JP2009127081A - Wear resistant and erosion resistant alloy - Google Patents

Wear resistant and erosion resistant alloy Download PDF

Info

Publication number
JP2009127081A
JP2009127081A JP2007302513A JP2007302513A JP2009127081A JP 2009127081 A JP2009127081 A JP 2009127081A JP 2007302513 A JP2007302513 A JP 2007302513A JP 2007302513 A JP2007302513 A JP 2007302513A JP 2009127081 A JP2009127081 A JP 2009127081A
Authority
JP
Japan
Prior art keywords
alloy
valve
wear
erosion
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007302513A
Other languages
Japanese (ja)
Other versions
JP5301817B2 (en
Inventor
Tomohide Ozawa
倫秀 小澤
Kiyoshi Yamauchi
清 山内
Toshio Sakuma
俊雄 佐久間
Shigeo Hattori
成雄 服部
Kazunari Uchida
一成 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Central Research Institute of Electric Power Industry
Hitachi Ltd
Tokin Corp
Original Assignee
Tohoku University NUC
Central Research Institute of Electric Power Industry
Hitachi Ltd
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Central Research Institute of Electric Power Industry, Hitachi Ltd, NEC Tokin Corp filed Critical Tohoku University NUC
Priority to JP2007302513A priority Critical patent/JP5301817B2/en
Publication of JP2009127081A publication Critical patent/JP2009127081A/en
Application granted granted Critical
Publication of JP5301817B2 publication Critical patent/JP5301817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve mounting method requiring no welding and also to provide pipes and valves having excellent wear resistance and erosion resistance. <P>SOLUTION: The wear resistant and erosion resistant alloy is a Ti-Ni alloy and contains Cu in an amount at least exceeding 5.0 atomic%. This alloy can be used e.g. for a valve box side valve seat 5 of a globe valve. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、弁、配管とその作用に関し、詳しくは火力および原子力発電所などの給水系に用いられる流体用部品に関するものである。   The present invention relates to a valve, piping, and an action thereof, and more particularly, to a fluid component used in a water supply system such as thermal power and a nuclear power plant.

Ti−Ni合金は耐食耐摩耗を示す材料として良く知られている。また、等原子比近傍のTi−Ni合金は、マルテンサイト変態の逆変態に伴い顕著な形状記憶効果および超弾性を示すことは良く知られている。   Ti—Ni alloys are well known as materials exhibiting corrosion resistance and wear resistance. Further, it is well known that Ti—Ni alloys in the vicinity of the equiatomic ratio exhibit a remarkable shape memory effect and superelasticity with the reverse transformation of the martensitic transformation.

実用的には、Ti−Ni合金は、加熱によって形状が回復する形状記憶用途として、温水シャワーバルブ、温室窓開閉装置、コーヒーメーカ等がある。またTi−Ni系合金の加熱を伴わないバネ機能の超弾性用途として、携帯電話用アンテナ、メガネフレーム、医療用ガイドワイヤーなどがある。   Practically, Ti—Ni alloys include hot water shower valves, greenhouse window opening / closing devices, coffee makers, and the like as shape memory applications whose shape recovers by heating. In addition, as a super-elastic application having a spring function without heating a Ti—Ni alloy, there are an antenna for a mobile phone, an eyeglass frame, a medical guide wire, and the like.

また、配管などへの用途として、形状記憶合金の加熱による形状回復特性を利用した配管用継ぎ手、加熱によって繰り返し使用可能なメタルパッキンなどが挙げられる。   In addition, examples of applications to piping include pipe joints that utilize shape recovery characteristics of heating shape memory alloys, and metal packing that can be used repeatedly by heating.

ここで、流体に用いられる機器や材料において、避けられない問題として、キャビテーションという現象がある。このキャビテーションとは、液体が急激な圧力変化を受けて、液体の静圧が蒸気圧より低下すると、液体中に溶存する空気や液体の気化によって気泡(Cavity)が生じる現象である。この気泡が高圧部で急激に圧縮されて崩壊すると、その際に大きな衝撃圧を発生する。   Here, there is a phenomenon called cavitation as an unavoidable problem in equipment and materials used for fluids. The cavitation is a phenomenon in which when the liquid is subjected to an abrupt pressure change and the static pressure of the liquid is lower than the vapor pressure, air dissolved in the liquid and bubbles are generated due to vaporization of the liquid. When the bubbles are rapidly compressed and collapsed at the high pressure portion, a large impact pressure is generated at that time.

これが材料の表面近傍で起こり、ある大きさ以上の強い衝撃が加わるとその部分が損傷(Erosion)を受ける。   This occurs near the surface of the material, and when a strong impact of a certain size or more is applied, the portion is damaged (Erosion).

このような気泡の発生と崩壊が繰り返され、衝撃圧による攻撃での材料表面損傷が懸念される高温、高圧の水・蒸気が高速で流動する環境に設置されている調整弁、ドレン弁および蒸気タービンの翼などは、耐食性、耐摩耗性に優れたCo合金(ステライト、Cr:約30原子%、C:約1原子%、W:約4原子%、残部:Co)が使用されている。   Regulating valves, drain valves and steam installed in an environment where high-temperature, high-pressure water / steam flows at high speed, where generation and collapse of such bubbles are repeated and material surface damage due to attack by impact pressure is a concern For the blades of the turbine, a Co alloy (Stellite, Cr: about 30 atomic%, C: about 1 atomic%, W: about 4 atomic%, balance: Co) excellent in corrosion resistance and wear resistance is used.

また、火力および原子力発電所の給水系の弁は、圧力29.4MPa(300kg/cm)以下で、温度300℃以下で使用されるが、このような弁の弁座にはステライトの硬化肉盛溶接が適用されてきた。 In addition, valves for water supply systems of thermal power and nuclear power plants are used at a pressure of 29.4 MPa (300 kg / cm 2 ) or less and at a temperature of 300 ° C. or less. Prime welding has been applied.

ステライトを弁座に適用する作業工程は、まず、溶接開先加工、肉盛溶接、後熱処理、仕上加工、摺合わせという工程順で実施される。ステライトの肉盛溶接は、酸素−アセチレン火焔を用いるガス溶接、アーク溶接であるティグ溶接およびプラズマ溶接が適用される。   The work process for applying the stellite to the valve seat is first performed in the order of processes such as welding groove processing, overlay welding, post heat treatment, finishing processing, and sliding. For the overlay welding of stellite, gas welding using an oxygen-acetylene flame, TIG welding which is arc welding, and plasma welding are applied.

ここで、ガス溶接は、ステライトの特性を生かすことが出来るが、この溶接は高度の熟練した技能者を必要とし、かつ、その作業は高熱作業である。このため、現状では、このような技能者は少なくなる傾向にあり、ティグあるいはプラズマ・アーク溶接を採用する企業が増加している。   Here, gas welding can make use of the characteristics of stellite, but this welding requires highly skilled technicians, and the operation is a high-temperature operation. For this reason, at present, the number of such technicians tends to decrease, and an increasing number of companies adopt TIG or plasma arc welding.

ところが、アーク溶接では、母材を過度に溶融してステライトの希釈を生じさせ特性を劣化させる欠点がある。   However, arc welding has a drawback in that the base material is excessively melted to cause dilution of stellite and deteriorate characteristics.

また、小型弁の弁箱側弁座の溶接では、アーク溶接のノズルが、弁の溶接孔より大きく直接、弁座に溶接出来ないので、弁箱を弁座部とパッキング部あるいは弁座部と本体部とに分離して、先ず、弁座部にステライトの肉盛を行い、その後に弁座部とパッキング部あるいは本体部とを溶接するという工程が必要となる欠点があった。   In addition, when welding the valve seat on the valve box side of a small valve, the arc welding nozzle is larger than the welding hole of the valve and cannot be welded directly to the valve seat. There was a drawback that the process of separating the main body part, firstly overlaying stellite on the valve seat part, and then welding the valve seat part and the packing part or the main body part was necessary.

また、ステライトは、Co−Cr基のマトリックスの中に、タングステンの炭化物(WC)あるいはクロムの炭化物(CrC)が分布している。   Stellite has tungsten carbide (WC) or chromium carbide (CrC) distributed in a Co—Cr matrix.

このため、ステライトを玉型弁の弁座に適用すると、流体を絞る時に弁座の前後に高い差圧が生じ、炭化物隣接部が優先的にエロージョンされて弁座が損傷するという欠点があった。   For this reason, when stellite is applied to the valve seat of a ball valve, there is a drawback in that when the fluid is throttled, a high differential pressure is generated before and after the valve seat, and the carbide adjacent portion is preferentially eroded and the valve seat is damaged. .

また、ステライトでの肉盛では、実用性の高いアーク溶接が、特に小型弁の弁箱側弁座に対しては直接溶接が困難である、という欠点があると共に、玉型弁の弁座に適用した場合には、耐エロージョン性が劣るという欠点があった。   In addition, when overlaying with stellite, arc welding, which has high practicality, has the disadvantage that it is difficult to weld directly to the valve seat on the valve box side of small valves. When applied, there was a disadvantage that the erosion resistance was inferior.

また、一般的に、調整弁等でのエロージョン損傷は、主として「キャビテーション」および「高速せん断流」が原因となっているが、ステライトは、キャビテーションエロージョンに対しては優れた耐エロージョン性を示す材料であるが、高速せん断流に対する耐エロージョン性はSUS系材料よりも劣る欠点を有している。   In general, erosion damage caused by regulating valves, etc. is mainly caused by "cavitation" and "high-speed shear flow". Stellite is a material that exhibits excellent erosion resistance against cavitation erosion. However, the erosion resistance with respect to the high-speed shear flow has a defect inferior to that of the SUS material.

更に、原子力プラントの給・復水系統の弁では、ステライトに含まれるCoが原子炉内に流入し、放射化され、作業被曝線量を上昇させることが懸念されており、Coフリーの代替合金が望まれている。   Furthermore, there is a concern that Co contained in stellite will flow into the nuclear reactor and be activated in the nuclear power plant's supply / condensation system valves, increasing the work exposure dose. It is desired.

非特許文献1及び非特許文献2などに、Ti−Ni合金が耐エロージョン性、耐コローション性に優れることが報告されている。   Non-Patent Document 1 and Non-Patent Document 2 report that Ti—Ni alloys are excellent in erosion resistance and corrosion resistance.

また、本発明者らは、Ti−Ni合金にAg、B、Fe、Nbなとの第3元素を添加したTi−Ni−X合金の耐エロージョン、耐摩耗特性を検討した。(非特許文献3、参照)。   In addition, the present inventors examined the erosion resistance and wear resistance characteristics of a Ti—Ni—X alloy obtained by adding a third element such as Ag, B, Fe, and Nb to a Ti—Ni alloy. (Refer nonpatent literature 3).

その検討の中で、BおよびNb添加合金が耐工ローション性を示し、Ag添加合金が耐摩耗性を示す結果を得られたが、双方の特性を満足するものは得られていない。   In the examination, the B and Nb-added alloy showed the work lotion resistance and the Ag-added alloy showed the wear resistance. However, no alloy satisfying both characteristics was obtained.

Mater. Trans. 43−5、840(2002)Mater. Trans. 43-5, 840 (2002) Trans.MRSJ、26−1、167(2001)Trans. MRSJ, 26-1, 167 (2001) 「材料と環境」、52、643−649(2003)"Materials and Environment", 52, 643-649 (2003)

本発明の技術的課題は、これらの問題を解決すべく、溶接を必要としない弁取付け方法および耐摩耗性、耐エロージョン性に富む合金とそれを用いた管及び弁等の流体用部品を提供することにある。   In order to solve these problems, the technical problem of the present invention is to provide a valve mounting method that does not require welding, an alloy having excellent wear resistance and erosion resistance, and fluid parts such as pipes and valves using the alloy. There is to do.

本発明者らは、耐食、耐摩耗材料として知られるTi−Ni合金にCuを添加することで優れた耐摩耗性、耐エロージョン性を示すことを見出し、上記課題を解決した。   The present inventors have found that by adding Cu to a Ti—Ni alloy known as a corrosion-resistant and wear-resistant material, excellent wear resistance and erosion resistance are exhibited, and the above problems have been solved.

すなわち、本発明によれば、Ti−Ni系合金であって、少なくとも5.0原子%を超えるCuを含むことを特徴とする耐摩耗・耐エロージョン合金が得られる。   That is, according to the present invention, there can be obtained a wear / erosion resistant alloy which is a Ti—Ni based alloy and contains at least 5.0 atomic% of Cu.

また、本発明によれば、耐摩耗・耐エロージョン合金において、前記合金は、形状記憶効果を奏することを特徴とする耐摩耗・耐エロージョン合金が得られる。   In addition, according to the present invention, in the wear / erosion resistant alloy, the wear / erosion resistant alloy is characterized in that the alloy exhibits a shape memory effect.

また、本発明によれば、前記耐摩耗・耐エロージョン合金において、前記合金は、(100−a)Ti−(a−b)Ni−bCu−cX合金(但し、aは45〜55原子%、bは5〜15原子%、cは0〜10原子%、XはNb,V、Co,Cr、Ag,Ta,Wから選ばれた少なくとも一種からなる元素)のCu含有のTi−Ni系合金であることを特徴とする耐摩耗・耐エロージョン合金。   Further, according to the present invention, in the wear / erosion resistant alloy, the alloy is a (100-a) Ti- (ab) Ni-bCu-cX alloy (where a is 45 to 55 atomic%, b is 5-15 atomic%, c is 0-10 atomic%, X is an element composed of at least one selected from Nb, V, Co, Cr, Ag, Ta, and W). A wear- and erosion-resistant alloy characterized by

さらに、本発明によれば、前記耐摩耗・耐エロージョン合金を、高温或いは高圧配管接合部、流体調整弁、ドレン弁などの弁座、弁体および蒸気タービン翼の少なくともいずれか一つの一部若しくは全体に用い、本体部との締結・固定を容易にしたことを特徴とする流体用部品が得られる。   Furthermore, according to the present invention, the wear / erosion resistant alloy may be a part of at least one of a high temperature or high pressure pipe joint, a valve seat such as a fluid regulating valve, a drain valve, a valve body, and a steam turbine blade. A fluid component is obtained which is used for the whole and is easily fastened and fixed to the main body.

本発明においては、溶接を必要としない弁取付け方法を用いる耐摩耗性、耐エロージョン性に優れた管、弁等に用いる合金とそれらの流体用部品を提供することができる。   In the present invention, it is possible to provide alloys used for pipes, valves and the like, which are excellent in wear resistance and erosion resistance using a valve mounting method that does not require welding, and fluid components thereof.

以下、本発明について更に詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明の耐摩耗・耐エロージョン合金は、Ti−Ni系合金もしくは形状記憶効果を有するTi−Ni系合金であって、少なくとも5.0原子%を超えるCuを含む。また、本発明の流体用部品は、この耐摩耗・耐エロージョン合金を、高温或いは高圧配管接合部、流体調整弁、ドレン弁などの弁座、弁体および蒸気タービン翼の少なくともいずれか一つの一部若しくは全体に用い、本体部との締結・固定を容易にしたものである。   The wear and erosion resistant alloy of the present invention is a Ti—Ni alloy or a Ti—Ni alloy having a shape memory effect, and contains at least 5.0 atomic% of Cu. Further, the fluid component of the present invention is made of this wear / erosion resistant alloy using at least one of a high temperature or high pressure pipe joint, a valve seat such as a fluid regulating valve and a drain valve, a valve body and a steam turbine blade. It is used for a part or the whole, and is easily fastened and fixed to the main body part.

ここで、本発明において、Ti−Ni系合金とは、Ti及びNiを含有する合金もしくはその合金のTi及びNiの一部を第3元素で置換したもの(Ti−Ni−X合金)である。   Here, in the present invention, the Ti—Ni-based alloy is an alloy containing Ti and Ni, or one obtained by replacing a part of Ti and Ni of the alloy with a third element (Ti—Ni—X alloy). .

以下に示す本発明の実施の形態では、(100−x)Ti−(x−y)Ni−yCu合金のxを45〜55原子%としたCu含有のTi−Ni系合金のみを示したが、Ti−Ni系合金はこれらに限定されるものではなく、あらゆる組成のCuを含有したTi−Ni系合金、例えば、Cuを含有したTi−Ni−X系合金(X=Nb、V、Co、Cr、Ag)に適用できることは勿論である。   In the embodiment of the present invention described below, only the Cu-containing Ti—Ni alloy in which x of the (100−x) Ti— (xy) Ni—yCu alloy is 45 to 55 atomic% is shown. Ti-Ni alloys are not limited to these, and Ti-Ni alloys containing Cu of any composition, for example, Ti-Ni-X alloys containing Cu (X = Nb, V, Co Of course, the present invention can be applied to (Cr, Ag).

ただ、合金の摩耗性、加工性を考慮するとx=45〜55が好適である。また、Cu含有量yは5原子%以上であれば、充分な耐エロージョン性と耐摩耗性を示すが、繰り返しによる焼付きかじりを考慮すると5原子%を超えることが好ましい。Cu含有は多いほど本発明に対し好適と言えるが、その上限は加工性を考慮すると10%程度が好ましい。   However, x = 45 to 55 is preferable in consideration of wear and workability of the alloy. Further, if the Cu content y is 5 atomic% or more, sufficient erosion resistance and abrasion resistance are exhibited, but it is preferable to exceed 5 atomic% in consideration of seizure galling due to repetition. The higher the Cu content, the better the present invention, but the upper limit is preferably about 10% in consideration of workability.

また、上記Ti−Ni−X合金として、本発明の例では、X=Nb、V、Co、Cr、Agのみを示したがTa、Wなどの元素を含むことに問題はない。また、本発明を形状記憶合金とした場合は、その添加元素、含有量が形状記憶効果を喪失しない範囲に限定することが出来る、その範囲は、上限が10%程度であることが好ましい。   Further, as the Ti—Ni—X alloy, only X = Nb, V, Co, Cr, and Ag are shown in the example of the present invention, but there is no problem in including elements such as Ta and W. Further, when the present invention is a shape memory alloy, the additive element and content can be limited to a range in which the shape memory effect is not lost, and the upper limit is preferably about 10%.

次に本発明の合金の適用例として弁装置を例として説明する。   Next, a valve device will be described as an example of application of the alloy of the present invention.

まず、第1の実施の形態について述べる。   First, the first embodiment will be described.

図1は本発明の第1の実施の形態による耐摩耗性・耐エロージョン合金を用いた弁装置への適用例を示す断面図である。図1を参照すると、円錐形弁座を有する玉型弁の弁座への適用例が示されている。口径25mmの円錐形弁座を有する玉型弁の断面図である。玉型弁1には、弁箱2に36°の角度を有する弁箱側弁座3があり、35°の角度を有する弁体側弁座4を引き上げることによって流体を流し、また、押し込むことによって流量や圧力の調節を行い、締め切ることによって流体を遮断する。これらの弁座はTi−Ni−Cu合金で製造されている。   FIG. 1 is a cross-sectional view showing an application example to a valve device using a wear-resistant and erosion-resistant alloy according to the first embodiment of the present invention. Referring to FIG. 1, an example of application of a ball valve having a conical valve seat to a valve seat is shown. It is sectional drawing of the ball-shaped valve which has a conical valve seat with a diameter of 25 mm. The ball valve 1 has a valve box side valve seat 3 having an angle of 36 ° in the valve box 2, and a fluid is caused to flow by pulling up the valve body side valve seat 4 having an angle of 35 °. Adjust the flow rate and pressure and shut off the fluid by closing it. These valve seats are made of a Ti-Ni-Cu alloy.

次に第2の実施の形態について述べる。   Next, a second embodiment will be described.

第2の実施の形態による玉型弁は、弁箱側弁座の形状及び取り付け方が異なる他は第1の実施の形態と同様であるので、弁箱側弁座についてのみ説明する。   The ball valve according to the second embodiment is the same as that of the first embodiment except that the shape and mounting method of the valve box side valve seat are different, so only the valve box side valve seat will be described.

図2は本発明の第2の実施の形態による弁箱側弁座を示す断面図である。図2に示す第2の実施の形態による弁箱側弁座5は、後に述べるNo.9合金で製作されている。弁箱の炭素鋼母材6に弁座取付け用の円周状溝7を加工した。弁箱側弁座5の取付けは、別途に用意した弁箱側弁座5を、予め弁座外径が溝径より小さくなるように、温度500℃で形状記憶させた後、室温で変形させて弁箱側弁座5の内径を弁座取付け溝7の外径より大きくした。この弁箱側弁座5を取付け溝6にはめ込み、100℃の温度に加熱して、形状回復させ弁箱6と弁箱側弁座5とを締結した。   FIG. 2 is a sectional view showing a valve box side valve seat according to a second embodiment of the present invention. The valve box side valve seat 5 according to the second embodiment shown in FIG. It is made of 9 alloys. A circumferential groove 7 for attaching a valve seat was machined in the carbon steel base material 6 of the valve box. The valve box side valve seat 5 is mounted by deforming the valve box side valve seat 5 separately prepared at room temperature after storing the shape at a temperature of 500 ° C. so that the outer diameter of the valve seat is smaller than the groove diameter. The inner diameter of the valve box side valve seat 5 was made larger than the outer diameter of the valve seat mounting groove 7. The valve box side valve seat 5 was fitted into the mounting groove 6 and heated to a temperature of 100 ° C. to recover the shape, and the valve box 6 and the valve box side valve seat 5 were fastened.

このようにして製作した弁座を有する口径25mmの玉型弁を発電所の給水系配管に取付け、圧力8.624MPa(88kg/cm)、温度288℃で使用したが、良好な弁の締切り特性と耐エロージョン性、耐摩耗性を示した。 A ball valve with a diameter of 25 mm having a valve seat manufactured in this way was attached to the water supply system piping of the power plant and was used at a pressure of 8.624 MPa (88 kg / cm 2 ) and a temperature of 288 ° C. The properties, erosion resistance and wear resistance were shown.

以下に、本発明の具体例を示すが、本発明はこれらに限定されるものではないことは勿論である。   Specific examples of the present invention are shown below, but the present invention is of course not limited thereto.

(例)
(i)合金および試験材作製
下記表1に示す種々の合金をアルゴンアーク溶解によって作製し、1000℃、1時間の溶体化処理後急冷し、それぞれの試験片を切り出した。エロージョン試験片は、表面を鏡面加工し、摩耗試験片は#600のペーパー仕上げとした。
(Example)
(I) Preparation of Alloy and Test Material Various alloys shown in Table 1 below were prepared by argon arc melting, rapidly cooled after solution treatment at 1000 ° C. for 1 hour, and each test piece was cut out. The erosion test piece was mirror-finished, and the abrasion test piece was # 600 paper finished.

(ii)形状記憶特性評価
各短冊状試験片の曲げ変形を行い、加工性評価を行った。その結果、No.1〜No4の化学両論から大きく外れる合金およびAgを含むNo.16、No.19合金は、脆く曲げることが出来なかった。
(Ii) Shape memory characteristic evaluation Each strip-shaped test piece was bent and deformed to evaluate the workability. As a result, no. No. 1 to No. 4 containing alloys and Ag that deviate greatly from the chemical theory of No. 16, no. The 19 alloy was brittle and could not be bent.

曲げ可能な試験片は形状記憶特性有無評価の為に、示差走査熱量計(DSC)によって変態温度を測定した。その結果、いずれも明確な変態温度を示し、形状記憶特性の存在を確認した。   The bendable test piece was measured for transformation temperature with a differential scanning calorimeter (DSC) for the evaluation of the presence or absence of shape memory characteristics. As a result, all showed a clear transformation temperature and confirmed the existence of shape memory characteristics.

Figure 2009127081
Figure 2009127081

(iii)耐エロージョン性の評価
エロージョン試験は、JIS R 1645に準拠した高温・高圧の圧縮水を微小孔径のノズルから大気中に噴射して得られる噴流を試験片表面に衝突させる方法で行った。具体的には、温度=150℃、圧力=14.7MPaの圧縮水を孔径=0.3mm、厚さ=1mmのノズル(SUS304)より大気中に噴出させ、ノズルから10mmの位置に設置された試験片に衝突させた。噴流の流量は8×10−6/sである。試験片の寸法は、直径16mm、厚さ3mmである。噴流は、ノズルからの距離が長くなるに伴い空気との摩擦により液滴に分散する液滴噴流となるが、本試験片条件では液滴に分散しない連続噴流となっている。
(Iii) Evaluation of erosion resistance The erosion test was conducted by a method in which a jet obtained by injecting high-temperature / high-pressure compressed water in accordance with JIS R 1645 into the atmosphere from a nozzle having a small pore diameter collides with the surface of the test piece. . Specifically, compressed water having a temperature of 150 ° C. and a pressure of 14.7 MPa was ejected into the atmosphere from a nozzle (SUS304) having a pore diameter of 0.3 mm and a thickness of 1 mm, and was installed at a position 10 mm from the nozzle. Collided with the specimen. The flow rate of the jet is 8 × 10 −6 m 3 / s. The test piece has a diameter of 16 mm and a thickness of 3 mm. The jet is a droplet jet that disperses into droplets due to friction with air as the distance from the nozzle increases, but under this test piece condition, it is a continuous jet that does not disperse into droplets.

下記表2に各試験片への2時間噴射後損傷度をステライトと比較した結果を示したが、本発明例は、いずれもステライトと同等以上の耐エロージョン性を示すことが判った。なお、表中、丸印(○)はステライトと比較し損傷が少ない、三角印(△)は同等、バツ印(×)は劣る、ことを夫々示している。   Table 2 below shows the results of comparing the degree of damage to each test piece after 2 hours of injection with stellite, and it was found that all of the inventive examples showed erosion resistance equal to or higher than stellite. In the table, circles (◯) indicate less damage than stellite, triangles (Δ) are equivalent, and crosses (x) are inferior.

図3は、ステライト、No.5(Ti−Ni)、No.19(Ti−Ni−Ag)、No.9(Ti−Ni−Cu)各試験片の受けた浸食深さと噴射時間の関係を示したが、本発明例が耐エロージョン性に優れることが判る。   FIG. 5 (Ti-Ni), No. 5 19 (Ti-Ni-Ag), No. 19 9 (Ti—Ni—Cu) The relationship between the erosion depth received by each test piece and the injection time was shown, but it can be seen that the present invention example is excellent in erosion resistance.

Figure 2009127081
Figure 2009127081

(iv)耐摩耗性評価
摩耗試験は、往復摺動方法で行った。一定荷重下の条件で、供試材を固定試験片とし、SUS440Cを可動試験片として室温の純水中で試験を行った。固定試験片は、直径11.3mm、長さ15mmの円筒形、可動試験片はSUS440Cであり15×10×120mmの矩形とした。試験は摺動速度167mm/s、ストローク50mmの条件で行った。荷重を98Nから開始し、摺動回数が50回毎に荷重を98Nずつ増加させ、焼付きかじりが発生するまで行った。各固定片の比摩耗量をステライトと比較した結果を下記表3に示したが、本発明例が耐摩耗性に優れることが判る。ここで、摩耗量=試験前重量−試験後重量、比摩耗量=摩耗量/(摺動距離×最終荷重)であり、表中、丸印(○)はステライトと比較し摩耗が少ない、三角印(△)は同等、バツ印(×)は多い、を意味する。
(Iv) Wear resistance evaluation The wear test was performed by a reciprocating sliding method. The test was performed in pure water at room temperature using the specimen as a fixed test piece and SUS440C as a movable test piece under conditions under a constant load. The fixed test piece was a cylindrical shape having a diameter of 11.3 mm and a length of 15 mm, and the movable test piece was SUS440C, which was a rectangle of 15 × 10 × 120 mm. The test was performed under the conditions of a sliding speed of 167 mm / s and a stroke of 50 mm. The load was started from 98N, and the load was increased by 98N every 50 times of sliding until the seizure galling occurred. The results of comparing the specific wear amount of each fixed piece with Stellite are shown in Table 3 below, and it can be seen that the present invention example is excellent in wear resistance. Here, wear amount = weight before test−weight after test, specific wear amount = wear amount / (sliding distance × final load). In the table, circles (◯) indicate less wear compared to stellite, triangle The mark (Δ) means the same, and the cross mark (×) means many.

Figure 2009127081
Figure 2009127081

図4にNo.7(Ti−Ni−5Cu)、ステライト、No.19(Ti−Ni−Ag)および本発明例No.9(Ti−Ni−8.5Cu)合金の摺動繰り返しによる摩擦係数の変化結果を示した。No.7は1000回未満で焼付きかじりを起こし、ステライトは繰り返しによる押付け荷重の増加に伴い上昇する傾向を示したが、本発明品およびNo.19は、その変化がほとんど見られなかった。   In FIG. 7 (Ti—Ni-5Cu), Stellite, No. 7 19 (Ti-Ni-Ag) and Inventive Example No. The change result of the friction coefficient by the sliding repetition of 9 (Ti-Ni-8.5Cu) alloy was shown. No. No. 7 caused seizure at less than 1000 times, and stellite showed a tendency to increase as the pressing load increased due to repetition. 19 showed almost no change.

以上の説明の通り、本発明に係る耐摩耗・耐エロージョン合金は、高圧配管接合部、流体調整弁、ドレン弁などの弁座、弁体および蒸気タービン翼の少なくともいずれか一つの一部若しくは全体に用い、本体部との締結・固定を容易にすることができるので、火力および原子力発電所などの給水系に用いられる流体用部品に最適である。   As described above, the wear / erosion resistant alloy according to the present invention is a part or the whole of at least one of a high pressure pipe joint, a valve seat such as a fluid regulating valve and a drain valve, a valve body, and a steam turbine blade. Because it can be easily fastened and fixed to the main body, it is most suitable for fluid parts used in water supply systems such as thermal power and nuclear power plants.

本発明の実施の形態による玉型弁を示す断面図である。It is sectional drawing which shows the target lens valve by embodiment of this invention. 図1の玉型弁の弁箱側弁座を示す断面図である。It is sectional drawing which shows the valve box side valve seat of the ball-shaped valve of FIG. 本発明の例におけるステライト、No.5(Ti−Ni)、No.19(Ti−Ni−Ag)、No.9(Ti−Ni−Cu)各試験片の浸食深さと噴射時間の関係を示す図である。In the examples of the present invention, stellite, no. 5 (Ti-Ni), No. 5 19 (Ti-Ni-Ag), No. 19 It is a figure which shows the relationship between the erosion depth of each 9 (Ti-Ni-Cu) test piece, and the injection time. 本発明の例におけるNo.7(Ti−Ni−5Ag)、ステライト、No.19(Ti−Ni−Ag)および本発明例のNo.9の摩擦係数の変化結果を示した図である。No. in the examples of the present invention. 7 (Ti-Ni-5Ag), Stellite, No. 7 19 (Ti-Ni-Ag) and No. 9 is a diagram showing a change result of a friction coefficient of 9. FIG.

符号の説明Explanation of symbols

1 玉型弁
2 弁箱
3 弁箱側弁座
4 弁体側弁座
5 弁箱側弁座
6 炭素鋼母材
7 円周状溝
DESCRIPTION OF SYMBOLS 1 Ball valve 2 Valve box 3 Valve box side valve seat 4 Valve body side valve seat 5 Valve box side valve seat 6 Carbon steel base material 7 Circumferential groove

Claims (4)

Ti−Ni系合金であって、少なくとも5.0原子%を超えるCuを含むことを特徴とする耐摩耗・耐エロージョン合金。   A wear-resistant and erosion-resistant alloy which is a Ti-Ni alloy and contains at least 5.0 atomic% of Cu. 請求項1に記載の耐摩耗・耐エロージョン合金において、前記合金は、形状記憶効果を有することを特徴とする耐摩耗・耐エロージョン合金。   2. The wear / erosion resistant alloy according to claim 1, wherein the alloy has a shape memory effect. 請求項1又は2に記載の耐摩耗・耐エロージョン合金において、前記合金は、(100−a)Ti−(a−b)Ni−bCu−cX合金(但し、aは45〜55原子%、bは5〜15原子%、cは0〜10原子%、XはNb,V、Co,Cr、Ag,Ta,Wから選ばれた少なくとも一種からなる元素)のCu含有のTi−Ni系合金であることを特徴とする耐摩耗・耐エロージョン合金。   The wear / erosion resistant alloy according to claim 1 or 2, wherein the alloy is a (100-a) Ti- (ab) Ni-bCu-cX alloy (where a is 45 to 55 atomic%, b 5 to 15 atomic%, c is 0 to 10 atomic%, and X is a Cu-containing Ti—Ni alloy of at least one element selected from Nb, V, Co, Cr, Ag, Ta, and W). A wear and erosion resistant alloy characterized by 請求項3に記載の耐摩耗・耐エロージョン合金を、高温或いは高圧配管接合部、流体調整弁、ドレン弁などの弁座、弁体および蒸気タービン翼の少なくともいずれか一つの一部若しくは全体に用い、本体部との締結・固定を容易にしたことを特徴とする流体用部品。   The wear / erosion resistant alloy according to claim 3 is used for a part or all of at least one of a high temperature or high pressure pipe joint, a valve seat such as a fluid regulating valve and a drain valve, a valve body and a steam turbine blade. A fluid component characterized by facilitating fastening and fixing with a main body.
JP2007302513A 2007-11-22 2007-11-22 Fluid parts Expired - Fee Related JP5301817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302513A JP5301817B2 (en) 2007-11-22 2007-11-22 Fluid parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302513A JP5301817B2 (en) 2007-11-22 2007-11-22 Fluid parts

Publications (2)

Publication Number Publication Date
JP2009127081A true JP2009127081A (en) 2009-06-11
JP5301817B2 JP5301817B2 (en) 2013-09-25

Family

ID=40818315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302513A Expired - Fee Related JP5301817B2 (en) 2007-11-22 2007-11-22 Fluid parts

Country Status (1)

Country Link
JP (1) JP5301817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073754A1 (en) * 2017-10-10 2019-04-18 株式会社古河テクノマテリアル Ti-Ni ALLOY, WIRE, ELECTRIFICATION ACTUATOR AND TEMPERATURE SENSOR USING SAME, AND METHOD FOR MANUFACTURING Ti-Ni ALLOY MATERIAL

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056038A (en) * 1983-09-08 1985-04-01 Hitachi Metals Ltd Shape memory alloy and its production
JPS60208440A (en) * 1984-03-30 1985-10-21 Matsushita Electric Ind Co Ltd Thermosensitive device
JPH03150333A (en) * 1989-11-02 1991-06-26 Hitachi Metals Ltd Shape memory alloy and its manufacture
JPH03267341A (en) * 1990-03-19 1991-11-28 Tokin Corp Dental orthodontic appliance
JPH06172886A (en) * 1991-06-15 1994-06-21 Takeshi Masumoto Ti-ni-cu shape memory alloy
JP2003268468A (en) * 2002-03-08 2003-09-25 Science Univ Of Tokyo Alloy with high vibration-damping performance, and manufacturing method therefor
JP2005054856A (en) * 2003-08-01 2005-03-03 Nec Tokin Corp Erosion resistant valve
JP2005273015A (en) * 2004-03-16 2005-10-06 General Electric Co <Ge> Erosion and wear resistant protective structure for turbine engine component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056038A (en) * 1983-09-08 1985-04-01 Hitachi Metals Ltd Shape memory alloy and its production
JPS60208440A (en) * 1984-03-30 1985-10-21 Matsushita Electric Ind Co Ltd Thermosensitive device
JPH03150333A (en) * 1989-11-02 1991-06-26 Hitachi Metals Ltd Shape memory alloy and its manufacture
JPH03267341A (en) * 1990-03-19 1991-11-28 Tokin Corp Dental orthodontic appliance
JPH06172886A (en) * 1991-06-15 1994-06-21 Takeshi Masumoto Ti-ni-cu shape memory alloy
JP2003268468A (en) * 2002-03-08 2003-09-25 Science Univ Of Tokyo Alloy with high vibration-damping performance, and manufacturing method therefor
JP2005054856A (en) * 2003-08-01 2005-03-03 Nec Tokin Corp Erosion resistant valve
JP2005273015A (en) * 2004-03-16 2005-10-06 General Electric Co <Ge> Erosion and wear resistant protective structure for turbine engine component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7013000760; 服部修次: 'Ti-Ni系形状記憶合金のキャビテーション壊食特性' 日本機械学会論文集(A編) 72巻,719号, 200607, 1108-1114, 社団法人 日本機械学会 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073754A1 (en) * 2017-10-10 2019-04-18 株式会社古河テクノマテリアル Ti-Ni ALLOY, WIRE, ELECTRIFICATION ACTUATOR AND TEMPERATURE SENSOR USING SAME, AND METHOD FOR MANUFACTURING Ti-Ni ALLOY MATERIAL
JPWO2019073754A1 (en) * 2017-10-10 2020-09-17 株式会社古河テクノマテリアル Ti-Ni alloy, wire rod using it, energizing actuator and temperature sensor, and manufacturing method of Ti-Ni alloy
US11313732B2 (en) 2017-10-10 2022-04-26 Furukawa Techno Material Co., Ltd. Ti—Ni-based alloy; wire, electrically conductive actuator, and temperature sensor, each using this alloy; and method of producing a Ti—Ni-based alloy
JP7152722B2 (en) 2017-10-10 2022-10-13 株式会社古河テクノマテリアル Ti--Ni alloy, wire using the same, current-carrying actuator, temperature sensor, and method for producing Ti--Ni alloy material

Also Published As

Publication number Publication date
JP5301817B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
ES2869194T3 (en) High strength and corrosion resistant austenitic alloys
CN1676884B (en) Erosion and wear resistant protective structures for turbine engine components
JP4908137B2 (en) Turbine rotor and steam turbine
CN101495265B (en) Erosion preventive method and member with erosion preventive section
Kim et al. Comparative study on the high-temperature tensile and creep properties of Alloy 617 base and weld metals
JP6640752B2 (en) Cobalt-free, galling and abrasion resistant austenitic surface hardened stainless steel alloy
Di Gianfrancesco et al. Long term microstructural evolution of 9-12% Cr steel grades for steam power generation plants
Grewal et al. Understanding Liquid Impingement erosion behaviour of nickel–alumina based thermal spray coatings
KR102118007B1 (en) High-strength corrosion-resistant tubing for oil and gas completion and drilling applications, and process for manufacturing thereof
JP5301817B2 (en) Fluid parts
JP5947342B2 (en) Valve equipment for nuclear power plants
Cipolla et al. Microstructural evolution during long term creep tests of 9% Cr steel grades
JP2005054856A (en) Erosion resistant valve
Tripathi et al. Study on tribological behavior of HVOF developed coatings especially for hydroturbine runner application—a concise review
Shin et al. Characterization of microstructures and creep fracture characteristics of dissimilar metal welds between Inconel 740H Ni-based superalloy and Gr. 92 ferritic steel
JP2007131913A (en) Anticorrosive for reducing erosion or corrosion, and method for reducing the same
JP4189359B2 (en) Anticorrosion method
JP5676808B1 (en) Co-base alloy for welding, filler metal and overlay metal parts
Hernas et al. Properties and microstructure of 12% Cr-W steels after long-term service
JP2004077408A (en) Valve for light-water reactor
Pikos et al. Perspectives of materials for fin tubes
JP2008223907A (en) Back pressure regulating valve
KR100414687B1 (en) Fe-based hardfacing alloy
JP2010236385A (en) Steam valve
Shen Review of the Effect of Cold Work on Stress Corrosion Cracking

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5301817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees