KR100807393B1 - Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby - Google Patents

Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby Download PDF

Info

Publication number
KR100807393B1
KR100807393B1 KR1020060050410A KR20060050410A KR100807393B1 KR 100807393 B1 KR100807393 B1 KR 100807393B1 KR 1020060050410 A KR1020060050410 A KR 1020060050410A KR 20060050410 A KR20060050410 A KR 20060050410A KR 100807393 B1 KR100807393 B1 KR 100807393B1
Authority
KR
South Korea
Prior art keywords
alloy
temperature
temperature gradient
cold
heat treatment
Prior art date
Application number
KR1020060050410A
Other languages
Korean (ko)
Other versions
KR20070116403A (en
Inventor
남태현
김기원
안효준
조권구
안주현
조규봉
인농 리우
이정무
이연정
유철암
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020060050410A priority Critical patent/KR100807393B1/en
Priority to US12/299,113 priority patent/US20090071577A1/en
Priority to JP2009509391A priority patent/JP2009536265A/en
Priority to PCT/KR2006/002927 priority patent/WO2007142380A1/en
Publication of KR20070116403A publication Critical patent/KR20070116403A/en
Application granted granted Critical
Publication of KR100807393B1 publication Critical patent/KR100807393B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Abstract

본 발명은 Ti-Ni계 합금을 냉간가공하고, 일정한 온도구배 하에서 어닐링 열처리하여 제조된, 비례제어가 용이한 Ti-Ni계 경사기능 합금에 관한 것으로, 이렇게 처리된 Ti-Ni계 경사기능 합금은 형상기억효과 및 초탄성을 갖는 동시에 온도변화에 따라 연속적인 형상변화를 나타내어 경사기능 효과가 발생한다.The present invention relates to a Ti-Ni-based inclined functional alloy produced by cold-processing a Ti-Ni-based alloy and annealing heat treatment under a constant temperature gradient. It has shape memory effect and super elasticity, and it shows continuous shape change according to temperature change, so that the slope function effect occurs.

형상기억효과, 초탄성함금, 온도구배 열처리 Shape memory effect, super elastic alloy, temperature gradient heat treatment

Description

Ti-Ni계 경사기능 합금의 제조방법 및 그로부터 제조된 Ti-Ni계 경사기능 합금{Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby}Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby

도 1은 일정온도에서 열처리한 형상기억합금의 변형률-온도 곡선을 도시한 그래프이다.1 is a graph showing a strain-temperature curve of a shape memory alloy heat-treated at a constant temperature.

도 2는 경사기능 형상기억합금의 변형률-온도 곡선을 도시한 그래프이다.Figure 2 is a graph showing the strain-temperature curve of the gradient function shape memory alloy.

도 3은 용체화처리 된 Ti-50.0Ni(at%) 합금과 온도구배 열처리한 Ti-50.0(at%) 합금의 시차주사열분석곡선이다.3 is a differential scanning thermal analysis curve of the solution-treated Ti-50.0Ni (at%) alloy and the temperature gradient heat-treated Ti-50.0 (at%) alloy.

도 4는 본 발명에 따라 Ti-50.0Ni(at%) 합금을 25% 냉간가공한 후 658 K - 466 K의 온도구배하에서 어닐링 열처리한 선재의 위치별 Ms를 정리한 결과이다.4 is a result of arranging Ms for each position of a wire rod anneal-annealed under a temperature gradient of 658 K-466 K after 25% cold processing of Ti-50.0Ni (at%) alloy according to the present invention.

도 5는 본 발명에 따라 Ti-50.0Ni(at%) 합금을 25% 냉간가공한 후 823 K - 658 K의 온도구배하에서 어닐링 열처리한 선재의 위치별 Ms를 정리한 결과이다.5 is a result of arranging Ms for each position of a wire rod anneal-annealed under a temperature gradient of 823 K to 658 K after 25% cold working of Ti-50.0Ni (at%) alloy according to the present invention.

도 6은 본 발명에 따라 Ti-50.0Ni(at%) 합금을 65% 냉간가공한 후 823 K - 658 K의 온도구배하에서 어닐링 열처리한 선재의 위치별 Ms를 정리한 결과이다.6 is a result of arranging Ms for each position of a wire rod anneal-annealed at a temperature gradient of 823 K to 658 K after cold-processing 65% of a Ti-50.0Ni (at%) alloy according to the present invention.

도 7은 본 발명에 따라 용체화처리한 Ti-50.0Ni(at%) 합금의 변형률(ε)-온도(T)곡선을 도시한 그래프이다.7 is a graph showing the strain (ε) -temperature (T) curve of the solution of Ti-50.0Ni (at%) alloyed according to the present invention.

도 8은 본 발명에 따라 Ti-50.2(at%) 합금을 25% 냉간가공한 후 658 K - 466 K의 온도구배하에서 어닐링 열처리한 선재의 변형률(ε)-온도(T)곡선을 도시한 그래프이다.8 is a graph showing a strain (ε) -temperature (T) curve of a wire rod anneal-annealed at a temperature gradient of 658 K to 466 K after a 25% cold working of Ti-50.2 (at%) alloy according to the present invention. to be.

도 9는 본 발명에 따라 Ti-50.2(at%) 합금을 65% 냉간가공한 후 658 K - 466 K의 온도구배하에서 어닐링 열처리한 선재의 변형률(ε)-온도(T)곡선을 도시한 그래프이다.9 is a graph showing a strain (ε) -temperature (T) curve of a wire rod anneal-annealed at a temperature gradient of 658 K to 466 K after cold processing 65% of a Ti-50.2 (at%) alloy according to the present invention. to be.

본 발명은 Ti-Ni계 경사기능 합금에 관한 것으로, 보다 구체적으로는 Ti-Ni계 합금을 냉간가공하고, 일정한 온도구배 하에서 어닐링 열처리하여 경사기능을 부여하도록 하는 Ti-Ni계 경사기능 합금의 제조 방법 및 그로부터 제조된 Ti-Ni계 경사기능 합금에 관한 것이다.The present invention relates to a Ti-Ni-based inclined functional alloy, more specifically, to manufacture a Ti-Ni-based inclined functional alloy to cold-process the Ti-Ni-based alloy, and to give an inclined function by annealing heat treatment under a constant temperature gradient The present invention relates to a Ti-Ni-based gradient functional alloy prepared therefrom.

Ti-Ni계 형상기억합금은 냉간가공하고, 일정한 온도에서 어닐링하고, 하중을 부여한 상태에서 온도를 저하시키면 마르텐사이트변태 개시온도(Ms)에서 급격한 변형이 발생하고, 그 후 온도를 상승시키면 역변태 개시온도(As)에서 급격한 변형의 회복이 발생한다(도 1 참조). 이와 같이 특정 온도에서 급격한 변형이 발생하고 회복하는 현상을 이용하여 Ti-Ni계 형상기억합금은 각종 온-오프(on-off) 스위치용 액츄에이터에 응용되고 있다.When the Ti-Ni-based shape memory alloy is cold worked, annealed at a constant temperature, and the temperature is lowered under a load, a rapid deformation occurs at the martensite transformation start temperature (Ms). Rapid recovery of deformation occurs at the starting temperature As (see FIG. 1). As such, the Ti-Ni-based shape memory alloy is applied to various on-off switch actuators by using a phenomenon in which rapid deformation occurs and recovers at a specific temperature.

한편, 이러한 Ti-Ni계 형상기억합금을 로봇용 액츄에이터 소자로 응용하는 경우 비례제어를 통한 정확한 위치제어가 가능하여야 한다. 그러나 기존의 Ti-Ni 계 형상기억합금은 특정온도에서 급격한 변형이 발생하기 때문에 온-오프 스위치용 액츄에이터로는 적합한 특성을 갖지만, 비례제어용 액츄에이터로는 적합하지 못하였다. On the other hand, when the Ti-Ni-based shape memory alloy is applied as an actuator element for a robot, accurate position control through proportional control should be possible. However, the existing Ti-Ni shape memory alloy has suitable characteristics as an on-off switch actuator because of its rapid deformation at a specific temperature, but it is not suitable as a proportional control actuator.

본 발명자들은 이와 같은 형상기억합금이 특정온도에서 급격한 변형이 발생하는 문제점을 극복하기 예의 노력을 기울인 결과 본 발명에 이르게 되었다.The present inventors have made an effort to overcome the problem that such a shape memory alloy is suddenly deformed at a specific temperature, resulting in the present invention.

따라서, 본 발명의 목적은 동일한 Ti-Ni계 합금 내에서 변태온도(Ms와 As)가 연속적으로 변화하도록 하여, 넓은 온도 범위에 걸쳐 변형이 점진적으로 발생할 수 있도록 함으로써, 비례제어가 용이한 Ti-Ni계 경사기능 합금의 제조방법을 제공하는데 있다(도 2 참조).Accordingly, an object of the present invention is to allow the transformation temperature (Ms and As) to continuously change in the same Ti-Ni-based alloy so that deformation can gradually occur over a wide temperature range, thereby making it easy to control proportional Ti-. It is to provide a method for producing a Ni-based gradient function alloy (see Figure 2).

상기와 같은 목적은 냉간가공한 Ti-Ni계 합금을 온도구배하에서 어닐링 열처리함으로써 동일한 합금 내에서 변태온도를 연속적으로 변화시켜 형상기억효과 및 초탄성을 가지는 동시에 온도변화에 따라 연속적인 형상변화를 나타내는 경사기능 효과를 갖도록 함으로써 달성된다.The above object is to continuously change the transformation temperature in the same alloy by annealing and heat treatment the cold-worked Ti-Ni alloy under temperature gradient, which has shape memory effect and superelasticity and shows continuous shape change with temperature change. It is achieved by having a gradient function effect.

본 발명은 Ti-Ni계 합금을 냉간가공하고, 일정한 온도구배 하에서 어닐링 열처리하여 경사기능을 부여하여 비례제어가 용이하도록 하는 Ti-Ni계 경사기능 합금의 제조방법을 제공한다. The present invention provides a method of manufacturing a Ti-Ni-based inclined functional alloy to cold process the Ti-Ni-based alloy, and to give an inclination function by annealing heat treatment under a constant temperature gradient to facilitate proportional control.

바람직한 냉간가공 범위는 25 내지 65 %이며, 823 내지 466 K의 온도구배로 어닐링 열처리하는 것이 특히 바람직하다.The preferred cold working range is 25 to 65%, particularly preferably annealing heat treatment at a temperature gradient of 823 to 466 K.

본 발명은 상기의 방법에 따라 처리된 비례제어가 가능한 Ti-Ni계 경사기능 합금을 제공한다.The present invention provides a Ti-Ni-based inclined functional alloy capable of proportional control processed according to the above method.

선재 또는 판재형의 다양한 형태의 Ti-Ni계 합금을 필요에 따라 처리할 수 있으며, 이렇게 처리된 Ti-Ni계 합금은 합금 내에서 변태온도를 연속적으로 변화시켜 형상기억효과 및 초탄성을 가지는 동시에 온도변화에 따라 연속적인 형상변화를 나타내는 경사기능 효과를 갖게 되며, 변형률 회복속도(dε/dT)가 기존의 합금에 비해 작아지므로, 비례제어를 통한 위치제어가 용이하기 때문에 로봇용 액츄에이터와 같이 정밀 위치제어가 사용할 수 있다.Various types of Ti-Ni-based alloys, such as wire or plate, can be processed as needed. The Ti-Ni-based alloys have a shape memory effect and super elasticity by continuously changing the transformation temperature in the alloy. It has an inclined function effect that shows continuous shape change according to temperature change, and the strain recovery speed (dε / dT) is smaller than that of conventional alloys, so it is easy to control the position through proportional control, so it is accurate like a robot actuator. Position control can be used.

이하 본 발명의 바람직한 실시예를 예시하고, 이를 중심으로 본 발명을 보다 상세하게 설명한다. 하지만, 이들 실시예로 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, exemplary embodiments of the present invention will be illustrated, and the present invention will be described in more detail. However, the scope of the present invention is not limited to these examples.

<실시예><Example>

실시예Example 1 One

Ti-50.0Ni(at%) 합금을 용체화처리 한 후의 시차주사열분석곡선을 도 3(a)에 나타내었다. 여기서 냉각과 가열 중 각각 1개 씩의 피크가 나타난 것을 알 수 있다. 이 피크는 B2(Cubic)-B19'(Monoclinic) 마르텐사이트변태에 기인한다. The differential scanning thermal analysis curve after solution treatment of Ti-50.0Ni (at%) alloy is shown in Fig. 3 (a). Here, it can be seen that one peak of each of cooling and heating appeared. This peak is due to the B2 (Cubic) -B19 '(Monoclinic) martensite transformation.

도 3(b), (c), (d) 및 (e) 는 25 % 냉간가공한 Ti-50.0Ni 합금을 658 내지 466 K의 온도구배하에서 어닐링 열처리한 후 도 3(f)에 표시한 위치에서 시편을 채취하여 시차주사열분석한 결과를 나타낸 것으로, 냉각 및 가열시에 폭이 넓은 피크가 관찰된다. 특히 어닐링 온도가 낮은 구역에서 채취한 시편의 피크가 더 넓음을 알 수 있다. 3 (b), (c), (d) and (e) show the positions shown in FIG. 3 (f) after annealing heat treatment of a 25% cold worked Ti-50.0Ni alloy under a temperature gradient of 658 to 466 K. The results of the differential scanning sequence analysis of specimens taken at, showed broad peaks during cooling and heating. In particular, it can be seen that the peaks of the specimens collected in the region where the annealing temperature is low are wider.

온도구배열처리 전 Ti-50.0Ni(at%) 합금을 25 내지 65 % 범위내에서 냉간가공하였다. 이는 25% 이하로 냉간가공하면 열처리 후 온도변화가 작아 경사기능특성을 얻을 수 없고, 65 % 이상은 냉간가공이 불가능하기 때문이다. 온도구배 열처리는 823 내지 466 K의 온도구배를 갖는 열처리로를 이용하여 실시하였다. 단 65 % 냉가가공한 경우 823 내지 658 K의 온도구배에서 열처리하였는데, 이는 658 내지 466 K 온도구배 열처리하면 변형율이 1 % 이하로 작아 액츄에이터소자로서 적합하지 않았기 때문이다.The Ti-50.0Ni (at%) alloy was cold worked within the range of 25-65% before temperature gradient treatment. This is because if the cold working is less than 25%, the temperature change after heat treatment is small, the slope functional characteristics can not be obtained, and more than 65% cold working is impossible. Temperature gradient heat treatment was carried out using a heat treatment furnace having a temperature gradient of 823 to 466 K. However, in the case of 65% cold working, heat treatment was performed at a temperature gradient of 823 to 658 K, because the strain was less than 1% at 658 to 466 K temperature gradient, which was not suitable as an actuator element.

본 발명의 실시예에서는 Ti-Ni계 합금으로 Ti-50.0Ni(at%) 합금을 사용하였으나, 이 외에도 다를 Ti-Ni계 합금을 사용할 수도 있고, 그러한 경우에도 유사한 결과가 얻어을 수 있다.In the embodiment of the present invention, a Ti-5 Ni-based alloy was used as a Ti-50.0Ni (at%) alloy, but other Ti-Ni-based alloys may also be used. In such a case, similar results may be obtained.

실시예Example 2 2

길이 150 mm의 Ti-50.0Ni(at%) 합금 선재를 25 % 냉간가공하고, 658 내지 466 K의 온도구배 하에서 어닐링 열처리한 후 5 mm 간격으로 시편을 채취하여 시차주사열분석하였다. 측정한 Ms를 정리하여 그 결과를 도 4에 나타내었다. Ms는 위치가 변화함에 따라 연속적으로 변화함을 알 수 있다. 25 % 냉간가공 후 658 내지 466 K의 온도구배 하에서 어닐링 열처리한 경우 길이 150 mm 선재에서 Ms의 변화는 약 19 K 이다.Cold-processed Ti-50.0Ni (at%) alloy wire having a length of 150 mm was 25%, annealing heat treated under a temperature gradient of 658 to 466 K, and then specimens were taken at 5 mm intervals and subjected to differential scanning thermal analysis. The measured Ms are collectively shown in FIG. 4. It can be seen that Ms changes continuously as the position changes. After annealing heat treatment under a temperature gradient of 658 to 466 K after 25% cold working, the change of Ms in a 150 mm long wire is about 19 K.

실시예Example 3 3

길이 150 mm의 Ti-50.0Ni(at%) 선재를 25% 냉간가공 하고, 823 내지 658 K의 온도구배 하에서 어닐링 열처리한 후, 5 mm 간격으로 시편을 채취하여 시차주사열분석하였다. 측정한 Ms를 정리하여 그 결과를 도 5에 나타내었다. Ms는 위치가 변화함에 따라 연속적으로 변화함을 알 수 있다. 25 % 냉간가공 후 823 내지 658 K의 온도구배 하에서 어닐링 열처리한 경우 길이 150 mm 선재에서 Ms의 변화는 약 14 K 이다.Cold-processed Ti-50.0Ni (at%) wire having a length of 150 mm was 25% and annealed under a temperature gradient of 823 to 658 K, and then specimens were taken at 5 mm intervals and subjected to differential scanning thermal analysis. The measured Ms are collectively shown in FIG. 5. It can be seen that Ms changes continuously as the position changes. After annealing heat treatment at a temperature gradient of 823 to 658 K after 25% cold working, the change of Ms in a 150 mm long wire is about 14 K.

실시예Example 4 4

길이 150 mm의 Ti-50.0Ni(at%) 판재를 65% 냉간가공 하고, 823 내지 658 K의 온도구배 하에서 어닐링 열처리한 후, 5 mm 간격으로 시편을 채취하여 시차주사열분석하였다. 측정한 Ms를 정리하여 그 결과를 도 6에 나타내었다. Ms는 위치가 변화함에 따라 연속적으로 변화함을 알 수 있다. 65 % 냉간가공 후 823 내지 658 K의 온도구배 하에서 어닐링 열처리한 경우 길이 150 mm 선재에서 Ms의 변화는 약 60 K 이다. A 150 mm long Ti-50.0Ni (at%) sheet was cold worked 65%, annealed and heat treated under a temperature gradient of 823 to 658 K, and the specimens were taken at 5 mm intervals and subjected to differential scanning thermal analysis. The measured Ms are collectively shown in FIG. 6. It can be seen that Ms changes continuously as the position changes. After annealing heat treatment at a temperature gradient of 823 to 658 K after 65% cold working, the change of Ms in a 150 mm long wire is about 60 K.

상기와 같이 실시예 2 내지 4 및 도 4 내지 6으로부터, 냉간가공 후 온도구배 어닐링 열처리 하면 동일한 선재 및 판재 내에서 변태온도를 연속적으로 변화시킬 수 있음이 확인할 수 있었다.As described above, it can be seen from Examples 2 to 4 and FIGS. 4 to 6 that the transformation temperature can be continuously changed in the same wire and plate when the temperature gradient annealing heat treatment is performed after cold working.

실시예Example 5 5

Ti-50.0Ni(at%) 합금을 용체화처리한 후 변형률(ε)-온도(T)곡선을 도 7에 나타내었다. 80 MPa의 부하응력하에서 합금을 냉각하면 Ms라고 표시된 온도에서 변형이 발생한다. 이는 B2(Cubic)-B19'(Monoclinic) 마르텐사이트변태에 기인한다. 한편 합금을 가열하면 As라고 표시된 온도에서 변형이 회복한다. 이는 B19'-B2 역변태에 기인한다. 가열시 발생하는 변형률의 회복속도(dε/dT)는 약 1 %/K 이다. The strain (ε) -temperature (T) curve after solution treatment of the Ti-50.0Ni (at%) alloy is shown in FIG. 7. When the alloy is cooled under a load stress of 80 MPa, deformation occurs at the temperature marked Ms. This is due to the B2 (Cubic) -B19 '(Monoclinic) martensite transformation. On the other hand, when the alloy is heated, the deformation recovers at the temperature marked As. This is due to the B19'-B2 reverse transformation. The recovery rate (dε / dT) of the strain generated during heating is about 1% / K.

실시예Example 6 6

Ti-50.0(at%) 합금 선재를 25 % 냉간가공하고, 658 내지 466 K의 온도구배하에서 어닐링 열처리하였다. 처리된 선재의 변형률(ε)-온도(T)곡선을 도 8에 나타내었다. 80 MPa의 부하응력하에서 합금을 냉각하면 Ms라고 표시된 온도에서 변형이 발생한다. 이는 B2(Cubic)-B19'(Monoclinic) 마르텐사이트변태에 기인한다. 한편, 합금을 가열하면 As라고 표시된 온도에서 변형이 회복한다. 이는 B19'-B2 역변태에 기인한다. 가열시 발생하는 변형률의 회복속도(dε/dT)는 약 0.03 %/K 이다. The Ti-50.0 (at%) alloy wire rod was 25% cold worked and annealed under a temperature gradient of 658 to 466 K. The strain (ε) -temperature (T) curve of the treated wire rod is shown in FIG. 8. When the alloy is cooled under a load stress of 80 MPa, deformation occurs at the temperature marked Ms. This is due to the B2 (Cubic) -B19 '(Monoclinic) martensite transformation. On the other hand, when the alloy is heated, the deformation recovers at the temperature indicated by As. This is due to the B19'-B2 reverse transformation. The recovery rate (dε / dT) of the strain generated during heating is about 0.03% / K.

실시예Example 7 7

Ti-50.0(at%) 합금 선재를 65 % 냉간가공하고, 658 내지 466 K의 온도구배하에서 어닐링 열처리하였다. 처리된 선재의 변형률(ε)-온도(T)곡선을 도 9에 나타내었다. 80 MPa의 부하응력하에서 합금을 냉각하면 Ms라고 표시된 온도에서 변형 이 발생한다. 이는 B2(Cubic)-B19'(Monoclinic) 마르텐사이트변태에 기인한다. 한편, 합금을 가열하면 As라고 표시된 온도에서 변형이 회복한다. 이는 B19'-B2 역변태에 기인한다. 가열시 발생하는 변형률의 회복속도(dε/dT)는 약 0.01 %/K 이다. 65 % 냉간가공한 합금은 658 내지 466 K의 온도범위에서 열처리하면 변형율이 1% 이하로 매우 작기 때문에 액츄에이터용 소자로서 적절하지 못하였다.The Ti-50.0 (at%) alloy wire was cold worked 65% and annealed under a temperature gradient of 658-466 K. The strain (ε) -temperature (T) curve of the treated wire rod is shown in FIG. 9. Cooling the alloy under a load stress of 80 MPa results in deformation at the temperature marked Ms. This is due to the B2 (Cubic) -B19 '(Monoclinic) martensite transformation. On the other hand, when the alloy is heated, the deformation recovers at the temperature indicated by As. This is due to the B19'-B2 reverse transformation. The recovery rate (dε / dT) of the strain generated during heating is about 0.01% / K. The 65% cold-worked alloy was not suitable as an element for actuators because the strain was very small at 1% or less when heat treated at a temperature range of 658 to 466 K.

상기와 같이 실시예 5 내지 7 및 도 7 내지 9로부터 알 수 있듯이 Ti-Ni계 합금을 냉간가공 후 온도구배 하에서 열처리하면 변형률의 회복속도가 0.03-0.01 %/K가 되어 일정 온도에서 열처리한 경우의 1 %/K에 비해 약 1/30 내지 1/100로 작아지는 것을 알 수 있다. 따라서, 냉간가공 후 온도구배하에 어닐링 열처리 방법으로 비례제어용 Ti-Ni계 합금을 제조할 수 있음을 알 수 있다. As can be seen from Examples 5 to 7 and FIGS. 7 to 9, when the Ti-Ni-based alloy is heat treated under a temperature gradient after cold working, the recovery rate of the strain becomes 0.03-0.01% / K, and is heat-treated at a predetermined temperature. It can be seen that it is reduced to about 1/30 to 1/100 compared to 1% / K. Therefore, it can be seen that the Ti-Ni alloy for proportional control can be manufactured by annealing heat treatment under a temperature gradient after cold working.

상기에 설명한 바와 같이, 본 발명에 따라 처리된 Ti-Ni계 합금은 형상기억효과 및 초탄성을 갖는 동시에 변형률 회복속도(dε/dT)가 기존의 합금에 비해 1/30 - 1/100로 작아진다. 이러한 저 변형율 회복속도를 가지는 Ti-Ni계 합금은 비례제어를 통한 위치제어가 용이하기 때문에 로봇용 액츄에이터와 같이 정밀 위치제어가 필요한 산업분야에 유용한 발명이다. As described above, the Ti-Ni-based alloy treated according to the present invention has a shape memory effect and superelasticity, and the strain recovery rate (dε / dT) is 1/30-1/100 smaller than that of the conventional alloy. Lose. Since the Ti-Ni alloy having such low strain recovery rate is easy to control the position through proportional control, it is a useful invention in an industrial field that requires precise position control such as a robot actuator.

Claims (4)

삭제delete 삭제delete Ti-Ni계 합금을 25 내지 65 % 로 냉간가공하고, 658 내지 466 K의 온도구배하에서 어닐닝 열처리함으로써, 합금에 경사기능이 부여되어 변형률 회복속도가(dε/dT)가 0.03 내지 0.01 %/K인 것을 특징으로 하는 비례제어용 Ti-Ni계 경사기능 합금.By cold-processing Ti-Ni-based alloys at 25 to 65% and annealing heat treatment under a temperature gradient of 658 to 466 K, the alloy is inclined so that the strain recovery rate (dε / dT) is 0.03 to 0.01% / Ti-Ni-based gradient function alloy for proportional control, characterized in that K. 삭제delete
KR1020060050410A 2006-06-05 2006-06-05 Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby KR100807393B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020060050410A KR100807393B1 (en) 2006-06-05 2006-06-05 Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby
US12/299,113 US20090071577A1 (en) 2006-06-05 2006-07-25 Process for making ti-ni based functionally graded alloys and ti-ni based functionally graded alloys produced thereby
JP2009509391A JP2009536265A (en) 2006-06-05 2006-07-25 Method for producing Ti-Ni functionally gradient alloy and Ti-Ni functionally graded alloy produced therefrom
PCT/KR2006/002927 WO2007142380A1 (en) 2006-06-05 2006-07-25 Process for making ti-ni based functionally graded alloys and ti-ni based functionally graded alloys produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060050410A KR100807393B1 (en) 2006-06-05 2006-06-05 Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby

Publications (2)

Publication Number Publication Date
KR20070116403A KR20070116403A (en) 2007-12-10
KR100807393B1 true KR100807393B1 (en) 2008-02-28

Family

ID=38801611

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060050410A KR100807393B1 (en) 2006-06-05 2006-06-05 Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby

Country Status (4)

Country Link
US (1) US20090071577A1 (en)
JP (1) JP2009536265A (en)
KR (1) KR100807393B1 (en)
WO (1) WO2007142380A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9556166B2 (en) 2011-05-12 2017-01-31 Proteostasis Therapeutics, Inc. Proteostasis regulators
US20130239565A1 (en) * 2012-03-16 2013-09-19 GM Global Technology Operations LLC Spatially graded sma actuators
CN102828066A (en) * 2012-09-07 2012-12-19 哈尔滨工程大学 Method for preparing functionally continuous gradient Ti-Ni shape memory alloy
CN104399750B (en) * 2014-10-23 2016-06-29 哈尔滨工程大学 A kind of TiNi memorial alloy preparation of plates method
CN107030111B (en) * 2017-04-17 2019-07-02 东北大学 A kind of preparation method of equal thickness Ultra-fine Grained TC4 titanium alloy plate
CN110193934B (en) * 2019-05-08 2021-12-28 西安交通大学 Method and equipment for regulating and controlling polymer performance by online annealing in selective laser sintering
CN110157952B (en) * 2019-07-01 2020-04-14 中国工程物理研究院机械制造工艺研究所 Gradient function NiTiHf high-temperature memory alloy and preparation method thereof
CN110842022B (en) * 2019-12-06 2021-02-26 东北大学 Preparation method of memory alloy nano-laminated Ni/Ti prefabricated blank
CN111041421B (en) * 2019-12-30 2022-04-22 哈尔滨工业大学 Shape memory alloy radial gradient film and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382728A (en) * 1989-08-24 1991-04-08 Yuichi Nakazato Ti-ni shape memory alloy for actuator and its manufacture
JPH11196732A (en) 1998-01-21 1999-07-27 Furukawa Techno Material:Kk Fishline made of nickel-titanium-based shape memory alloy and its production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594948A (en) * 1982-06-29 1984-01-11 Sumitomo Electric Ind Ltd Production of ni-ti alloy wire
US4896955B1 (en) * 1983-12-06 1991-05-21 Eyeglass frame including shape-memory elements
JPH0796036A (en) * 1993-09-28 1995-04-11 Tokin Corp Catheter
US6149742A (en) * 1998-05-26 2000-11-21 Lockheed Martin Corporation Process for conditioning shape memory alloys
JP3653258B2 (en) * 2002-06-11 2005-05-25 学校法人東海大学 Fastening part manufacturing method and fastening part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382728A (en) * 1989-08-24 1991-04-08 Yuichi Nakazato Ti-ni shape memory alloy for actuator and its manufacture
JPH11196732A (en) 1998-01-21 1999-07-27 Furukawa Techno Material:Kk Fishline made of nickel-titanium-based shape memory alloy and its production

Also Published As

Publication number Publication date
JP2009536265A (en) 2009-10-08
US20090071577A1 (en) 2009-03-19
WO2007142380A1 (en) 2007-12-13
KR20070116403A (en) 2007-12-10

Similar Documents

Publication Publication Date Title
KR100807393B1 (en) Process for making Ti-Ni based functionally graded alloys and Ti-Ni based functionally graded alloys produced thereby
JP5535426B2 (en) Method for processing nickel-titanium shape memory alloy
TWI506149B (en) Production of high strength titanium
KR102045101B1 (en) α+β TYPE Ti ALLOY AND PROCESS FOR PRODUCING SAME
Mahmud et al. Gradient anneal of functionally graded NiTi
KR102333721B1 (en) Ultra high strength copper-nickel-tin alloys
TW201439333A (en) Methods for processing titanium alloys
US7005018B2 (en) Shape memory parts of 60 Nitinol
JP5946238B2 (en) Manufacturing method of bearing race
KR20080068579A (en) Coil spring having two-way shape memory effect and the fabrication method thereof, and adiabatic product using the same
JP6422113B2 (en) High temperature shape memory alloy and method for producing the same
KR102255440B1 (en) Improving formability of wrought copper-nickel-tin alloys
ur Rehman et al. Transformation behavior and shape memory properties of Ti50Ni15Pd25Cu10 high temperature shape memory alloy at various aging temperatures
Bujoreanu Development of shape memory and superelastic applications of some experimental alloys
Kumar et al. Thermomechanical characterization of high temperature SMA actuators
CN105483502A (en) Production method for spring wire
KR101783107B1 (en) Steel and stainless steel with two phase structure of austenite and martensite
Nam et al. Fabrication of Ti-Ni alloys for proportional control
Wu et al. Multi-strengthening effects on the martensitic transformation temperatures of TiNi shape memory alloys
US20230257857A1 (en) Precipitation-strengthened shape memory alloys, designing methods and applications of same
KR101336922B1 (en) Method to produce submicrocrystalline shape memory alloy through thermo-mechanical processing in martensite region
Winter et al. On the effect of incremental forming on alpha phase precipitation and mechanical behavior of beta-Ti-10V-2Fe-3Al
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JPH059686A (en) Production of shape memory niti alloy
Wang et al. Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131231

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160217

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170220

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee