JPS6056038A (en) 1983-09-08 1983-09-08 Shape memory alloy and its production

Publications (1)

Publication Number Publication Date
JPS6056038A true JPS6056038A (en) 1985-04-01

Family

ID=15815298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16559383A Pending JPS6056038A (en) 1983-09-08 1983-09-08 Shape memory alloy and its production

Country Status (1)

Country Link
JP (1) JPS6056038A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208440A (en) * 1984-03-30 1985-10-21 Matsushita Electric Ind Co Ltd Thermosensitive device
JP2009127081A (en) * 2007-11-22 2009-06-11 Nec Tokin Corp Wear resistant and erosion resistant alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237353A (en) * 1986-06-13 1987-02-18 Hitachi Metals Ltd Manufacture of shape memory alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237353A (en) * 1986-06-13 1987-02-18 Hitachi Metals Ltd Manufacture of shape memory alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208440A (en) * 1984-03-30 1985-10-21 Matsushita Electric Ind Co Ltd Thermosensitive device
JP2009127081A (en) * 2007-11-22 2009-06-11 Nec Tokin Corp Wear resistant and erosion resistant alloy

Similar Documents

Publication Publication Date Title
JPS6237353A (en) Manufacture of shape memory alloy
JPS6214619B2 (en)
JPH01279736A (en) Heat treatment for beta titanium alloy stock
JPS58157934A (en) Shape memory alloy
JPS59150069A (en) Manufacture of shape memory alloy
JPH0457734B2 (en)
JP6156865B2 (en) Super elastic alloy
JPS6361377B2 (en)
JPS5920440A (en) Shape memory copper alloy
JPS58157935A (en) Shape memory alloy
JPS6056038A (en) Shape memory alloy and its production
JPH0138867B2 (en)
JPS60141852A (en) Manufacture of shape memory alloy
JPH03130322A (en) Production of fe-co-type soft-magnetic material
JPS60103166A (en) Manufacture of shape memory alloy
JPH01242763A (en) Manufacture of ti-ni shape memory alloy reduced in hysteresis
JPS624462B2 (en)
JPS62199757A (en) Manufacture of shape memory alloy material
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JP3271329B2 (en) Shape memory alloy
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JPS60155657A (en) Production of ti-ni superelastic alloy
JPS61106741A (en) Shape memory ti-ni alloy having small hysteresis
JPS6227518A (en) Manufacture of low expansion alloy material
JPS622028B2 (en)