JP2004077408A - Valve for light-water reactor - Google Patents

Valve for light-water reactor Download PDF

Info

Publication number
JP2004077408A
JP2004077408A JP2002241536A JP2002241536A JP2004077408A JP 2004077408 A JP2004077408 A JP 2004077408A JP 2002241536 A JP2002241536 A JP 2002241536A JP 2002241536 A JP2002241536 A JP 2002241536A JP 2004077408 A JP2004077408 A JP 2004077408A
Authority
JP
Japan
Prior art keywords
valve
water reactor
light water
laser beam
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241536A
Other languages
Japanese (ja)
Inventor
Kikuo Takeshima
竹島 菊男
Makoto Kumagai
熊谷 真
Mitsuo Chikazaki
近崎 充夫
Yoshiteru Chiba
千葉 良照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002241536A priority Critical patent/JP2004077408A/en
Publication of JP2004077408A publication Critical patent/JP2004077408A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve for a light-water reactor which has good corrosion and abrasion resistance without increasing the cost as in a conventional ceramic coating treatment. <P>SOLUTION: The purpose mentioned above is achieved by obtaining the valve for the light-water reactor manufactured by melting and cooling a surface padding section irradiated with a laser beam after applying a surface hardening padding material to a valve box of the valve for the light-water reactor and a sheet of a valve body and irradiating the surfaces of at least one of the surface hardening padding materials applied to the valve box and the sheet with the laser beam. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、シート(摺動または接触する部品)を備えた軽水原子炉用弁の改良に関する。
【0002】
【従来の技術】
一般に、高温高圧流水配管に設置される軽水原子炉用弁の弁箱、弁体のシートおよびガイドには、耐エロージョン・コロージョン性を付与するため肉盛溶接法によってCo基合金の表面肉盛層がそれぞれ肉盛されている。
【0003】
しかし、冷却材として軽水を用いる原子炉において、弁箱および弁体のシートおよびガイドは、原子炉の高温高圧水に接しているため、Co基合金表面肉盛層のCoが冷却材中に溶出する。
【0004】
溶出したCoは冷却材と共に原子炉の炉心に入って60Coになり、配管、タービン、その他の機器に循環して付着する。
【0005】
このことが、冷却材として軽水を用いる原子炉プラントの定期点検が行われる際に、弁分解点検作業を行う作業員の被ばく量が下がり難い原因の1つであると考えられる。
【0006】
その原因を取り除くため、軽水原子炉用弁の弁箱および弁体のシール部に、肉盛溶接材としてCoを含まないNi基合金を使用する技術も先に提案されている。
【0007】
弁箱と弁体とのシートにNi基合金を肉盛溶接して用いる場合には、弁箱と弁体とで硬度が互いに相違するNi基合金を肉盛溶接して用い、耐エロージョン・コロージョン性を改善している。ただし、このNi基合金の組合せに対しても、高差圧下での弁の作動回数が増加すると摩耗して、シートリークにつながる可能性があり、さらに耐摩耗性を向上させることが望まれる(特開平4−276038号公報参照)。
【0008】
軽水原子炉用弁の弁箱および弁体のシートに、肉盛溶接材としてCoを含まないNi基合金を使用する公知の文献として、特開昭62−1837号公報、特開昭62−130792号公報、特開平6−331052号公報、特開平8−210525号公報が挙げられる。
【0009】
機械的、摺動特性を良好に保つために、特開平8−120450号公報では、弁箱シート部と弁体シート部に付されるセラミック被覆は立方晶窒化硼素とされている。一般に硼素は原子力プラントでは好ましくない材料とされており、鋼材の添加元素として微量に含まれることはあるが、数十%の添加は結晶粒界の劣化が原因で使用されていない。
【0010】
その理由は、硼素が長時間照射環境にさらされるとHeガスに変化し、硼素自体の体積が大きくなり、結晶粒界の結合がもろく硼素の機能が劣るのが主な原因とされている。本公報で開示されているように100%の硼素を弁シート部として使用すると、上述のように基材と硼素の密着が劣り、剥離するものと思われる。緩衝層の積層法においても同様の剥離が起こることが予想される。立方晶窒化硼素はビッカース硬度5000と非常に硬くもろく、高温高圧弁の使用温度から急冷による室温までの急激な変化に耐えられない。
【0011】
特開平8−210525号公報では、弁体と弁箱の相互摺動面にセラミックスコーティングを施すことが提案されているが、どのようなセラミックが適切であるかが開示されていない。
【0012】
その一方、特開平6−331052号公報には、弁体と弁箱の相互摺動面に施すセラミックスコーティングの材料として、Ti,Cr,Zr,Hf,V,Nb,Taから成る群から選ばれた金属の炭化物、窒化物、炭窒化物が提案され、その中でもTiNやCrNを採用した具体的な試験結果が掲載されている。
【0013】
その試験内容は、弁箱と弁体との両摺動部の両方にTiNまたはCrNを、あるいは両摺動部の一方にTiNを、他方にCrNを採用した例、すなわち弁箱と弁体との両摺動部の両方にセラミックスコーティングを施すと水の漏れ測定値がきわめて少なくて良好な結果が得られた、というものである。
【0014】
【発明が解決しようとする課題】
軽水原子炉用弁の弁箱および弁体のシートは流体内にあり、時々開閉作動されるため、流体の腐食条件下で、耐食性が要求されるだけでなく、反復摺動および大きな面圧に耐えなければならない。そのためシートにはNi基、Fe基またはCo基の硬化材が3mmの厚さで肉盛されている。弁体前後の圧力差が大きい場合、特に大口径弁体の作動摺動時に、弁の弁箱シートリングと弁体シートに変形が生じて、軽水原子炉用弁の弁箱および弁体のシート接触部の面圧がが局部的に高くなるので、公知のNi基合金やFe基合金の組合せでは硬度差をつけることが必要であった。このため、公知のNi基合金の組合せでは硬度の低い材料に摩耗が多くなる可能性が残っている。また、実使用条件下で弁シート部は長期間流体内におかれることもあり、その腐食環境下ではこの肉盛材中にある縦状の共晶炭化物(周囲より硬くもろい組織)が腐食環境下で腐食し、その後の摺動で摩耗する傾向があり、その組織を変えて、耐食性、耐摩耗性を向上させることが望まれていた。
【0015】
また一方、機械的、摺動特性や耐摩耗性および気密性を向上すべく、弁箱と弁体との両摺動部の両方にセラミックスコーティングを施した場合は、セラミックスコーティングをシートリングに施し、その後に、弁箱にそのコーティング済みシートリングを溶接で弁箱に取り付ける必要があり、その溶接熱の影響でシートリングのシート面が変形する。シート面を平らにする必要があるためラッピングすることになる。そのラッピングは研削加工であるから、シートリングのシート面に施したセラミックスコーティングの膜が無くなる可能性があった。また、弁体だけでもシート面をセラミックスコーティングすることは、弁体を真空槽で高温状態でアークをとばしてコーティングする必要があり、コストアップになる可能性があった。
【0016】
本発明の目的は、従来のセラミックスコーティング処理のようにコストアップを伴わずに耐食性および耐摩耗性を良好とした軽水原子炉用弁を提供することにある。
【0017】
【課題を解決するための手段】
前記目的は、軽水原子炉用弁の弁箱と弁体のシートに表面硬化肉盛材を施し、少なくともその一方の表面硬化肉盛材の表面にレーザービーム照射を施して、レーザビーム照射された表面肉盛部を溶融し冷却して製作された軽水原子炉用弁を得ることによって達成される。
【0018】
【発明の実施の形態】
本発明の実施例においては、弁箱が弁体に接するシート(摺動または接触する部品)のNi(またはFe)基合金の肉盛表面をレーザ照射し、表面から極一部の組織(0.5mmまで)を微細(共晶炭化物の大きさを30μm以下)に改善処理することより、耐食性、耐摩耗性が向上する。以下詳細に説明する。
【0019】
弁箱、弁体が接するシート2a,2b,2cには、Ni基合金またはFe基合金が肉盛され、摺動性をよくしているが、その特性をさらに改善するため、肉盛表面をレーザ照射する。この時のレーザ出力は1000Wとし、焦点ぼかし距離Dfが肉盛表面から5mm離れた位置として施行速度30mm/sで照射する。照射前の肉盛の組織は基材部と縦状の共晶炭化物からなるが、レーザ照射後急冷することで肉盛表面を硬くさせると共にその組成(共晶炭化物等)は微細(30μm以下)の粒状または塊状の状態に改善処理され、耐摩耗性を向上させる。すなわち、レーザビーム照射を施さない従来の溶接肉盛状態では、共晶炭化物組織が連続しており、高速流の腐食環境にさらされると共晶炭化物のコロージョンとその後の流体によるエロージョンが発生し、その繰返しで摩耗が進行していたが、レーザビーム照射を施して共晶炭化物を30μm以下に微細にした場合は、表面の共晶炭化物がエロージョンされた後は、肉盛表面は基材部だけになり、それ以上の摩耗を止めることができる。すなわち耐食性、耐摩耗性が向上する。
【0020】
本発明の実施例を具体的に以下に示す。
【0021】
弁箱およびシートをレーザービーム処理した軽水原子炉用弁の全体を図1に示す。
【0022】
軽水原子炉用弁1は、鋳鋼製の弁体2および鋳鋼製の弁箱3を有する。その弁体2および弁箱3の材料である鋳鋼材としては、高温高圧用鋳鋼材または低温高圧用鋳鋼材が用いられる。
【0023】
弁箱3は、流水配管に接続されて流路の一部を構成する一対の管接続部4を有する弁箱本体5と、その開放された上部を覆う蓋部材6とを主部材として構成されている。弁体2は、弁棒7を介した回転ハンドル8の操作によって上下動され、両管接続部4の流路pを開閉する。また、弁体2は、流路pに臨む概ね円形の弁体シート2a,2bを有する。
【0024】
図2に本発明の実施に使用したレーザ照射方法を示す。
【0025】
弁体2と弁箱5のシートリングにNi基合金またはFe基合金を肉盛させた後、操作台10に載せて、レーザ発振器11からレーザ13を出して反射板12で方向転換させ、光レンズ14で集合させて焦点15を形成した後、シートの肉盛表面に照射する。レーザが円形のシート面を照射できるよう操作台を移動させる。
【0026】
この方法の特徴は、
(1)材料にほとんど変形を生じないので後加工がいらない
(2)局部の小さい部分にも適用できる
(3)真空槽や冷却材の大型装置がいらない
等簡便に実施可能である。
【0027】
本方法の有効性を確認するため、小型のテストピースにNi基(またはFe基)合金を肉盛し、その表面をレーザ照射した。照射条件として移行速度30mm/s、焦点ぼかし距離5mm、急冷速度500℃以上/秒とした。レーザ照射するときに照射近傍の温度を計測し、照射後の急冷速度が500℃以上/秒であることを確認した。また、照射後のテストピースの断面硬度測定では、シート表面から0.6mmまでは、硬度が高くHv600となっており(照射前の従来材硬度450HV)、その組織調査から粒状の共晶炭化物(30μm以下)が確認された。試験に際しては、試験材は小型であるため、実弁体(鋳鋼品)の鋳鋼材とほぼ同等の特性を示す炭素鋼鋼材を弁体と弁箱の基材とみなして試験に使用した。
【0028】
表1に供試材の化学成分を示す。
【0029】
【表1】

Figure 2004077408
肉盛材はステライト、Ni基合金A、Ni基合金A(Laser)、Fe基合金B、Fe基合金B(Laser)とし、基材である炭素鋼S25C、S45Cに肉盛した。
【0030】
この供試材を表2の組合せで摺動試験を行った。
【0031】
【表2】
Figure 2004077408
表2中での1〜7の数字は試験片の組合せ番号を示す。試験は水中で往復摺動試験を実施し、摺動後の摩耗量を測定した。固定片はφ5mmの円柱試験片とし、可動片は長さ120mmの板状で表面に硬化材を肉盛し、レーザ処理をした。
【0032】
その形状を図3に示す。
【0033】
また、摺動試験装置を図4に示すが、固定片と可動片を面圧50kg/cm2で接触させ、可動片を周速0.3m/Sで総距離400m摺動させた。
【0034】
摺動試験結果を表3に示す。
【0035】
【表3】
Figure 2004077408
各試験No1〜7毎にその摩耗量をグラフで示した。ステライト同士(従来材)の摺動では、固定片の減量は3mg、可動片の減量は6mgであった。Ni基合金同士、Fe基合金同士での摺動による減量はステライトより少し多めであった。ただし、Ni基合金、Fe基合金の一方を本発明であるレーザービーム溶射した供試材を組合せて摺動試験すると、その摩耗量は少なくなった。また、固定片、可動片共に本発明であるレーザービーム溶射した供試材とした場合は、減量は固定片、可動片共に1mgとなり、摩耗量は非常に少なく、その効果が顕著に表れた。
【0036】
以上のようにして製作された軽水原子炉用弁を、大径の高温高圧配管である給復水配管用の弁として設置することにより、従来のセラミックコーティング処理のようにコストアップを伴わずに耐食性および耐摩耗性を良好とした軽水原子炉用弁を得ることができる。軽水原子炉用弁の耐食性、耐摩耗性が良好であるということは、弁の保守点検作業が減り、弁の分解点検を行う作業員の被ばく量低減にもつながる。
【0037】
なお、前記実施例においては、軽水原子炉用弁の弁箱と弁体に施された表面硬化肉盛材としてNi基合金またはFe基合金を用いた場合について記載したが、前記Ni基合金またはFe基合金に代えて、軽水原子炉用弁の弁箱と弁体に、表面硬化肉盛材としてCo基合金を施し、その両Co基合金の表面にレーザービーム照射を施しても、Co基合金の表面にレーザービーム照射を施さない従来に比べて耐食性および耐摩耗性を良好とした軽水原子炉用弁を得ることができる。すなわち、レーザビーム照射を施さない従来の溶接肉盛状態では、図5の左側に示すように、共晶炭化物組織が連続しており、高速流の腐食環境にさらされると共晶炭化物のコロージョンとその後の流体によるエロージョンが発生し、その繰返しで摩耗が進行していたが、レーザビーム照射を施して共晶炭化物を30μm以下に微細にした場合は、図5の右側に示すように、表面の共晶炭化物がエロージョンされた後は、肉盛表面は基材部だけになり、それ以上の摩耗を止めることができる。すなわち耐食性、耐摩耗性が向上する。
【0038】
【発明の効果】
本発明によれば、従来のセラミックスコーティング処理のようにコストアップを伴わずに耐食性および耐摩耗性を良好とした軽水原子炉用弁を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す軽水原子炉用弁の縦断面図である。
【図2】本発明の実施に使用したレーザ照射方法を示す図である。
【図3】本発明の実施に使用した試験片とその寸法を示す図である。
【図4】本発明の実施に使用した摩耗試験装置を示す図である。
【図5】エロージョン・コロージョンの発生原理を示す模式図である。
【符号の説明】
1…軽水原子炉用弁、2…弁体、2a,2b…弁箱シート、2c…弁体シート、3…弁箱、3a…ガイド、4…管接続部、5…弁箱、6…蓋部材、7…弁棒、8…回転ハンドル、9…シートリング。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a valve for a light water reactor having a seat (a part that slides or contacts).
[0002]
[Prior art]
Generally, the valve case, valve body seats and guides of light water reactor valves installed in high-temperature, high-pressure running water pipes are provided with a surface build-up layer of a Co-based alloy by a build-up welding method in order to impart erosion and corrosion resistance. Have been overlaid respectively.
[0003]
However, in a reactor using light water as a coolant, the valve box and valve body sheets and guides are in contact with the high-temperature, high-pressure water of the reactor, so that Co of the Co-based alloy surface build-up layer elutes into the coolant. I do.
[0004]
The eluted Co enters the reactor core together with the coolant to become 60 Co, and circulates and adheres to pipes, turbines, and other equipment.
[0005]
This is considered to be one of the causes of the difficulty in reducing the exposure of the worker who performs the valve disassembly inspection work during the periodic inspection of the reactor plant using light water as the coolant.
[0006]
In order to eliminate the cause, a technique of using a Ni-based alloy containing no Co as a build-up welding material in a valve box of a valve for a light water reactor and a seal portion of a valve body has been proposed.
[0007]
When the Ni-base alloy is used for the sheet of the valve box and the valve body by overlay welding, the Ni-base alloy having different hardness between the valve box and the valve body is weld-welded and used for erosion and corrosion resistance. Improve the sex. However, even with this combination of Ni-based alloys, if the number of times of operation of the valve under a high differential pressure increases, the valve may be worn, which may lead to seat leak, and it is desired to further improve the wear resistance ( See JP-A-4-276038).
[0008]
As known documents using a Ni-based alloy containing no Co as a build-up welding material for a valve box and a valve body sheet of a light water reactor valve, Japanese Patent Application Laid-Open Nos. 62-1837 and 62-130792 are known. JP, JP-A-6-331052 and JP-A-8-210525.
[0009]
In order to maintain good mechanical and sliding characteristics, Japanese Patent Application Laid-Open No. 8-120450 discloses that the ceramic coating applied to the valve box sheet portion and the valve body sheet portion is cubic boron nitride. Generally, boron is considered to be an undesirable material in a nuclear power plant, and may be contained in a trace amount as an additive element of steel. However, the addition of tens of percent is not used due to deterioration of grain boundaries.
[0010]
The main reason is that when boron is exposed to an irradiation environment for a long time, it changes into He gas, the volume of boron itself increases, the bonding of crystal grain boundaries is brittle, and the function of boron is inferior. When 100% boron is used for the valve seat as disclosed in this publication, it is considered that the adhesion between the substrate and boron is inferior as described above, and the boron is peeled off. It is expected that the same peeling will occur in the method of laminating the buffer layer. Cubic boron nitride is extremely hard and brittle, having a Vickers hardness of 5000, and cannot withstand a sudden change from the operating temperature of a high-temperature high-pressure valve to room temperature due to rapid cooling.
[0011]
Japanese Patent Application Laid-Open No. Hei 8-210525 proposes to apply a ceramic coating to the mutual sliding surfaces of the valve body and the valve box, but does not disclose what ceramic is appropriate.
[0012]
On the other hand, Japanese Unexamined Patent Publication No. Hei 6-331052 discloses that a ceramic coating material applied to the mutually sliding surfaces of a valve element and a valve box is selected from the group consisting of Ti, Cr, Zr, Hf, V, Nb, and Ta. Metal carbides, nitrides, and carbonitrides have been proposed, and among them, concrete test results employing TiN and CrN are disclosed.
[0013]
The test content was an example in which TiN or CrN was used for both sliding portions of the valve box and the valve body, or TiN was used for one of the sliding portions, and CrN was used for the other. When the ceramic coating was applied to both of the sliding portions, the measured value of water leakage was extremely small and good results were obtained.
[0014]
[Problems to be solved by the invention]
Since the valve box and valve body seats of light water reactor valves are in a fluid and are sometimes opened and closed, not only corrosion resistance is required under fluid corrosion conditions, but also repeated sliding and large surface pressure. I have to endure. Therefore, a Ni-based, Fe-based, or Co-based hardening material is overlaid on the sheet to a thickness of 3 mm. When the pressure difference between the front and rear of the valve body is large, especially when the large-diameter valve body slides, the valve box seat ring and valve body sheet of the valve are deformed, and the valve box and valve body seat of the light water reactor valve are used. Since the surface pressure of the contact portion is locally increased, it is necessary to make a difference in hardness between known combinations of Ni-based alloys and Fe-based alloys. For this reason, in a combination of known Ni-based alloys, there is a possibility that a material having low hardness may have a large amount of wear. Also, under actual use conditions, the valve seat part may be in the fluid for a long period of time, and in that corrosive environment, the vertical eutectic carbide (harder and more fragile structure than the surroundings) in this build-up material is corroded. There is a tendency to corrode underneath and wear in subsequent sliding, and it has been desired to change its structure to improve corrosion resistance and wear resistance.
[0015]
On the other hand, when ceramic coating is applied to both sliding parts of the valve box and valve body in order to improve mechanical and sliding characteristics, wear resistance and airtightness, ceramic coating is applied to the seat ring. Then, it is necessary to attach the coated seat ring to the valve box by welding, and the seat surface of the seat ring is deformed by the influence of the welding heat. Since the sheet surface needs to be flat, it will be wrapped. Since the lapping is a grinding process, there is a possibility that the ceramic coating film applied to the seat surface of the seat ring may be lost. Also, coating the sheet surface with ceramics using only the valve element requires coating the valve element by blowing an arc in a high temperature state in a vacuum chamber, which may increase the cost.
[0016]
An object of the present invention is to provide a valve for a light water reactor which has good corrosion resistance and abrasion resistance without increasing the cost unlike the conventional ceramic coating treatment.
[0017]
[Means for Solving the Problems]
The above-mentioned object is to apply a surface-hardened material to a valve box and a valve body sheet of a valve for a light water reactor, to apply a laser beam to at least one surface of the surface-hardened material, and to apply a laser beam. This is achieved by melting and cooling the surface overlay to obtain a manufactured light water reactor valve.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
In the embodiment of the present invention, the surface of a Ni (or Fe) -based alloy build-up surface of a sheet (a component that slides or contacts) in contact with a valve body is irradiated with a laser, and a very small portion of the structure (0 The corrosion resistance and abrasion resistance are improved by improving the fineness (up to 0.5 mm) to fineness (the size of the eutectic carbide is 30 μm or less). The details will be described below.
[0019]
Ni-based alloys or Fe-based alloys are clad on the sheets 2a, 2b, and 2c, which are in contact with the valve box and the valve body, to improve slidability. Irradiate with laser. At this time, the laser output is set to 1000 W, and irradiation is performed at an application speed of 30 mm / s at a position where the defocusing distance Df is 5 mm away from the build-up surface. The structure of the cladding before irradiation is composed of a base material portion and a vertical eutectic carbide, but is rapidly cooled after laser irradiation to harden the surface of the cladding and its composition (eutectic carbide, etc.) is fine (30 μm or less). To improve the abrasion resistance. In other words, in the conventional weld overlay without laser beam irradiation, the eutectic carbide structure is continuous, and when exposed to a high-speed corrosive environment, corrosion of the eutectic carbide and erosion by the subsequent fluid occur, Although wear was progressing in the repetition, if the eutectic carbide was reduced to 30 μm or less by laser beam irradiation, after the eutectic carbide on the surface was eroded, And further wear can be stopped. That is, corrosion resistance and wear resistance are improved.
[0020]
Examples of the present invention are specifically shown below.
[0021]
FIG. 1 shows an entire valve for a light water reactor in which a valve box and a sheet are subjected to laser beam treatment.
[0022]
The light water reactor valve 1 has a valve body 2 made of cast steel and a valve box 3 made of cast steel. A cast steel material for high temperature and high pressure or a cast steel material for low temperature and high pressure is used as a material of the valve body 2 and the valve box 3.
[0023]
The valve box 3 is mainly composed of a valve box main body 5 having a pair of pipe connection parts 4 connected to a flowing water pipe and constituting a part of a flow path, and a lid member 6 covering an open upper part thereof. ing. The valve body 2 is moved up and down by the operation of the rotary handle 8 via the valve rod 7, and opens and closes the flow path p of the two-pipe connection portion 4. The valve element 2 has substantially circular valve element sheets 2a and 2b facing the flow path p.
[0024]
FIG. 2 shows a laser irradiation method used for implementing the present invention.
[0025]
After the Ni-based alloy or the Fe-based alloy is overlaid on the valve ring 2 and the seat ring of the valve box 5, the laser is emitted from a laser oscillator 11 on a control console 10, and the direction is changed by a reflector 12. After forming the focal point 15 by assembling with the lens 14, the light is irradiated onto the overlay surface of the sheet. The operation table is moved so that the laser can irradiate the circular sheet surface.
[0026]
The feature of this method is
(1) Since there is almost no deformation in the material, post-processing is not required. (2) It can be applied to a small local portion. (3) It can be easily carried out, for example, because a vacuum tank and a large-sized apparatus for a coolant are not required.
[0027]
In order to confirm the effectiveness of this method, a small test piece was overlaid with a Ni-based (or Fe-based) alloy, and the surface was irradiated with a laser. The irradiation conditions were a transition speed of 30 mm / s, a defocusing distance of 5 mm, and a quenching speed of 500 ° C. or more / second. During laser irradiation, the temperature near the irradiation was measured, and it was confirmed that the rapid cooling rate after the irradiation was 500 ° C. or more / second. In the measurement of the cross-sectional hardness of the test piece after irradiation, the hardness was high at Hv 600 from the sheet surface to 0.6 mm (the conventional material hardness before irradiation was 450 HV). 30 μm or less). At the time of the test, since the test material was small, a carbon steel material exhibiting substantially the same characteristics as the cast steel material of the actual valve body (cast steel product) was used as the base material of the valve body and the valve box.
[0028]
Table 1 shows the chemical components of the test materials.
[0029]
[Table 1]
Figure 2004077408
The overlay was made of stellite, Ni-based alloy A, Ni-based alloy A (Laser), Fe-based alloy B, and Fe-based alloy B (Laser), and was overlaid on carbon steels S25C and S45C as base materials.
[0030]
The test material was subjected to a sliding test using the combinations shown in Table 2.
[0031]
[Table 2]
Figure 2004077408
The numbers 1 to 7 in Table 2 indicate the combination numbers of the test pieces. In the test, a reciprocating sliding test was performed in water, and the amount of wear after sliding was measured. The fixed piece was a cylindrical test piece with a diameter of 5 mm, and the movable piece was a 120 mm long plate-shaped hardened material on the surface and laser-treated.
[0032]
Its shape is shown in FIG.
[0033]
FIG. 4 shows a sliding test apparatus. The fixed piece and the movable piece were brought into contact with each other at a surface pressure of 50 kg / cm 2, and the movable piece was slid at a peripheral speed of 0.3 m / S for a total distance of 400 m.
[0034]
Table 3 shows the results of the sliding test.
[0035]
[Table 3]
Figure 2004077408
The amount of wear was shown in a graph for each of Test Nos. 1 to 7. In the sliding between stellite (conventional material), the weight loss of the fixed piece was 3 mg, and the weight loss of the movable piece was 6 mg. The weight loss due to sliding between Ni-based alloys and between Fe-based alloys was slightly larger than that of stellite. However, when one of the Ni-base alloy and the Fe-base alloy was subjected to a sliding test in combination with the laser beam sprayed test material of the present invention, the amount of wear was reduced. When both the fixed piece and the movable piece were used as the test material subjected to the laser beam spraying of the present invention, the weight loss was 1 mg for both the fixed piece and the movable piece, the wear amount was very small, and the effect was remarkable.
[0036]
By installing the valve for the light water reactor manufactured as described above as a valve for the supply and return water pipe, which is a large-diameter, high-temperature, high-pressure pipe, the cost does not increase as in the conventional ceramic coating process. A light water reactor valve having good corrosion resistance and wear resistance can be obtained. The good corrosion resistance and wear resistance of the light water reactor valve reduce the maintenance and inspection work of the valve, which leads to a reduction in the exposure of workers who disassemble and inspect the valve.
[0037]
In addition, in the said Example, although the case where the Ni-base alloy or the Fe-base alloy was used as the hard facing material applied to the valve box and valve body of the valve for light water reactor was described, the Ni-base alloy or Instead of using an Fe-based alloy, a Co-based alloy is applied to the valve case and valve body of a light water reactor valve as a surface hardfacing material, and the surface of both Co-based alloys is irradiated with a laser beam. A valve for a light water reactor having improved corrosion resistance and wear resistance as compared with a conventional valve in which laser beam irradiation is not applied to the surface of the alloy can be obtained. That is, in the conventional weld overlay without laser beam irradiation, the eutectic carbide structure is continuous as shown on the left side of FIG. 5, and when exposed to a high-speed corrosive environment, the eutectic carbide corrosion and After that, erosion due to the fluid occurred, and wear was progressing by repetition. However, when the eutectic carbide was reduced to 30 μm or less by laser beam irradiation, as shown in the right side of FIG. After the eutectic carbide is eroded, the surface of the cladding becomes only the base portion, and further wear can be stopped. That is, corrosion resistance and wear resistance are improved.
[0038]
【The invention's effect】
According to the present invention, it is possible to obtain a valve for a light water reactor having good corrosion resistance and wear resistance without increasing the cost unlike the conventional ceramic coating treatment.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a valve for a light water reactor showing one embodiment of the present invention.
FIG. 2 is a diagram showing a laser irradiation method used for carrying out the present invention.
FIG. 3 is a diagram showing a test piece used for carrying out the present invention and its dimensions.
FIG. 4 is a view showing a wear test apparatus used for carrying out the present invention.
FIG. 5 is a schematic diagram showing the principle of generation of erosion and corrosion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Valve for light water reactor, 2 ... valve body, 2a, 2b ... valve box sheet, 2c ... valve body sheet, 3 ... valve box, 3a ... guide, 4 ... pipe connection part, 5 ... valve box, 6 ... lid Member, 7: valve stem, 8: rotary handle, 9: seat ring.

Claims (4)

軽水原子炉用弁の弁箱と弁体のシートに表面硬化肉盛材を施し、少なくともその一方の表面硬化肉盛材の表面にレーザービーム照射を施して、レーザビーム照射された表面肉盛部を溶融し冷却して製作されたことを特徴とする軽水原子炉用弁。Surface hardfacing material is applied to the valve box and the valve body sheet of the light water reactor valve, and the surface of at least one of the surface hardfacing materials is irradiated with a laser beam, and the laser beam-irradiated surface overlay is formed. A light water reactor valve manufactured by melting and cooling water. 請求項1において、軽水原子炉用弁の弁箱と弁体のシートに表面硬化肉盛材を施し、少なくともその一方の表面硬化肉盛材の表面にレーザービーム照射を施して、レーザビーム照射された表面肉盛部を表面から0.5mm溶融し、500℃以上/秒で冷却して、前記溶融、冷却された表面肉盛部の組織を30μmとした軽水原子炉用弁。In claim 1, a surface hardfacing material is applied to a valve box of a valve for a light water reactor and a sheet of a valve body, and a laser beam is applied to at least one surface of the hardfacing material, and the laser beam is applied. A valve for a light water reactor, wherein the surface overlay is melted by 0.5 mm from the surface and cooled at a temperature of 500 ° C. or more / second, and the structure of the melted and cooled surface overlay is 30 μm. 請求項1または2において、軽水原子炉用弁の弁箱と弁体に施された表面硬化肉盛材はNi基合金またはFe基合金である軽水原子炉用弁。3. The light water reactor valve according to claim 1, wherein the hardfacing material applied to the valve box and valve body of the light water reactor valve is a Ni-based alloy or an Fe-based alloy. 請求項1または2において、軽水原子炉用弁の弁箱と弁体に施された表面硬化肉盛材はCo基合金であり、その両Co基合金の表面にレーザービーム照射を施して製作された軽水原子炉用弁。The surface hardfacing material applied to the valve box and valve element of the light water reactor valve according to claim 1 or 2, is a Co-based alloy, and is manufactured by irradiating a laser beam to the surfaces of both Co-based alloys. Light water reactor valve.
JP2002241536A 2002-08-22 2002-08-22 Valve for light-water reactor Pending JP2004077408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241536A JP2004077408A (en) 2002-08-22 2002-08-22 Valve for light-water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241536A JP2004077408A (en) 2002-08-22 2002-08-22 Valve for light-water reactor

Publications (1)

Publication Number Publication Date
JP2004077408A true JP2004077408A (en) 2004-03-11

Family

ID=32023987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241536A Pending JP2004077408A (en) 2002-08-22 2002-08-22 Valve for light-water reactor

Country Status (1)

Country Link
JP (1) JP2004077408A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118784A1 (en) * 2010-03-25 2011-09-29 地方独立行政法人大阪市立工業研究所 Method for forming metal membrane
JP4838269B2 (en) * 2005-03-03 2011-12-14 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for coating pipe parts or devices used to transport gaseous oxygen
JP2012107593A (en) * 2010-11-19 2012-06-07 Hitachi Ltd Steam turbine valve
CN107504214A (en) * 2017-08-30 2017-12-22 苏州昌田机械设备制造有限公司 A kind of valve flashboard of compound carbonizing tungsten coating
CN107606201A (en) * 2017-08-30 2018-01-19 苏州昌田机械设备制造有限公司 A kind of wear-resistant gate of CNT enhancing
WO2018092487A1 (en) * 2016-11-17 2018-05-24 住友金属鉱山株式会社 Repair method for v ball valves
JP2020112424A (en) * 2019-01-11 2020-07-27 日立Geニュークリア・エナジー株式会社 Build-up metal part inspection method and valve manufacturing method using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838269B2 (en) * 2005-03-03 2011-12-14 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for coating pipe parts or devices used to transport gaseous oxygen
WO2011118784A1 (en) * 2010-03-25 2011-09-29 地方独立行政法人大阪市立工業研究所 Method for forming metal membrane
JPWO2011118784A1 (en) * 2010-03-25 2013-07-04 地方独立行政法人 大阪市立工業研究所 Method for forming metal coating
JP2012107593A (en) * 2010-11-19 2012-06-07 Hitachi Ltd Steam turbine valve
WO2018092487A1 (en) * 2016-11-17 2018-05-24 住友金属鉱山株式会社 Repair method for v ball valves
JP2018080774A (en) * 2016-11-17 2018-05-24 住友金属鉱山株式会社 Method for repairing v-ball valve
CN107504214A (en) * 2017-08-30 2017-12-22 苏州昌田机械设备制造有限公司 A kind of valve flashboard of compound carbonizing tungsten coating
CN107606201A (en) * 2017-08-30 2018-01-19 苏州昌田机械设备制造有限公司 A kind of wear-resistant gate of CNT enhancing
JP2020112424A (en) * 2019-01-11 2020-07-27 日立Geニュークリア・エナジー株式会社 Build-up metal part inspection method and valve manufacturing method using the same
JP7028808B2 (en) 2019-01-11 2022-03-02 日立Geニュークリア・エナジー株式会社 A method for inspecting the metal part and a method for manufacturing a valve using the method.

Similar Documents

Publication Publication Date Title
EP1193316B1 (en) Nuclear power plant comprising valves made of corrosion resisting and wear resisting alloy
US6673169B1 (en) Method and apparatus for repairing superalloy components
CN100575519C (en) Nickel-base alloy and have the stainless valve and a preparation method of nickel base alloy layer sealing surface
JP5101601B2 (en) Valve device
JP6157937B2 (en) Valve device and manufacturing method thereof
US20140284509A1 (en) Valve apparatus, method of manufacturing valve apparatus, and method of repairing valve apparatus
JP2004077408A (en) Valve for light-water reactor
Váz et al. Welding and thermal spray processes for maintenance of hydraulic turbine runners: case studies
Das et al. A novel procedure for fabrication of wear-resistant bushes for high-temperature application
JPH01139749A (en) Surface treatment for blade member
CN114131242B (en) Alloy material for valve seat sealing surface overlaying layer and welding process thereof
JP2015158260A (en) Valve device and manufacturing method of the same
Bhaduri et al. Hardfacing of austenitic stainless steel with nickel-base NiCr alloy
JP4220186B2 (en) Valve device and manufacturing method thereof
Yao et al. Laser applications in surface modification
JPH07305129A (en) Device using cobalt-free alloy material
JP2003320441A (en) Coating method for continuous casting mold
JPH08210525A (en) Valve device provided with valve element and valve casing
Suthar et al. A review on application of nickel base hardfacing alloys in sodium-cooled fast reactor
JPH11325290A (en) Valve device
Gnanasekaran et al. Developing an empirical relationship to predict the wear characteristics of Ni-based hardfaced deposits on nuclear grade 316LN austenitic stainless steel
JP3503565B2 (en) Valve and nuclear power plant using the same
JP7160694B2 (en) FLUID CONTACT MEMBER AND METHOD FOR MANUFACTURING FLUID CONTACT MEMBER
JP2000130635A (en) Valve device
US20210031264A1 (en) Method of manufacturing transition piece and transition piece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106