JP2020112424A - Build-up metal part inspection method and valve manufacturing method using the same - Google Patents

Build-up metal part inspection method and valve manufacturing method using the same Download PDF

Info

Publication number
JP2020112424A
JP2020112424A JP2019003150A JP2019003150A JP2020112424A JP 2020112424 A JP2020112424 A JP 2020112424A JP 2019003150 A JP2019003150 A JP 2019003150A JP 2019003150 A JP2019003150 A JP 2019003150A JP 2020112424 A JP2020112424 A JP 2020112424A
Authority
JP
Japan
Prior art keywords
metal
valve
grain boundary
metal deposit
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019003150A
Other languages
Japanese (ja)
Other versions
JP7028808B2 (en
Inventor
智朗 星
Tomoaki Hoshi
智朗 星
聖 平野
Sei Hirano
聖 平野
清時 芳久
Yoshihisa Kiyotoki
芳久 清時
川中 啓嗣
Keiji Kawanaka
啓嗣 川中
金田 潤也
Junya Kaneda
潤也 金田
宮田 肇
Hajime Miyata
肇 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2019003150A priority Critical patent/JP7028808B2/en
Publication of JP2020112424A publication Critical patent/JP2020112424A/en
Application granted granted Critical
Publication of JP7028808B2 publication Critical patent/JP7028808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

To provide a build-up metal part inspection method that can detect internal defects of a build-up metal part, and a valve manufacturing method using the same.SOLUTION: A build-up metal part inspection method is characterized by comprising an inspection step of detecting internal defects of a build-up metal part having crystal of a dendrite structure and grain boundary carbide of 10 μm or less in the grain boundary of the crystal by using an ultrasonic-flaw detector. Also, a valve manufacturing method is characterized by comprising the inspection step of detecting the internal defects of the build-up metal part having the crystal of the dendrite structure and the grain boundary carbide of the size of 10 μm or less in the grain boundary of the crystal by using the ultrasonic-flaw detector, and a manufacturing step of manufacturing a valve including the build-up metal part passing through the inspection step.SELECTED DRAWING: Figure 4

Description

本発明は、盛金部の検査方法、及びその方法を使用した弁の製造方法に関する。 The present invention relates to a method for inspecting a metal deposit and a valve manufacturing method using the method.

金属の性能向上を目的として、金属表面への肉盛により盛金部が形成されることがある。盛金部での欠陥検出技術に関連して、特許文献1に記載の技術が知られている。特許文献1には、原子力発電プラントの配管に取り付けて使用される弁であって、コバルトフリーでありながら、耐摩耗性、耐衝撃性及び耐食性に優れ、良好な流体シール性を長期間維持できる弁を提供することが記載されている(要約書参照)。特許文献1に記載の技術では、弁座表面の欠陥が浸透探傷検査(PT検査)により検出されている(段落0028参照)。 For the purpose of improving the performance of the metal, a metal deposit may be formed by overlaying the metal surface. The technique described in Patent Document 1 is known as a technique for detecting a defect in a metal deposit. Patent Document 1 discloses a valve that is used by being attached to a pipe of a nuclear power plant and is cobalt-free, yet has excellent wear resistance, impact resistance, and corrosion resistance, and can maintain good fluid sealability for a long period of time. Providing a valve is described (see abstract). In the technique described in Patent Document 1, a defect on the valve seat surface is detected by a penetrant inspection (PT inspection) (see paragraph 0028).

特開2016−33451号公報JP, 2016-33451, A

特許文献1に記載の技術では、盛金部表面の欠陥が検出されるに過ぎない。従って、特許文献1に記載の技術では、盛金部の内部欠陥を検出することができない。
本発明は、盛金部の内部欠陥を検出可能な盛金部の検査方法、及びその方法を使用した弁の製造方法を提供することを目的とする。
The technique described in Patent Document 1 only detects defects on the surface of the metal deposit. Therefore, the technique described in Patent Document 1 cannot detect the internal defect in the metal deposit.
It is an object of the present invention to provide a method for inspecting a metal-deposited part capable of detecting an internal defect in the metal-deposited part, and a valve manufacturing method using the method.

本発明は、デンドライド構造の結晶と前記結晶同士の粒界に大きさ10μm以下の粒界炭化物とを有する盛金部の内部欠陥を、超音波探傷装置により検出する検査工程を含むことを特徴とする、盛金部の検査方法に関する。その他の解決手段は発明を実施するための形態において後記する。 The present invention is characterized by including an inspection step of detecting, by an ultrasonic flaw detector, an internal defect in a metal-filled portion having a dendride structure crystal and a grain boundary carbide having a size of 10 μm or less at a grain boundary between the crystals. A method for inspecting a metal deposit. Other solutions will be described later in the embodiments for carrying out the invention.

本発明によれば、盛金部の内部欠陥を検出可能な盛金部の検査方法、及びその方法を使用した弁の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for inspecting a metal-deposited part capable of detecting an internal defect in the metal-deposited part, and a method for manufacturing a valve using the method.

本実施形態に係る弁の断面図である。It is sectional drawing of the valve which concerns on this embodiment. 弁座に形成された盛金部の断面組織についての顕微鏡写真である。It is a microscope picture about the cross-section organization of the heap metal part formed in the valve seat. 図2AのA部拡大写真である。It is the A section enlarged photograph of FIG. 2A. 従来法であるアーク溶接法により形成した盛金部の断面組織についての顕微鏡写真である。It is a microscope picture about the cross-sectional structure of the heap metal part formed by the arc welding method which is a conventional method. 本実施形態に係る弁の製造方法を示すフローチャートである。It is a flow chart which shows the manufacturing method of the valve concerning this embodiment. 本実施形態に係る弁の製造方法において行われる工程図である。FIG. 6 is a process drawing that is performed in the method for manufacturing a valve according to the present embodiment. 超音波探傷試験への影響の検討に使用した試験体の斜視図である。It is a perspective view of the test body used for examination of the influence on an ultrasonic flaw detection test. 図6AのB−B線断面図である。FIG. 6B is a sectional view taken along line BB of FIG. 6A. 超音波探傷試験の評価結果を示すグラフである。It is a graph which shows the evaluation result of an ultrasonic flaw detection test.

以下、本発明を実施するための形態(本実施形態)を図面を参照しながら説明する。ただし、本発明は以下の内容に何ら限定されず、本発明の要旨を逸脱しない範囲で任意に変形して実施できる。また、同じ部材については同じ符号を付すものとし、重複する説明は省略する。さらに、本発明の要旨を逸脱しない範囲で、実施形態同士を任意に組み合わせて実施することもできる。 Hereinafter, a mode for carrying out the present invention (this embodiment) will be described with reference to the drawings. However, the present invention is not limited to the following contents, and can be implemented by arbitrarily modifying it without departing from the gist of the present invention. Further, the same members will be denoted by the same reference numerals, and overlapping description will be omitted. Furthermore, the embodiments may be combined in any manner without departing from the scope of the invention.

本実施形態に係る弁の製造方法は、本実施形態に係る盛金部の検査方法を使用するものである。そこで、説明の便宜上、はじめに本実施形態に係る弁(盛金部を備える)の構造を説明し、その後に説明する弁の製造方法の中で盛金部の検査方法を説明する。ただし、本実施形態の盛金部の検査方法は、本実施形態の弁の製造方法の中で必ずしも行われる必要はない。即ち、盛金部の検査は、必ずしも弁の製造とともに行われる必要はない。例えば、盛金部の検査方法を使用して盛金部を備える弁座の検査を行い、検査完了の弁座を例えば製品として(即ち弁を製造せず)出荷するようにしてもよい。また、例えば、既設の弁、弁座等に対して盛金部の検査方法を使用し、検査対象となる盛金部の内部欠陥を検出するようにしてもよい。 The method for manufacturing a valve according to this embodiment uses the method for inspecting a metal deposit portion according to this embodiment. Therefore, for convenience of description, first, the structure of the valve (including the metal-filled portion) according to the present embodiment will be described, and the method of inspecting the metal-plated portion will be described in the valve manufacturing method described later. However, the method of inspecting the metal-filled portion of the present embodiment does not necessarily have to be performed in the valve manufacturing method of the present embodiment. That is, the inspection of the metal deposit portion does not necessarily have to be performed together with the manufacture of the valve. For example, the valve seat having the metal-plated portion may be inspected by using the metal-plated portion inspection method, and the valve seat having the inspection completed may be shipped as a product (that is, without manufacturing the valve). In addition, for example, an internal valve inspection method may be used for an existing valve, valve seat, or the like to detect an internal defect of the inspection metal deposit.

図1は、本実施形態に係る弁10の断面図である。弁10は、例えば原子力施設において流体が流れる配管(図示しない)に設置される。弁10は、弁10を構成する弁部材として、弁箱1と、弁座2と、弁体3と、弁棒4と、ハンドル車5とを備える。弁座2の表面には、弁体3と接触する盛金部21が形成される。弁体3の表面には、弁座2と接触する盛金部31が形成される。ハンドル車5の回転により弁棒4及び弁体3が回転しながら上下に駆動する。弁棒4の下方への駆動により弁体3の盛金部31は、回転しながら弁座2の盛金部21に接触する。即ち、回転する弁体3が弁座2の表面を摺動しながら、弁体3が弁座2に密着する。これにより、弁10は閉弁する。 FIG. 1 is a sectional view of a valve 10 according to this embodiment. The valve 10 is installed, for example, in a pipe (not shown) through which a fluid flows in a nuclear facility. The valve 10 includes a valve box 1, a valve seat 2, a valve body 3, a valve rod 4, and a handle wheel 5 as valve members constituting the valve 10. On the surface of the valve seat 2, a metal deposit 21 that contacts the valve body 3 is formed. On the surface of the valve body 3, a metal deposit 31 that contacts the valve seat 2 is formed. When the handle wheel 5 rotates, the valve rod 4 and the valve body 3 rotate and drive vertically. When the valve rod 4 is driven downward, the heap portion 31 of the valve body 3 comes into contact with the heap portion 21 of the valve seat 2 while rotating. That is, while the rotating valve body 3 slides on the surface of the valve seat 2, the valve body 3 comes into close contact with the valve seat 2. As a result, the valve 10 is closed.

盛金部21,31は、弁座2及び弁体3の双方の弁部材表面(いずれか一方の弁部材表面でもよい)に形成されたものである。盛金部21と盛金部31とは、いずれも、デンドライド構造の結晶と前記結晶同士の粒界に大きさ10μm以下(好ましくは5μm以下)の粒界炭化物とを有する。そこで、以下の説明においては、説明の簡略化のため、盛金部21の例示により、盛金部21,31双方の説明を行うものとする。 The metal deposits 21, 31 are formed on the valve member surfaces of both the valve seat 2 and the valve body 3 (either one of the valve member surfaces may be used). Each of the heap metallurgical portion 21 and the metal heap metal portion 31 has a crystal of dendride structure and a grain boundary carbide having a size of 10 μm or less (preferably 5 μm or less) at a grain boundary between the crystals. Therefore, in the following description, for simplification of the description, both the metal depositing portions 21 and 31 will be described by exemplifying the metal depositing portion 21.

図2Aは、弁座2に形成された盛金部21の断面組織についての顕微鏡写真である。図2Aに示す金属組織は、例えばレーザ積層造形による金属原料の肉盛を行うことで形成できる。図2Aにおいて、白い部分がデンドライト構造の結晶21a(金属結晶)である。また、黒い部分が、結晶21a同士の粒界に形成された粒界炭化物21bである。本実施形態の盛金部21では、緻密な粒界炭化物21bが散点的に形成される。結晶21aの粒界に析出した粒界炭化物21bは極めて小さく、その数も少ない。 FIG. 2A is a micrograph of the cross-sectional structure of the metal deposit 21 formed on the valve seat 2. The metal structure shown in FIG. 2A can be formed, for example, by overlaying a metal raw material by laser additive manufacturing. In FIG. 2A, a white portion is a crystal 21a (metal crystal) having a dendrite structure. Further, the black portion is the grain boundary carbide 21b formed at the grain boundary between the crystals 21a. Dense grain boundary carbides 21b are scatteredly formed in the heap portion 21 of the present embodiment. The grain boundary carbides 21b precipitated at the grain boundaries of the crystal 21a are extremely small and the number thereof is also small.

図2Bは、図2AのA部拡大写真である。本実施形態の盛金部21では、粒界炭化物21bの大きさは10μm以下である。ここでいう大きさは、粒界炭化物21bの最も遠い部分同士を結んだ線分の長さをいう。図2Bの例では、粒界炭化物21bは約2μm〜3μmの大きさを有する。粒界炭化物21bは、結晶21aの粒界において、結晶21aの表面に沿うように膜状に形成される。従って、粒界炭化物21bの大きさとして「厚さ」との表現を用いると、粒界炭化物21bの厚さは10μm以下(図2の例では厚さ約2μm〜3μm)である。 FIG. 2B is an enlarged photograph of part A of FIG. 2A. In the metal deposit 21 of the present embodiment, the size of the grain boundary carbide 21b is 10 μm or less. The size here refers to the length of a line segment connecting the furthest portions of the grain boundary carbide 21b. In the example of FIG. 2B, the grain boundary carbide 21b has a size of about 2 μm to 3 μm. The grain boundary carbide 21b is formed in a film shape along the surface of the crystal 21a at the grain boundary of the crystal 21a. Therefore, using the expression “thickness” as the size of the grain boundary carbide 21b, the thickness of the grain boundary carbide 21b is 10 μm or less (about 2 μm to 3 μm in the example of FIG. 2).

本発明者らの検討によれば、超音波探傷装置を用いた盛金部21の検査を行うと、粒界炭化物21bで超音波反射が生じる。そのため、粒界炭化物21bを微小にすることで超音波反射を生じにくくできる。即ち、微小な粒界炭化物21bでは超音波は反射し難い。この結果、盛金部21の内部欠陥(例えば空隙、気泡等であり、例えば0.2mm程度以上の大きさ)の部分のみでの超音波反射を生じさせることができる。超音波探傷装置を用いた盛金部21の検査により、盛金部21での内部欠陥を検出できる。 According to the study by the present inventors, when the deposit portion 21 is inspected using the ultrasonic flaw detector, ultrasonic reflection occurs at the grain boundary carbide 21b. Therefore, it is possible to prevent ultrasonic reflection from occurring by making the grain boundary carbides 21b minute. That is, the ultrasonic waves are difficult to be reflected by the minute grain boundary carbides 21b. As a result, ultrasonic reflection can be generated only in the internal defects (for example, voids, bubbles, etc., having a size of, for example, about 0.2 mm or more) of the metal deposit 21. An internal defect in the metal deposit 21 can be detected by inspecting the metal deposit 21 using an ultrasonic flaw detector.

図3は、従来法であるアーク溶接法により形成した盛金部21cの断面組織についての顕微鏡写真である。アーク溶接法は、上記図2A及び図2Bの金属組織を形成可能なレーザ積層造形法と比べて入熱量が多い方法である。アーク溶接法と同様に、レーザ積層造形法よりも入熱量が多くなる方法として、TIG溶接法等が挙げられる。 FIG. 3 is a photomicrograph of the cross-sectional structure of the metal deposit 21c formed by a conventional arc welding method. The arc welding method is a method in which the amount of heat input is larger than that of the laser additive manufacturing method capable of forming the metal structure shown in FIGS. 2A and 2B. Similar to the arc welding method, a TIG welding method or the like can be mentioned as a method in which the heat input amount is larger than that in the laser additive manufacturing method.

図3においても、白い部分がデンドライト構造の結晶21d(金属結晶)である。また、黒い部分が、結晶21d同士の粒界に形成された粒界炭化物21eである。図3に示す盛金部21cでは、上記の図2A及び図2Bに示す盛金部21と比べて、結晶21d及び粒界炭化物21eが大きい。具体的には、盛金部21cでは、結晶21d及び粒界炭化物21eは、いずれも10μmを大きく超えている。特に、結晶21dの粒界に沿って、10μmを超える大きさの粒界炭化物21eが析出している。 Also in FIG. 3, the white portion is a crystal 21d (metal crystal) having a dendrite structure. The black portion is the grain boundary carbide 21e formed at the grain boundary between the crystals 21d. In the heap metallurgical portion 21c shown in FIG. 3, the crystals 21d and the grain boundary carbides 21e are larger than those of the metal heap metallurgical portion 21 shown in FIGS. 2A and 2B. Specifically, in the heap portion 21c, the crystal 21d and the grain boundary carbide 21e both greatly exceed 10 μm. In particular, grain boundary carbides 21e having a size exceeding 10 μm are precipitated along the grain boundaries of the crystal 21d.

上記のように、超音波探傷装置を用いた検査の際、超音波は粒界炭化物21eで反射する。このため、粒界炭化物21eが大きく超音波の反射部分が大きい結果、内部欠陥以外での超音波反射が多数生じる。この結果、内部欠陥に起因する超音波反射も検出されてしまい、内部欠陥を正確に検出できない。従って、10μmを超える大きさの粒界炭化物21eを有する盛金部21cに対しては、調音波探傷装置を用いた検査を行うことができない。しかし、粒界炭化物21bの厚さは10μm以下になっている本実施形態によれば、粒界炭化物21bに起因する超音波反射を抑制でき、盛金部21の内部欠陥を適切に検出できる。 As described above, in the inspection using the ultrasonic flaw detector, the ultrasonic waves are reflected by the grain boundary carbide 21e. Therefore, as a result of a large grain boundary carbide 21e and a large ultrasonic reflection portion, a large number of ultrasonic reflections other than internal defects occur. As a result, the ultrasonic reflection due to the internal defect is also detected, and the internal defect cannot be accurately detected. Therefore, it is impossible to perform an inspection using the harmonic flaw detection device on the metal deposit 21c having the grain boundary carbides 21e having a size exceeding 10 μm. However, according to the present embodiment in which the grain boundary carbide 21b has a thickness of 10 μm or less, ultrasonic reflection due to the grain boundary carbide 21b can be suppressed, and the internal defect of the deposit portion 21 can be appropriately detected.

図4は、本実施形態に係る弁10の製造方法を示すフローチャートである。弁10の製造方法は盛金部21,31の検査方法を含む。盛金部21,31の検査方法は、超音波探傷装置を用いた盛金部21,31の検査を行う検査工程(欠陥位置決定工程を含む)と、内部欠陥を除去する除去工程(摺り合わせ工程、及び適宜肉盛工程を含む)とを含む。また、盛金部21,31の検査方法は、必要に応じて、検査工程よりも前に行われる前検査工程を含んでもよい。 FIG. 4 is a flowchart showing a method of manufacturing the valve 10 according to this embodiment. The method of manufacturing the valve 10 includes a method of inspecting the metal deposits 21 and 31. The method of inspecting the metal deposits 21 and 31 includes an inspection process (including a defect position determining process) for inspecting the metal deposits 21 and 31 using an ultrasonic flaw detector, and a removal process (sliding together). Process, and optionally a build-up process). In addition, the method of inspecting the metal deposit portions 21 and 31 may include a pre-inspection step performed before the inspection step, if necessary.

なお、弁体3の盛金部31は、弁座2の盛金部21の製造(形成)及び検査と同様にして製造(形成)及び検査できる。そこで、説明の簡略化のために、以下の例では、弁体3の盛金部31の説明は省略する。また、上記のように、弁10の製造方法を説明する中で、弁10に備えられる盛金部21の検査方法を説明する。ただし、盛金部21の検査方法は必ずしも弁10の製造とともに行われる必要はない。 The metal deposit 31 of the valve body 3 can be manufactured (formed) and inspected in the same manner as the metal deposit 21 of the valve seat 2 is manufactured (formed) and inspected. Therefore, for simplification of the description, in the following example, the description of the heap portion 31 of the valve body 3 is omitted. Further, as described above, in the description of the method for manufacturing the valve 10, the method for inspecting the metal deposit 21 provided in the valve 10 will be described. However, the method of inspecting the deposit portion 21 does not necessarily have to be performed together with the manufacture of the valve 10.

まず、盛金部21の形成により弁座2となる母材(図示しない)が製造される(ステップS1)。母材は例えば炭素鋼、ステンレス等により構成され、例えば円環状に加工される。次いで、レーザ積層造形による母材への肉盛により、母材表面に盛金部21が形成される(ステップS2、盛金部形成工程)。即ち、母材表面でのレーザ光を用いた金属原料の溶融により、金属原料により構成される盛金部21が母材表面に形成される。 First, a base material (not shown) that will become the valve seat 2 is manufactured by forming the heap portion 21 (step S1). The base material is made of, for example, carbon steel, stainless steel, or the like, and is processed into, for example, an annular shape. Next, the metal deposit 21 is formed on the surface of the base material by overlaying the base material by laser additive manufacturing (step S2, metal deposit forming step). That is, by melting the metal raw material using the laser beam on the surface of the base material, the metal deposit 21 formed of the metal raw material is formed on the surface of the base material.

レーザ積層造形による母材への肉盛は、形成される盛金部21がデンドライド構造の結晶21aと結晶21a同士の粒界に10μm以下の大きさの粒界炭化物21bとを有するようになる肉盛条件で行う。通常、レーザ積層造形による肉盛では、TIG溶接、ガス溶接等の溶接とは異なり、肉盛を行う対象位置への局所的な入熱を行うことができる。この結果、対象位置以外の母材温度は低いままとなり、対象位置への肉盛後、肉盛部は、周囲の低温部への放熱によって急速に冷却される。肉盛部の急速な冷却によりデンドライト構造の結晶21aの過度の成長が抑制され、結晶21aは緻密になる。従って、結晶21aの粒界に形成される粒界炭化物21bも緻密になる。これにより、レーザ積層造形により形成される盛金部21は、デンドライド構造の結晶21aと結晶21a同士の粒界に10μm以下の粒界炭化物21bとを有するようになる。 In the overlaying on the base material by the laser additive manufacturing, the deposit portion 21 to be formed has a crystal 21a having a dendrite structure and a grain boundary carbide 21b having a size of 10 μm or less at the grain boundary between the crystals 21a. Perform under high conditions. In general, in laser overlay manufacturing, unlike welding such as TIG welding and gas welding, local heat input can be performed at a target position where overlaying is performed. As a result, the base material temperature other than the target position remains low, and after the build-up to the target position, the build-up portion is rapidly cooled by heat dissipation to the surrounding low temperature portion. The excessive cooling of the crystal 21a having the dendrite structure is suppressed by the rapid cooling of the buildup portion, and the crystal 21a becomes dense. Therefore, the grain boundary carbides 21b formed at the grain boundaries of the crystal 21a also become dense. As a result, the metal deposit 21 formed by laser additive manufacturing has crystals 21a of dendride structure and grain boundary carbides 21b of 10 μm or less at grain boundaries between the crystals 21a.

肉盛に使用される金属原料(盛金部21の構成材料)の組成は特に制限されない。例えば、金属原料としては、コバルト基合金を用いることができる。コバルト基合金としては、例えば、クロム10質量%以上35質量%以下、炭素0.1質量%以上3質量%以下、タングステン0質量%以上15質量%以下、及び、残部をコバルト及び不可避的不純物とする混合物を使用できる。このような混合物としては、具体的には例えばステライト(登録商標)を挙げることができる。これらの組成の金属原料により盛金部21を構成することで、盛金部21の耐食性及び耐摩耗性を向上できる。このため、弁体3が弁座2を摺動しても、摩耗しにくい弁座2及び弁体3を得ることができる。 The composition of the metal raw material (the constituent material of the metal deposit part 21) used for overlaying is not particularly limited. For example, a cobalt-based alloy can be used as the metal raw material. As the cobalt-based alloy, for example, chromium 10 mass% or more and 35 mass% or less, carbon 0.1 mass% or more and 3 mass% or less, tungsten 0 mass% or more and 15 mass% or less, and the balance cobalt and unavoidable impurities Mixtures can be used. Specific examples of such a mixture include Stellite (registered trademark). By configuring the metal deposit 21 with the metal raw materials having these compositions, the corrosion resistance and wear resistance of the metal deposit 21 can be improved. Therefore, even if the valve body 3 slides on the valve seat 2, it is possible to obtain the valve seat 2 and the valve body 3 that are not easily worn.

肉盛に使用される金属原料の形状も特に制限されず、例えば線材状、粉末状にできる。また、レーザ積層造形は、任意のレーザ積層造形装置を用いて行うことができ、例えば、3Dプリンタを用いることができる。 The shape of the metal raw material used for overlaying is not particularly limited, and can be, for example, a wire or powder. Moreover, the laser additive manufacturing can be performed using an arbitrary laser additive manufacturing apparatus, and for example, a 3D printer can be used.

レーザ出力は、金属原料を完全に溶融させつつ、かつ、過度に溶融中に温度が高くならない程度に設定すればよく、金属原料の組成によっても異なるが、例えば、盛金部21の面方向の距離1cmあたりの入熱量が例えば1kJ〜20kJ程度になるようにレーザ出力を設定すればよい。ただし、母材22への接合強度を高める観点から、肉盛開始直後の入熱量が最も大きく、母材から遠ざかるにつれて熱量を小さくすることが好ましい。これにより、盛金部21の表面(母材とは反対側表面)での粒界炭化物21bを10μm以下にでき、粒界炭化物21bでの超音波反射を十分に抑制できる。また、10μm以下の粒界炭化物21bにより、粒界炭化物21bでの連続的腐食が抑制され、盛金部21の耐食性を高めることができる。 The laser output may be set such that the metal raw material is completely melted and the temperature does not rise excessively during melting, and it depends on the composition of the metal raw material. The laser output may be set so that the heat input amount per 1 cm of the distance is, for example, about 1 kJ to 20 kJ. However, from the viewpoint of increasing the bonding strength to the base material 22, it is preferable that the heat input amount is the largest immediately after the start of overlaying and the heat amount is reduced as the distance from the base material increases. As a result, the grain boundary carbide 21b on the surface (the surface on the side opposite to the base material) of the metal deposit 21 can be 10 μm or less, and the ultrasonic reflection at the grain boundary carbide 21b can be sufficiently suppressed. Further, the grain boundary carbide 21b having a grain size of 10 μm or less suppresses continuous corrosion in the grain boundary carbide 21b, and the corrosion resistance of the metal deposit 21 can be enhanced.

盛金部21の母材への形成後、適宜摺り合わせによる盛金部21の平面化が行われ、弁座2(図1参照)が完成する(ステップS3)。摺り合わせは、例えば、摺り合わせ定盤等の治具を用いて行うことができる。完成した弁座2を用いて、弁座2を備える弁10(図1参照)の組み立てが行われる(ステップS4)。組み立ては任意の方法で行うことができる。ただし、組み立て前に弁座2の検査工程(後記する)が行われてもよい。 After forming the base metal portion 21 on the base material, the base metal portion 21 is planarized by appropriately sliding the metal base portion 21 to complete the valve seat 2 (see FIG. 1) (step S3). The sliding can be performed using, for example, a jig such as a sliding surface plate. The valve 10 (see FIG. 1) including the valve seat 2 is assembled using the completed valve seat 2 (step S4). Assembly can be done in any way. However, an inspection step (described later) of the valve seat 2 may be performed before assembly.

弁10の組み立ては例えば工場で行われ、組み立てられた弁10は、工場からの出荷前に検査される。具体的には、弁座2が超音波探傷装置(図示しない)による検査可能になるように弁10がいったん分解され、弁座2の盛金部21が外部に露出される。そして、超音波探傷装置を用いた盛金部21の内部欠陥を検出するため、弁座2に対する超音波探傷検査が行われる(ステップS5、検査工程)。超音波探傷検査により、弁座2の内部欠陥を検出できる。特に、盛金部21の形成前に母材の内部欠陥有無が検査された場合には、本ステップにおいて、盛金部21の内部欠陥を検出できる。 The valve 10 is assembled in a factory, for example, and the assembled valve 10 is inspected before shipping from the factory. Specifically, the valve 10 is once disassembled so that the valve seat 2 can be inspected by an ultrasonic flaw detector (not shown), and the metal deposit 21 of the valve seat 2 is exposed to the outside. Then, in order to detect the internal defect of the metal deposit 21 using the ultrasonic flaw detector, the ultrasonic flaw inspection of the valve seat 2 is performed (step S5, inspection step). An internal flaw in the valve seat 2 can be detected by ultrasonic flaw detection. In particular, when the presence or absence of an internal defect in the base material is inspected before the formation of the metal deposit 21, the internal defect of the metal deposit 21 can be detected in this step.

超音波探傷装置による検査条件は特に制限されない。検査条件は、例えば、JIS Z2344−1993に規定された方法(金属材料のパルス反射法による超音波探傷試験方法通則)を適用することができる。 The inspection conditions by the ultrasonic flaw detector are not particularly limited. As the inspection condition, for example, the method defined in JIS Z2344-1993 (the general rule of ultrasonic flaw detection test method by pulse reflection method for metal material) can be applied.

検査の結果、内部欠陥が無ければ(ステップS6、No)、弁体3の弁座2への当たり確認が行われる(ステップS7)。当たり確認は、例えば光明丹等の塗料を用いて行われる。当たりが良好な場合には(ステップS8、Yes)、弁10が再度組み立てられ、検査工程を経た盛金部21を備える弁10が製造される(ステップS9、製造工程)。製造された弁10は工場から出荷される。一方で、当たりが良好でない場合には(ステップS8、No)、摺り合わせによる盛金部21の平面化が行われる(ステップS10)。その後、平面化された盛金部21を備える弁10が組み立てられ、工場から出荷される。 As a result of the inspection, if there is no internal defect (step S6, No), it is confirmed that the valve element 3 hits the valve seat 2 (step S7). The hit confirmation is performed by using a paint such as Komeitan. When the hit is good (step S8, Yes), the valve 10 is reassembled, and the valve 10 including the deposit portion 21 that has undergone the inspection process is manufactured (step S9, manufacturing process). The manufactured valve 10 is shipped from the factory. On the other hand, when the hit is not good (No in step S8), the metal deposit portion 21 is flattened by sliding (step S10). Then, the valve 10 including the flattened metal deposit 21 is assembled and shipped from the factory.

上記のステップS5(検査工程)で内部欠陥が検出された場合(ステップS6、No)、検出された内部欠陥は、以下のようにして、盛金部21の摺り合わせにより除去される。即ち、内部欠陥を除去する除去工程は、盛金部21の摺り合わせにより内部欠陥を除去する摺り合わせ工程を含む。内部欠陥の除去により、弁10のメンテナンス時に新たに内部欠陥が検出することを抑制できる。また、摺り合わせにより内部欠陥を除去することで、内部欠陥の除去を容易に行うことができる。 When the internal defect is detected in the above step S5 (inspection step) (step S6, No), the detected internal defect is removed by the sliding of the metal deposit 21 as follows. That is, the removal step of removing the internal defect includes a sliding step of removing the internal defect by sliding the metal deposit 21 together. By removing the internal defect, it is possible to prevent the internal defect from being newly detected during maintenance of the valve 10. Further, by removing the internal defect by sliding, it is possible to easily remove the internal defect.

まず、内部欠陥の盛金部21での高さ方向位置(盛金部21の厚さ方向位置)が決定される(ステップS11、欠陥位置決定工程、検査工程)。内部欠陥の高さ方向位置は、詳細は図7を参照しながら後記するが、反射された超音波の強さに基づいて決定できる。そして、内部欠陥の高さ方向位置に基づいて、盛金部21の摺り合わせを行うことで、内部欠陥が除去される。即ち、内部欠陥の高さ方向位置よりも深い位置まで盛金部21表面を削る(切除する)ことで、内部欠陥の除去が行われる(ステップS12、摺り合わせ工程、除去工程)。高さ方向位置に基づいた摺り合わせにより、盛金部21の削りすぎを抑制できる。これにより、盛金部21の削りすぎに起因する弁座2の機能低下を抑制でき、弁座2の機能を確保できる。また、内部欠陥の高さ方向位置よりも深い位置まで盛金部表面を削る摺り合わせを行うことで、内部欠陥を確実に除去できる。 First, the height direction position (the thickness direction position of the metal deposit part 21) of the internal defect in the metal deposit part 21 is determined (step S11, defect position determination step, inspection step). The position of the internal defect in the height direction can be determined based on the intensity of the reflected ultrasonic wave, which will be described later in detail with reference to FIG. 7. Then, the built-up portion 21 is rubbed on the basis of the position of the internal defect in the height direction, whereby the internal defect is removed. That is, the internal defect is removed by cutting (cutting) the surface of the metal deposit portion 21 to a position deeper than the position of the internal defect in the height direction (step S12, sliding step, removing step). It is possible to suppress the excessive scraping of the metal deposit 21 by the sliding based on the position in the height direction. As a result, it is possible to suppress the deterioration of the function of the valve seat 2 due to the excessive shaving of the metal deposit 21 and to ensure the function of the valve seat 2. Further, the internal defect can be surely removed by performing the sliding to scrape the surface of the metal-plated portion to a position deeper than the position of the internal defect in the height direction.

ただし、内部欠陥の除去を行うため、除去工程は、盛金部21表面を削ることによって露出させた内部欠陥への肉盛により行う肉盛工程を含むこともできる。詳細は図5(c)を参照しながら後記するが、摺り合わせにより、内部欠陥(図5(c)の内部欠陥23に相当)が露出する。そして、露出した内部欠陥に対し、盛金部21の形成方法と同様の方法により内部欠陥を埋めるような肉盛を行い、内部欠陥の除去を行ってもよい。露出した内部欠陥の肉盛により内部欠陥を除去することで、盛金部21の削り量(削り厚さ)を少なくできる。 However, in order to remove the internal defect, the removal process may include a build-up process performed by overlaying the exposed internal defect by shaving the surface of the metal deposit portion 21. Although details will be described later with reference to FIG. 5C, internal defects (corresponding to the internal defects 23 in FIG. 5C) are exposed by the sliding. Then, the exposed internal defect may be subjected to a build-up to fill the internal defect by the same method as the method of forming the metal deposit 21 to remove the internal defect. By removing the internal defects by overlaying the exposed internal defects, it is possible to reduce the scraping amount (cutting thickness) of the metal deposit 21.

内部欠陥除去後、上記のステップS7〜S10が行われ、弁10が製造される。 After removing the internal defect, the above steps S7 to S10 are performed to manufacture the valve 10.

上記の各工程に加え、盛金部21,31の検査方法は、ステップS5(検査工程)前に、浸透探傷装置により盛金部21の表面欠陥を検出する前検査工程を含むこともできる。前検査工程を含むことで、超音波探傷試験の前に盛金部21の表面欠陥を発見できる。これにより、表面欠陥を除去した後の盛金部21について、超音波探傷装置を用いた検査(ステップS5、検査工程)を行うことができる。この結果、超音波探傷装置を用いて内部欠陥のみを効率よく検出できる。 In addition to the above-described steps, the method for inspecting the metal deposits 21 and 31 may include a pre-inspection step for detecting surface defects of the metal deposits 21 by the penetrant inspection device before step S5 (inspection step). By including the pre-inspection step, it is possible to find the surface defect of the deposit 21 before the ultrasonic flaw detection test. Thus, the deposit portion 21 after the surface defects are removed can be inspected using the ultrasonic flaw detector (step S5, inspection step). As a result, only the internal defect can be efficiently detected using the ultrasonic flaw detector.

図5は、本実施形態に係る弁10の製造方法において行われる工程図である。図5(a)には、高さ方向の長さ(厚さ)がLである弁座2が図示される。弁座2のうち、盛金部21の厚さはL1、母材22の厚さはL2である。なお、盛金部21と母材22との接合界面は実際にははっきりしない場合もあるが、図5では図示の簡略化のために雪像界面を明示している。盛金部21には、例えば空隙により構成される内部欠陥23が存在している。内部欠陥23の高さ方向位置は、図5(b)に示すように、盛金部21の外表面(超音波を照射する側の面)からの距離として、L3である。なお、内部欠陥23の高さ方向位置は、上記のように、超音波探傷検査により決定できる。 5A to 5C are process drawings performed in the method of manufacturing the valve 10 according to the present embodiment. FIG. 5A shows the valve seat 2 having a length (thickness) L in the height direction. In the valve seat 2, the thickness of the metal deposit 21 is L1 and the thickness of the base material 22 is L2. In some cases, the bonding interface between the metal deposit 21 and the base material 22 is not clear in some cases, but the snow image interface is explicitly shown in FIG. 5 for simplification of the drawing. An internal defect 23 formed of, for example, a void is present in the metal deposit 21. The position of the internal defect 23 in the height direction is L3 as a distance from the outer surface (surface on the side to be irradiated with ultrasonic waves) of the metal deposit 21 as shown in FIG. 5B. The height direction position of the internal defect 23 can be determined by ultrasonic flaw detection as described above.

図5(c)に示すように、盛金部21の摺り合わせにより、内部欠陥23が盛金部21表面に露出する。摺り合わせを1度又は2度以上繰り返すことで厚さL3だけ削り、内部欠陥23を露出させることができる。また、上記の例では内部欠陥23の高さ方向位置に基づいた摺り合わせを行ったが、内部欠陥23の高さ方向位置に基づかずに摺り合わせを行い、摺り合わせの途中でたまたま露出した内部欠陥23であってもよい。 As shown in FIG. 5C, the internal defects 23 are exposed on the surface of the metal-plated portion 21 due to the sliding of the metal-plated portion 21. By repeating the sliding operation once or twice or more, the internal defect 23 can be exposed by shaving by the thickness L3. Further, in the above example, the sliding is performed based on the position of the internal defect 23 in the height direction, but the sliding is performed not based on the position of the internal defect 23 in the height direction, and the exposed internal portion happens to occur during the sliding. It may be a defect 23.

そして、内部欠陥23を露出させた図5(c)に示す状態において摺り合わせを再度行うことで、盛金部21が厚さL4だけ削られる。これにより、図5(d)に示す、内部欠陥23を除去した弁座2が得られる。 Then, when the internal defects 23 are exposed and the sliding is performed again in the state shown in FIG. 5C, the metal deposit 21 is scraped by the thickness L4. As a result, the valve seat 2 shown in FIG. 5(d) from which the internal defect 23 is removed is obtained.

本実施形態の検査方法によれば、盛金部21の内部欠陥を検出可能な盛金部21の検査方法を提供できる。特に、盛金部21では、超音波探傷検査での超音波反射を生じさせる粒界炭化物21bが緻密(10μm以下)である。従って、緻密な粒界炭化物21bを有する盛金部21に超音波を照射すると、盛金部21の内部で粒界炭化物21bでの超音波反射が生じにくい。これにより、盛金部21の内部欠陥においてのみ超音波反射を生じさせることができる。この結果、盛金部21を破壊することなく、超音波探傷装置により内部欠陥を検出できる。 According to the inspection method of the present embodiment, it is possible to provide a method for inspecting the built-up portion 21 that can detect an internal defect in the built-up portion 21. In particular, in the metal deposit portion 21, the grain boundary carbides 21b that cause ultrasonic reflection in the ultrasonic flaw detection inspection are dense (10 μm or less). Therefore, when ultrasonic waves are applied to the metal-filled portion 21 having the dense grain boundary carbide 21b, ultrasonic reflection by the grain-boundary carbide 21b is less likely to occur inside the metal-filled portion 21. Thereby, ultrasonic reflection can be generated only in the internal defect of the metal deposit 21. As a result, the internal flaw can be detected by the ultrasonic flaw detector without destroying the metal deposit 21.

工場出荷前の検査により内部欠陥が検出された場合、例えば摺り合わせにより内部欠陥を除去できる。これにより、内部欠陥が存在しない、又は性能に大きく影響する内部欠陥を低減でき、弁10の信頼性を高めることができる。また、工場出荷前の検査により、盛金部21での内部欠陥の存在可能性を十分に低下させた状態で、弁10を出荷できる。従って、品質を高めた弁10を出荷できる。 When an internal defect is detected by inspection before factory shipment, the internal defect can be removed by, for example, sliding. This makes it possible to reduce the number of internal defects that do not exist or have a large effect on the performance, and improve the reliability of the valve 10. Further, the valve 10 can be shipped in a state in which the possibility of an internal defect existing in the fill-up portion 21 is sufficiently reduced by the inspection before shipment from the factory. Therefore, the valve 10 with improved quality can be shipped.

また、内部欠陥が十分に除去された弁10が設置されるため、メンテナンス時に盛金部21に対して行われる摺り合わせにより、新たな内部欠陥が露出する可能性が低い。そのため、新たな内部欠陥の露出に起因する内部欠陥の除去作業(例えば摺り合わせの繰り返し((粗仕上げ、中仕上げ及び本仕上げ))による除去等)を行う必要がない。これにより、メンテナンスを簡略化でき、メンテナンスに要する時間を短くできる。特に、弁10が原子力施設に設置される場合には、メンテナンスに要する時間を短くできることで、被爆を低減できる。 Further, since the valve 10 having the internal defects sufficiently removed is installed, it is unlikely that a new internal defect will be exposed due to the sliding operation performed on the metal deposit 21 during maintenance. Therefore, it is not necessary to perform an internal defect removal operation due to the exposure of a new internal defect (for example, removal by repeating sliding ((rough finishing, intermediate finishing and main finishing)). As a result, maintenance can be simplified and the time required for maintenance can be shortened. In particular, when the valve 10 is installed in a nuclear facility, the time required for maintenance can be shortened, and thus the exposure can be reduced.

さらに、設置後に行われるメンテナンスは、内部欠陥が十分に除去されているため、弁10のストロークに応じて盛金部21の表面を撫でる程度の摺り合わせですむ。このため、盛金部21の厚さを長期間にわたって確保でき、弁10の使用期間を長期化できる。 Further, since the internal defects are sufficiently removed, the maintenance performed after the installation can be performed by rubbing the surface of the metal deposit part 21 according to the stroke of the valve 10. Therefore, the thickness of the metal deposit 21 can be ensured for a long period of time, and the period of use of the valve 10 can be extended.

また、本実施形態の検査方法を含む弁10の製造方法によれば、弁10の製造中に盛金部21の内部欠陥を検出でき、信頼性の高い弁10を使用者に提供できる。特に、盛金部21での粒界炭化物21bは緻密であるため、粒界炭化物21bへの流体(水、気体等)の接触に起因する粒界炭化物21bを起点とした連続的腐食及び摩耗を抑制できる。これにより、弁10では盛金部21の耐食性及び耐摩耗性が向上している。このため、内部欠陥の低減に起因する高耐久性と相俟って、弁10の信頼性を十分に高めることができる。 Moreover, according to the manufacturing method of the valve 10 including the inspection method of the present embodiment, it is possible to detect the internal defect of the metal deposit 21 during the manufacturing of the valve 10 and provide the user with the highly reliable valve 10. In particular, since the grain boundary carbide 21b in the heap portion 21 is dense, continuous corrosion and wear originating from the grain boundary carbide 21b due to contact of fluid (water, gas, etc.) with the grain boundary carbide 21b is prevented. Can be suppressed. As a result, in the valve 10, the corrosion resistance and wear resistance of the deposit portion 21 are improved. Therefore, the reliability of the valve 10 can be sufficiently enhanced in combination with the high durability resulting from the reduction of internal defects.

粒界炭化物21bによる超音波探傷検査への影響について、図6に示す試験体を作製して検討を行った。 The effect of the grain boundary carbide 21b on the ultrasonic flaw detection test was examined by preparing a test body shown in FIG.

図6Aは、超音波探傷試験への影響の検討に使用した試験体101の斜視図である。超音波探傷装置110、プローブ111及び開口123については図6Bを参照しながら後記する。試験体101(上記弁座2に相当)は、円柱状の母材122に上面に対し、母材122の同心円上に円環状の盛金部121(上記盛金部21に相当)を形成することで作製した。作製した試験体101において、盛金部121の厚さ(高さ方向長さ)は6mm、母材122の厚さは80mmとした。盛金部121の形成は、ステライト(登録商標)を用いたレーザ積層造形による肉盛によって行った。試験体101における盛金部121の金属組織が上記図2に示した金属組織である。従って、試験体101における粒界炭化物21bの大きさは数μm(10μm以下)である。 FIG. 6A is a perspective view of the test body 101 used for studying the influence on the ultrasonic flaw detection test. The ultrasonic flaw detector 110, the probe 111, and the opening 123 will be described later with reference to FIG. 6B. The test body 101 (corresponding to the valve seat 2) has a cylindrical base material 122 and an annular heap portion 121 (equivalent to the heap portion 21) formed concentrically with the upper surface of the base material 122. It was made by that. In the manufactured test body 101, the thickness (height direction length) of the metal deposit 121 was 6 mm, and the thickness of the base material 122 was 80 mm. The metal deposit 121 was formed by overlaying by laser additive manufacturing using Stellite (registered trademark). The metallographic structure of the metal deposit 121 in the test body 101 is the metallographic structure shown in FIG. Therefore, the size of the grain boundary carbide 21b in the test body 101 is several μm (10 μm or less).

図6Bは、図6AのB−B線断面図である。母材122の側面には、盛金部21の下方において母材122の径方向に伸びる穴124が形成される。穴124は開口123により外部と連通し、母材122の径方向に断面円形状(直径3mm)を有する。穴124は、母材122の上面から約6.5mmの位置に穴124の上端が配置するように、水平方向に形成される。従って、穴124は、盛金部121の上面から約14.5mmの位置に形成される。そして、盛金部121の上面から母材122の方向に超音波を照射し、盛金部121の影響を受けることなく穴124に起因する超音波反射を検出できるか否かを評価した。 6B is a cross-sectional view taken along the line BB of FIG. 6A. A hole 124 extending in the radial direction of the base material 122 is formed on the side surface of the base material 122 below the metal deposit portion 21. The hole 124 communicates with the outside through the opening 123, and has a circular cross section (diameter 3 mm) in the radial direction of the base material 122. The hole 124 is formed horizontally so that the upper end of the hole 124 is located at a position approximately 6.5 mm from the upper surface of the base material 122. Therefore, the hole 124 is formed at a position approximately 14.5 mm from the upper surface of the metal deposit 121. Then, ultrasonic waves were radiated from the upper surface of the metal deposit 121 toward the base material 122, and it was evaluated whether or not ultrasonic reflection caused by the hole 124 could be detected without being affected by the metal deposit 121.

超音波探傷検査は、超音波探傷装置110に接続されたプローブ111を用いて、穴124の上方から盛金部121の上面に超音波を照射することで行った。プローブ111は、図示の都合上、盛金部121から離して図示したが、できるだけ盛金部121に近づくようにして配置した。超音波の照射条件は、ゲインを15.0dB、パルス位置0mm、測定範囲100.0mm、試験周波数5MHz狭、音速5900m/秒、屈折角は垂直にした。 The ultrasonic flaw detection was performed by irradiating ultrasonic waves to the upper surface of the metal deposit 121 from above the hole 124 using the probe 111 connected to the ultrasonic flaw detector 110. For convenience of illustration, the probe 111 is illustrated as being separated from the metal deposit part 121, but it is arranged as close to the metal component 121 as possible. The ultrasonic irradiation conditions were a gain of 15.0 dB, a pulse position of 0 mm, a measurement range of 100.0 mm, a test frequency of 5 MHz narrow, a sound velocity of 5900 m/sec, and a refraction angle vertical.

図7は、超音波探傷試験の評価結果を示すグラフである。図7に示すグラフの横軸は、プローブ111の下端(超音波の照射端)からの距離であり、縦軸は反射してプローブ111に戻ってきた超音波の強さを表す。図7に示すように、主に3つのピークC,D,Eが観察された。観察された3つのピークC,D,Eのうち、6mmの位置に検出されたピークCの強度は8%、12.8mmの位置に検出されたピークDの強度は22%、86.1mmの位置に検出されたピークEの強度は32%であった。各ピークに対応する横軸の距離に基づくと、ピークCは盛金部121と母材122との接合界面での反射に起因するもの、ピークDは穴124での反射に起因するもの、ピークEは母材122の下端面での反射に起因するものと考えられる。 FIG. 7 is a graph showing the evaluation results of the ultrasonic flaw detection test. The horizontal axis of the graph shown in FIG. 7 is the distance from the lower end (irradiation end of ultrasonic waves) of the probe 111, and the vertical axis represents the intensity of the ultrasonic waves reflected and returned to the probe 111. As shown in FIG. 7, mainly three peaks C, D, and E were observed. Of the three observed peaks C, D, and E, the intensity of peak C detected at the position of 6 mm is 8%, the intensity of peak D detected at the position of 12.8 mm is 22%, and that of 86.1 mm. The intensity of the peak E detected at the position was 32%. Based on the distance on the horizontal axis corresponding to each peak, peak C is caused by reflection at the bonding interface between the metal deposit 121 and the base material 122, peak D is caused by reflection at the hole 124, and peak is It is considered that E is caused by the reflection on the lower end surface of the base material 122.

図7に示すグラフにおいて、盛金部121の高さ方向に対応する距離0mmから6mm(ピークCの位置)までの間で、ピークの乱れはなかった。そして、これらの距離間でピークが乱れることなく、母材122の穴124での超音波反射に起因するピークD、及び、母材122の下端面での反射に起因するピークEを検出できた。上記のように、盛金部121での粒界炭化物21bの大きさは10μm以下である。従って、粒界炭化物21bの大きさを10μm以下にすることで超音波の反射乱れを抑制でき、穴124の高さ方向位置を検出できた。従って、大きさが10μm以下の粒界炭化物21bを有する盛金部21では、超音波の乱れが抑制されるため、盛金部21の内部欠陥23を検出できる。また、超音波探傷検査により、内部欠陥23の盛金部21での高さ方向位置も決定できる。さらには、盛金部21の厚さも決定できる。 In the graph shown in FIG. 7, the peak was not disturbed in the distance from 0 mm to 6 mm (the position of the peak C) corresponding to the height direction of the metal deposit 121. Then, the peak D was not disturbed between these distances, and the peak D caused by the ultrasonic reflection at the hole 124 of the base material 122 and the peak E caused by the reflection at the lower end surface of the base material 122 could be detected. .. As described above, the size of the grain boundary carbide 21b in the heap portion 121 is 10 μm or less. Therefore, by setting the size of the grain boundary carbides 21b to 10 μm or less, it is possible to suppress the reflection disturbance of ultrasonic waves and to detect the position of the hole 124 in the height direction. Therefore, since the disturbance of the ultrasonic waves is suppressed in the heap metallurgical portion 21 having the grain boundary carbide 21b having a size of 10 μm or less, the internal defect 23 of the metal heap metal portion 21 can be detected. In addition, the ultrasonic flaw inspection can also determine the position of the internal defect 23 in the height portion 21 in the height direction. Furthermore, the thickness of the metal deposit 21 can be determined.

1 弁箱
10 弁体
101 試験体
110 超音波探傷装置
111 プローブ
121 盛金部
122 母材
123 開口
124 穴
2 弁座(弁部材)
21 盛金部
21a 結晶
21b 粒界炭化物
21c 盛金部
21d 結晶
21e 粒界炭化物
22 母材
23 内部欠陥
3 弁体(弁部材)
31 盛金部
4 弁棒
5 ハンドル
S2 ステップ(盛金部形成工程)
S5 ステップ(検査工程)
S9 ステップ(製造工程)
S11 ステップ(欠陥位置決定工程、検査工程)
S12 ステップ(摺り合わせ工程、除去工程)
1 Valve Box 10 Valve Body 101 Specimen 110 Ultrasonic Flaw Detector 111 Probe 121 Plated Part 122 Base Metal 123 Opening 124 Hole 2 Valve Seat (Valve Member)
21 heap metal portion 21a crystal 21b grain boundary carbide 21c metal heap portion 21d crystal 21e grain boundary carbide 22 base metal 23 internal defect 3 valve body (valve member)
31 heap portion 4 valve rod 5 handle S2 step (heather portion forming step)
S5 step (inspection process)
S9 step (manufacturing process)
S11 step (defect position determination step, inspection step)
S12 step (sliding process, removing process)

Claims (11)

デンドライド構造の結晶と前記結晶同士の粒界に大きさ10μm以下の粒界炭化物とを有する盛金部の内部欠陥を、超音波探傷装置により検出する検査工程を含む
ことを特徴とする、盛金部の検査方法。
A metallurgical deposit comprising an inspection step of detecting, by an ultrasonic flaw detector, an internal defect of a metal deposit having a dendride structure crystal and a grain boundary carbide having a size of 10 μm or less at a grain boundary between the crystals. Inspection method.
前記検査工程で検出された前記内部欠陥を除去する除去工程を含む
ことを特徴とする、請求項1に記載の盛金部の検査方法。
The method of inspecting a metal deposit part according to claim 1, further comprising a removing step of removing the internal defect detected in the inspecting step.
前記除去工程は、前記盛金部の摺り合わせにより行う摺り合わせ工程を含む
ことを特徴とする、請求項2に記載の盛金部の検査方法。
The method of inspecting the metal-filled portion according to claim 2, wherein the removing step includes a rubbing step of sliding the metal-coated portion together.
前記除去工程は、前記盛金部表面を削ることによって露出させた前記内部欠陥への肉盛により行う肉盛工程を含む
ことを特徴とする、請求項2又は3に記載の盛金部の検査方法。
The depositing process according to claim 2 or 3, wherein the removing process includes a build-up process performed by overlaying the internal defects exposed by shaving the surface of the deposit. Method.
前記検査工程は、前記内部欠陥の前記盛金部での高さ方向位置を決定する欠陥位置決定工程を含み、
前記除去工程は、前記内部欠陥の前記高さ方向位置に基づいて、前記盛金部の摺り合わせによって前記内部欠陥の除去を行う
ことを特徴とする、請求項2〜4の何れか1項に記載の盛金部の検査方法。
The inspecting step includes a defect position determining step of determining a height direction position of the internal defect in the fill-up portion,
5. The removing step removes the internal defect by sliding the metal-plated portion on the basis of the position of the internal defect in the height direction. Inspection method for the listed metal deposit.
前記除去工程は、前記内部欠陥の前記高さ方向位置よりも深い位置まで前記盛金部表面を削ることで行う
ことを特徴とする、請求項5に記載の盛金部の検査方法。
The method for inspecting a metal deposit part according to claim 5, wherein the removing step is performed by shaving the surface of the metal deposit part to a position deeper than the position of the internal defect in the height direction.
前記検査工程前に、浸透探傷装置により前記盛金部の表面欠陥を検出する前検査工程を含む
ことを特徴とする、請求項1〜6の何れか1項に記載の盛金部の検査方法。
Before the inspecting step, a pre-inspecting step of detecting a surface defect of the bank portion by a penetrant inspection device is included. The method for inspecting the bank portion according to any one of claims 1 to 6, further comprising: ..
前記盛金部は、弁座及び弁体のうちの少なくとも一方の弁部材の表面に形成されたものである
ことを特徴とする、請求項1〜7の何れか1項に記載の盛金部の検査方法。
The metal deposit part according to any one of claims 1 to 7, wherein the metal deposit part is formed on a surface of at least one valve member of the valve seat and the valve body. Inspection method.
前記弁部材は、原子力施設に設置された弁を構成する弁部材を含む
ことを特徴とする、請求項8に記載の盛金部の検査方法。
The said valve member includes the valve member which comprises the valve installed in the nuclear power facility. The inspection method of the metal deposit part of Claim 8 characterized by the above-mentioned.
デンドライド構造の結晶と前記結晶同士の粒界に大きさ10μm以下の粒界炭化物とを有する盛金部の内部欠陥を、超音波探傷装置により検出する検査工程と、
前記検査工程を経た前記盛金部を備える弁を製造する製造工程とを含む
ことを特徴とする、弁の製造方法。
An inspection step of detecting, by an ultrasonic flaw detection device, an internal defect in the metal-filled portion having a crystal of dendride structure and a grain boundary carbide having a size of 10 μm or less at a grain boundary between the crystals;
And a manufacturing step of manufacturing a valve including the fill-up portion that has undergone the inspection step.
レーザ積層造形による母材への肉盛により前記盛金部を形成する盛金部形成工程を含む
ことを特徴とする、請求項10に記載の弁の製造方法。
The method for manufacturing a valve according to claim 10, further comprising: a build-up portion forming step of forming the build-up portion by overlaying a base material by laser additive manufacturing.
JP2019003150A 2019-01-11 2019-01-11 A method for inspecting the metal part and a method for manufacturing a valve using the method. Active JP7028808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019003150A JP7028808B2 (en) 2019-01-11 2019-01-11 A method for inspecting the metal part and a method for manufacturing a valve using the method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019003150A JP7028808B2 (en) 2019-01-11 2019-01-11 A method for inspecting the metal part and a method for manufacturing a valve using the method.

Publications (2)

Publication Number Publication Date
JP2020112424A true JP2020112424A (en) 2020-07-27
JP7028808B2 JP7028808B2 (en) 2022-03-02

Family

ID=71666992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019003150A Active JP7028808B2 (en) 2019-01-11 2019-01-11 A method for inspecting the metal part and a method for manufacturing a valve using the method.

Country Status (1)

Country Link
JP (1) JP7028808B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416292A (en) * 1987-07-08 1989-01-19 Tokyo Electric Co Ltd Vacuum cleaner
JPH08247302A (en) * 1995-03-09 1996-09-27 Hitachi Ltd Valve with valve seat built up by different kind of material, used for light-water nuclear reactor
JP2000035418A (en) * 1997-12-01 2000-02-02 Kawasaki Steel Corp Ultrasonic flaw detecting method for cylindrical body and its device, and roll grinding method using it
JP2000141198A (en) * 1998-11-05 2000-05-23 Kawasaki Steel Corp Method and device for automatically grinding defect of round bar material
JP2003053533A (en) * 2001-08-09 2003-02-26 Toshiba Corp Method of repairing structure and repair welding equipment
JP2003166978A (en) * 2001-12-03 2003-06-13 Hitachi Ltd Method for non-destructively inspecting anticorrosion wear resistant alloy connecting part
JP2004077408A (en) * 2002-08-22 2004-03-11 Hitachi Ltd Valve for light-water reactor
JP2005290529A (en) * 2004-04-06 2005-10-20 Hitachi Ltd Valve and its production method, power generation plant using the same, and member for valve
JP2008145319A (en) * 2006-12-12 2008-06-26 Daido Steel Co Ltd Method for inspecting padding portion of engine valve
JP2011064077A (en) * 2009-09-15 2011-03-31 Toshiba Corp Gas turbine part and method of repairing the same
JP2011214682A (en) * 2010-04-01 2011-10-27 Hitachi-Ge Nuclear Energy Ltd Abrasion-resistant valve seat
US20110296922A1 (en) * 2010-06-07 2011-12-08 Syed Mohamed Ali Emat for inspecting thick-section welds and weld overlays during the welding process

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416292A (en) * 1987-07-08 1989-01-19 Tokyo Electric Co Ltd Vacuum cleaner
JPH08247302A (en) * 1995-03-09 1996-09-27 Hitachi Ltd Valve with valve seat built up by different kind of material, used for light-water nuclear reactor
JP2000035418A (en) * 1997-12-01 2000-02-02 Kawasaki Steel Corp Ultrasonic flaw detecting method for cylindrical body and its device, and roll grinding method using it
JP2000141198A (en) * 1998-11-05 2000-05-23 Kawasaki Steel Corp Method and device for automatically grinding defect of round bar material
JP2003053533A (en) * 2001-08-09 2003-02-26 Toshiba Corp Method of repairing structure and repair welding equipment
JP2003166978A (en) * 2001-12-03 2003-06-13 Hitachi Ltd Method for non-destructively inspecting anticorrosion wear resistant alloy connecting part
JP2004077408A (en) * 2002-08-22 2004-03-11 Hitachi Ltd Valve for light-water reactor
JP2005290529A (en) * 2004-04-06 2005-10-20 Hitachi Ltd Valve and its production method, power generation plant using the same, and member for valve
JP2008145319A (en) * 2006-12-12 2008-06-26 Daido Steel Co Ltd Method for inspecting padding portion of engine valve
JP2011064077A (en) * 2009-09-15 2011-03-31 Toshiba Corp Gas turbine part and method of repairing the same
JP2011214682A (en) * 2010-04-01 2011-10-27 Hitachi-Ge Nuclear Energy Ltd Abrasion-resistant valve seat
US20110296922A1 (en) * 2010-06-07 2011-12-08 Syed Mohamed Ali Emat for inspecting thick-section welds and weld overlays during the welding process

Also Published As

Publication number Publication date
JP7028808B2 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
Rieder et al. Online monitoring of additive manufacturing processes using ultrasound
Tabatabaeipour et al. Non-destructive ultrasonic examination of root defects in friction stir welded butt-joints
Seow et al. Effect of crack-like defects on the fracture behaviour of Wire+ Arc Additively Manufactured nickel-base Alloy 718
Rieder et al. Ultrasonic online monitoring of additive manufacturing processes based on selective laser melting
US8181523B2 (en) Ultrasound inspection methods for noisy cast materials and related probes
Lacki et al. Assessment of joints using friction stir welding and refill friction stir spot welding methods
JP4700923B2 (en) Method for producing thermal spray coated article and ultrasonic test method
JP2020112424A (en) Build-up metal part inspection method and valve manufacturing method using the same
Habibzadeh Boukani et al. Case study on the integrity and nondestructive inspection of flux-cored arc welded joints of Francis turbine runners
Santos et al. Lamb waves technique applied to the characterization of defects in friction stir welding of aluminum plates: comparison with X-ray and ultrasonic C-scan
Passini et al. Ultrasonic inspection of AA6013 laser welded joints
JP7238122B2 (en) Repair process using laser metal powder deposition
Praniewicz et al. Integrated Hardfacing of Stellite-6 Using Hybrid Manufacturing Process
JP2018163070A (en) Method of inspecting sprayed coating
Park et al. Nondestructive Inspection of Cylindrical Components Repaired Via Directed Energy Deposition Using Scanning Acoustic Microscopy with Metal Lubricants
JPH04228259A (en) Identifying, estimating and removing method for fine shrin kage
Han et al. Effect of interlayer surface preparation on microstructures and mechanical properties of wire and arc additive manufactured low carbon steel objects
Fan et al. Arc welding-laser shock forging process for improving the mechanical properties of the Fe-Cr-C cladded layer
CN112268841A (en) Ultrasonic detection method for grain size of low-temperature steel weld joint
Georgiou Non-destructive testing and evaluation of metals
Sousa et al. Phased Array Ultrasonic Testing (PAUT) Inspection of Wire and Arc Additive Manufacturing (WAAM) Components
Spies et al. On-and offline ultrasonic characterization and inspection of additively manufactured components
JP2003166978A (en) Method for non-destructively inspecting anticorrosion wear resistant alloy connecting part
Cattant Nickel Base Alloys
Wagner et al. Modification of the grain structure of austenitic welds for improved ultrasonic inspectability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7028808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150