JPS60200565A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60200565A
JPS60200565A JP59056021A JP5602184A JPS60200565A JP S60200565 A JPS60200565 A JP S60200565A JP 59056021 A JP59056021 A JP 59056021A JP 5602184 A JP5602184 A JP 5602184A JP S60200565 A JPS60200565 A JP S60200565A
Authority
JP
Japan
Prior art keywords
groove
capacitor
capacitors
film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59056021A
Other languages
Japanese (ja)
Other versions
JPH07123158B2 (en
Inventor
Mitsumasa Koyanagi
光正 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59056021A priority Critical patent/JPH07123158B2/en
Publication of JPS60200565A publication Critical patent/JPS60200565A/en
Publication of JPH07123158B2 publication Critical patent/JPH07123158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To improve the integration of a memory cell by forming a groove type capacitor in a groove formed with an insulating film on the inner surface, and forming the entire groove as a groove type isolation for separating between elements, thereby preventing a leakage current between adjacent capacitors to prevent a signal charge from erasing. CONSTITUTION:Capacitors 11 formed in groove shape are in an insulated state from a semiconductor substrate 12 via an insulating film 14 formed on the inner surface of a groove, and the film 14 is also formed between adjacent capacitors 11 and 11. Thus, a punch-through between the capacitors 11 and 11 can be effectively prevented, and no signal charge is erased. Accordingly, an interval between the capacitors 11 and 11 can be reduced to decrease the occupying area of the capacitors. On the other hand, grooves 13 operate as groove type isolation via the film 14 of the inner surface and also operate as an insulator separation between MOSFETs 10. Accordingly, as the occupying area of the capacitors is reduced, the entire memory cell M-CEL can be highly integrated.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は溝型容量を情報蓄積部として構成した半導体記
憶装置に好適な半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a semiconductor device suitable for a semiconductor memory device in which a trench type capacitor is configured as an information storage section.

〔背景技術〕[Background technology]

近年の半導体記憶装置は記憶容量の増大の要求に伴なっ
て記憶素子(メモリセル)の微細化が促進され、素子の
高集積化が図られている。例えば、情報蓄積部としての
容量(キャパシタ)と、MO8型電界効果トランジスタ
(MOSFET)を含んでなる記憶装置においても例外
ではなく、特に占有面積が大きなものとされているキャ
パシタの微細化が試みられている。特公昭58−127
39号に記載の半導体記憶装置は、このような要求に対
応したものであり、キャパシタを溝型に形成してその占
有面積の低減を図っている。
2. Description of the Related Art In recent years, with the demand for increased storage capacity of semiconductor memory devices, miniaturization of memory elements (memory cells) has been promoted, and higher integration of elements has been achieved. For example, storage devices that include a capacitor as an information storage unit and an MO8 field effect transistor (MOSFET) are no exception, and attempts have been made to miniaturize capacitors, which occupy a particularly large area. ing. Special Public Service 1977-127
The semiconductor memory device described in No. 39 is in response to such requirements, and the capacitor is formed in a groove shape to reduce the area occupied by the capacitor.

即ち、この装置は、第1図に示すように半導体基板1の
主表面から基板内部へ向けて溝(細孔)2を形成し、こ
の溝20表面上に積層して形成した絶縁膜3と容量電極
4とでキャパシタ5を構成したものである。そして、こ
の例では、キャパシタ5に隣接したMO8FET6とで
1素子型のD−RAM(ダイナミンクRA]’v、I)
を構成し、キャパシタ5を情報蓄積部としている。した
がって、この記憶装置によれば、それまでの平面型キャ
パシタと同一容量であればその占有面積を少なくとも従
来の1150に縮小でき、この結果50倍以上の集積度
を実現することができる。
That is, in this device, as shown in FIG. 1, a groove (pore) 2 is formed from the main surface of a semiconductor substrate 1 toward the inside of the substrate, and an insulating film 3 is laminated and formed on the surface of this groove 20. A capacitor 5 is constituted by the capacitive electrode 4. In this example, the MO8FET6 adjacent to the capacitor 5 is used to create a one-element D-RAM (dynamink RA)'v, I).
The capacitor 5 is used as an information storage section. Therefore, according to this storage device, if the capacity is the same as that of a conventional planar capacitor, its occupied area can be reduced to at least 1,150 pixels compared to the conventional planar capacitor, and as a result, the degree of integration can be increased by more than 50 times.

しかしながら、本発明者が前記D−RAMについて種々
の検討を行なったところ、隣接するメモリセル%j −
CE L間の間隔を小さくして集積度を一層増太させよ
うとすると、夫々のキャパシタ5,5の空乏層が近接さ
れ、両キャパシタ間に所謂パンチスルー現象が生じてリ
ーク電流Xが発生し、キャパシタ5.5内に蓄積した信
号電荷(情報)が消失してしまうという問題の生ずるこ
とが判明した。
However, when the present inventor conducted various studies on the D-RAM, it was found that adjacent memory cells %j −
If an attempt is made to further increase the degree of integration by reducing the distance between the CE Ls, the depletion layers of the capacitors 5, 5 will be brought closer together, and a so-called punch-through phenomenon will occur between the two capacitors, causing a leakage current X. It has been found that a problem arises in that the signal charge (information) accumulated in the capacitor 5.5 is lost.

これを防止するためには、両キャパシタ5,5間の間隔
を大きくしなければならず、これでは集積度の向上に制
限を受け、溝型に構成した意味が薄〔発明の目的〕 本発明の目的は隣接するキャパシタ間におけるリーク電
流な防止して信号電荷の消失を防止し、これにより溝型
キャパシタを有するメモリセル間の間隔の低減化を図り
、よってメモリセルの集積度の向上を達成することので
きる記憶装置に好適な半導体装置を提供することにある
In order to prevent this, it is necessary to increase the distance between the two capacitors 5, 5, which limits the improvement in the degree of integration and makes the trench-shaped structure less meaningful. [Object of the Invention] The present invention The purpose of this is to prevent leakage current between adjacent capacitors and prevent loss of signal charge, thereby reducing the spacing between memory cells with trench capacitors, thereby achieving an increase in the density of memory cells. It is an object of the present invention to provide a semiconductor device suitable for a storage device that can be used as a storage device.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本例a書の記述2よび添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
This will become clear from Description 2 of Example A and the attached drawings.

〔発明のg!、要〕[G of invention! , essential]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、溝型キャパシタは半導体基板とは絶縁された
溝内に絶縁膜を挾んで一対の導電膜を形成することによ
り構成するものであり、これにより隣接するキャパシタ
間におけるバンチスルーを防止して信号電荷の消失を防
止でき、合わせてこの溝を素子間分離領域として構成す
ることにより、各キャパシタ間の近接配置を可能とし、
これにより素子の集積度の向上を達成するものである。
In other words, a trench capacitor is constructed by forming a pair of conductive films with an insulating film sandwiched in a trench that is insulated from the semiconductor substrate. Dissipation of charge can be prevented, and by configuring this groove as an isolation region between elements, it is possible to arrange each capacitor in close proximity.
This achieves an improvement in the degree of device integration.

〔実施例〕〔Example〕

第2図および第3図は本発明を1素子型のD−RAMに
適用した実施例であり、第2図は平面レイアウト図、第
3図(5)、CB+は第2図のAA、BB線断面図であ
る。これらの図において、10はMOSFES、11は
キャパシタであり、図の鎖線Cで示す平面領域が各1個
のMO8FFJTIOとキャパシタ11とで1単位のメ
モリセルM−CELを構成している。
2 and 3 show an embodiment in which the present invention is applied to a one-element type D-RAM. FIG. 2 is a plan layout diagram, FIG. 3 (5), and CB+ are AA and BB in FIG. FIG. In these figures, 10 is a MOSFES, 11 is a capacitor, and the planar area shown by the chain line C in the figures each includes one MO8FFJTIO and the capacitor 11, and constitutes one unit of memory cell M-CEL.

即ち、半導体基板12の主面上には平面コ字状の溝13
を交互にかつ対向するように配置形成し、各溝13はそ
の内面ないし境界面に形成した絶縁膜(シリコン酸化膜
)14によって互に絶縁状態を保っている。そして、こ
の溝13内には第1導電膜としてのポリシリコン膜15
を形成し、かつその上面に絶縁膜(誘電膜)としてのシ
リコン酸化膜16を形成し、更にその上層に第2導電膜
(導電体)としてのポリシリコン17を溝13内に充填
し、これにより所謂溝型のキャパシタ11を構成してい
る。
That is, a planar U-shaped groove 13 is formed on the main surface of the semiconductor substrate 12.
The grooves 13 are arranged alternately and facing each other, and each groove 13 is kept insulated from each other by an insulating film (silicon oxide film) 14 formed on its inner surface or boundary surface. In this groove 13, a polysilicon film 15 as a first conductive film is provided.
A silicon oxide film 16 is formed as an insulating film (dielectric film) on the top surface of the silicon oxide film 16, and polysilicon 17 as a second conductive film (conductor) is filled in the groove 13 on top of the silicon oxide film 16. This constitutes a so-called groove-type capacitor 11.

一方、前記溝13の内面に設けた絶縁膜14で包囲され
た長方形状の領域18上にはシリコン酸化膜からなるゲ
ート絶縁膜19を形成し、その上を図示縦方向に延設し
たワード線20をゲート電極として配設している。そし
て、前記領域18の主面には不純物をドーグさせたソー
ス−ドレイン領域21を形成し、これらソース・ドレイ
ン領域21と前記ゲート電極(ワード線20)とで領域
18内に各2個のMO8FETIOを形成している。
On the other hand, a gate insulating film 19 made of a silicon oxide film is formed on a rectangular region 18 surrounded by an insulating film 14 provided on the inner surface of the groove 13, and a word line extending in the vertical direction in the figure is formed on the gate insulating film 19. 20 is provided as a gate electrode. Then, source-drain regions 21 doped with impurities are formed on the main surface of the region 18, and these source-drain regions 21 and the gate electrode (word line 20) form two MO8FETIOs in each region 18. is formed.

そして、前記第1導電膜15とソース・ドレイン領域2
1の一方とはコンタクト22を介して接続し、第2導電
膜17は夫々のキャパシタ11において導通させてGN
Dに接続する。更に、MO8FETIOおよびキャパシ
タ11上の全面にわたって設けたPSG等の層間絶縁膜
23上には図示横方向に延設したAA膜からなるデータ
[24を設げ、コンタクト25を介して前記ソース・ド
レイン領域2】の他方に接続している。
Then, the first conductive film 15 and the source/drain region 2
1 through a contact 22, and the second conductive film 17 is made conductive in each capacitor 11 to connect to GN.
Connect to D. Further, on an interlayer insulating film 23 such as PSG, which is provided over the entire surface of the MO8FETIO and the capacitor 11, a data layer [24] made of an AA film is provided which extends in the lateral direction shown in the drawing, and is connected to the source/drain region via a contact 25. 2] is connected to the other side.

次に以上の構成のメモリセルM−CELの特にキャパシ
タ11の製造方法を第4図囚〜(Flにより説明する。
Next, a method of manufacturing the memory cell M-CEL having the above structure, particularly the capacitor 11, will be explained with reference to FIGS.

なお、これらの図は第3図(5)の断面に相当する。Note that these figures correspond to the cross section of FIG. 3 (5).

先ず、第4図囚のように、キャパシタ形成付買上の半導
体基板12の主面上にシリコン酸化膜26をパターニン
グしたマスクを形成しかつこれをドライエツチングする
ことKより所要深さの溝13.13を近接配置形成する
。図中、27はシリコン窒化膜。そして、この状態で熱
酸化を行なうことにより溝13.13の各内面および両
溝の隔壁部13aに夫々シリコン酸化膜からなる絶縁膜
14を同図刊のように形成する。
First, as shown in FIG. 4, a mask patterned with a silicon oxide film 26 is formed on the main surface of the semiconductor substrate 12 with which a capacitor is to be formed, and this is dry-etched to form a trench 13. of a required depth. 13 are formed in close proximity. In the figure, 27 is a silicon nitride film. Then, by performing thermal oxidation in this state, an insulating film 14 made of a silicon oxide film is formed on each inner surface of the trenches 13 and 13 and on the partition wall portions 13a of both trenches, as shown in the figure.

次いで、同図(Oのようにマスクとしてのシリコン酸化
11K 26とシリコン窒化膜27を除去した後、基板
]2の表面に酸化膜2Bを形成しCVD法によって全面
に第1導電膜15としてのポリシリコン膜を形成し1、
更にその上に絶縁膜16としてのシリコン酸化膜を形成
する。更に、CVD法により全面に第2導電膜17とし
てのポリシリコンを堆積して前記溝13.13内に充填
し、その後これをエンチバックすることによりキャパシ
タ11゜11が構成できる。この第1導電膜15の形成
に先立って、後述するコンタクト22部位の酸化膜28
にコンタクト用の孔22aを形成しておく。
Next, in the same figure (after removing the silicon oxide 11K 26 as a mask and the silicon nitride film 27 as shown in O), an oxide film 2B is formed on the surface of the substrate 2, and a first conductive film 15 is formed on the entire surface by CVD. Forming a polysilicon film 1,
Furthermore, a silicon oxide film as an insulating film 16 is formed thereon. Further, by depositing polysilicon as a second conductive film 17 on the entire surface by CVD and filling the grooves 13.13, and then etching back this, a capacitor 11.11 can be constructed. Prior to the formation of the first conductive film 15, an oxide film 28 at the contact 22 portion, which will be described later, is
A contact hole 22a is formed in the hole 22a.

しかる上で、同図の)のようにマスク29を形成し、そ
の後ドライエツチングを行なって均一厚さの膜除去を行
なえば、同図に)のよう眞隣合うキャパシタ11.11
の各第1導を膜15,15を切離すことができる。そし
て、第2導電膜17の一部となるポリシリコンを堆積し
これをパターニングする。この透失々の領域18.18
上にその一部がコンタクト22.22とし7て張り出さ
れることになる第1導電膜15,1.5は第2導電膜パ
ターンをマスクとして自己整合的に形成され、同図fF
lのようにキャパシタ11.11が完成される。
Then, if a mask 29 is formed as shown in ) in the same figure, and then dry etching is performed to remove the film to a uniform thickness, directly adjacent capacitors 11 and 11 can be formed as shown in ) in the same figure.
The membranes 15, 15 can be separated from each other. Then, polysilicon that will become a part of the second conductive film 17 is deposited and patterned. This area of failure 18.18
The first conductive films 15, 1.5, a part of which will be extended as contacts 22.22 and 7, are formed in a self-aligned manner using the second conductive film pattern as a mask, as shown in FIG.
A capacitor 11.11 is completed as shown in FIG.

続いて表面酸化を行うことによりキャパシタ上の酸化膜
とゲート酸化膜19が同時に形成できる。
Subsequently, by performing surface oxidation, the oxide film on the capacitor and the gate oxide film 19 can be formed simultaneously.

その後ポリシリコンの堆積および選択エツチングにより
ゲート電極、つまりワード線2oを形成することができ
る。
Thereafter, a gate electrode, or word line 2o, can be formed by polysilicon deposition and selective etching.

以下、常法によりMO8FETIOを形成しかつデータ
線24を形成することにより、第2図、第3図のD−R
AMを完成することができる。
Hereinafter, by forming MO8FETIO and data line 24 by a conventional method, D-R in FIGS.
AM can be completed.

以上の構成によれば、溝型に構成したキャパシタ11は
溝内面に設けた絶縁膜14によって半導体基板12とは
全く絶縁された状態とされており、しかも隣合ったキャ
パシタ11.11間にも絶縁[14が存在されているた
め、キャパシタ11゜]1相互間でのパンチスルーは確
実に防止することができ、信号電荷が消失されることは
ない。したがって、キャパシタ11,11の間隔を小さ
くすることが可能となりキャパシタの占有面積を低減で
きる。一方、キャパシタ上1を構成する溝13は内面の
絶縁膜】4によって所謂溝型アイソレーションとして機
能でき、MO8FET]0間の絶縁分離としても作用す
る。′これにより、各MO8FETIO間における相互
干渉を防止でき、結局前述のキャパシタの占有面積の低
減と相俟ってメモリセルM−CEL全体としての高集積
化を達成することができる。
According to the above configuration, the trench-shaped capacitor 11 is completely insulated from the semiconductor substrate 12 by the insulating film 14 provided on the inner surface of the trench, and moreover, the capacitor 11 is completely insulated from the semiconductor substrate 12 by the insulating film 14 provided on the inner surface of the trench. Since the insulation [14] exists, punch-through between the capacitors 11[deg.] 1 can be reliably prevented, and signal charges will not be lost. Therefore, it is possible to reduce the distance between the capacitors 11, 11, and the area occupied by the capacitors can be reduced. On the other hand, the groove 13 constituting the upper capacitor 1 can function as so-called groove type isolation by the insulating film 4 on the inner surface, and also acts as insulation between the MO8FETs 0. 'This makes it possible to prevent mutual interference between the MO8FETIOs, and in combination with the aforementioned reduction in the area occupied by the capacitor, it is possible to achieve high integration of the memory cell M-CEL as a whole.

〔効果〕〔effect〕

(11キャパシタを溝型に形成しかっこの溝の内面に絶
縁膜を形成してキャパシタと半導体基板との絶縁を図っ
ているので、キャパシタを夫々近接配置してモハンチス
ルー現象が生じろことはなく、信号電荷の消失を防止し
てキャパシタの集積度を向上できる。
(11 The capacitor is formed in a groove shape. An insulating film is formed on the inner surface of the groove to insulate the capacitor from the semiconductor substrate. Therefore, if the capacitors are placed close to each other, there will be no Mohanchi through phenomenon. The degree of integration of capacitors can be improved by preventing the loss of charge.

(2)キャパシタを構成する溝内面に絶縁膜を形成シテ
イルので、溝自身を溝型アイソレーションとして構成で
き、その素子間分離領域の間隔の低減下と共に素子、%
KMO8FBT間の相互間隔の低減および相互干渉の防
止が実現できる。
(2) Since an insulating film is formed on the inner surface of the groove constituting the capacitor, the groove itself can be configured as a groove-type isolation, and as well as reducing the spacing between the element isolation regions, the element
It is possible to reduce the mutual spacing between KMO8FBTs and prevent mutual interference.

(3)前記(1)、f21に、l:す、キャパシタおよ
びMOSFETの各間隔の低減を可能とし、D−RAM
としての集積度を向上できる。
(3) In (1) above, it is possible to reduce the distance between the capacitor and MOSFET in f21, and the D-RAM
The degree of integration can be improved.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。たとえば、D−RAM
を構成するMOSFETとキャパシタの平面レイアウト
は図示のものに限られず他の構成であってもよく、これ
に応じてデータ線やワード線の配列も適宜に変更するこ
とができる。また、キャパシタを構成する第1、第2導
電膜や絶縁膜の材質には他のものを用いてもよい。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, D-RAM
The planar layout of the MOSFETs and capacitors constituting the device is not limited to that shown in the drawings, but may have other configurations, and the arrangement of the data lines and word lines can be changed accordingly. Furthermore, other materials may be used for the first and second conductive films and insulating films that constitute the capacitor.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である1素子型のD−RA
Mメモリセルに適用した場合について説明したが他のD
−RAMやスタチックRAM等のメモリセルはもちろん
のこと、MOSFETやキャパシタを使用する回路素子
であれば、全て同様に適用することができる。
The above explanation will mainly focus on the one-element type D-RA, which is the field of application that was the background of the invention made by the present inventor.
Although we have explained the case where it is applied to M memory cells, other D
- Not only memory cells such as RAM and static RAM, but also any circuit element using MOSFET or capacitor can be similarly applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来構造の断面図、 第2図は本発明の一実施例の平面レイアウト図、第3図
囚、(Blは夫々第2図AA、BB縁の拡大断面図、 第4図A〜「)は製造方法の一部の工程断面Mである。 10・・・MOSFET、11・・・キャパシタ、12
・・・半導体基板、13・・・溝、14・・・絶縁膜、
15・・・第1導電膜、16・・・絶縁膜、17・・・
第2導電膜、19・・・ゲート酸化膜、20・・・ワー
ド線(ゲート電極)、22・・・コンタクト、24・・
・データ線、25・・・コンタクト、26・・・シリコ
ン酸化膜、27・・・シリコン窒化膜、29・・・マス
ク、M−CEL・・・メモリセル。 第 1 図 第 2 図 Zθ 2σ / リノ (、〕、、−5、l 、++っ /ン) L、1
35、81、 77 777ノ)(″ 一一一一11− I −IT−m−−1コー113+ 
+、−滉−」よ 111S 1−1−1−IB亡 If l + 11(11、 ゛(、−+−゛・、S′、−、パ、゛、゛1誦〜1−−
LL−I I −I」J−−に一、、L、−リ11止是
シC: + I22’ ” 1]1 1 l’47(II + ・7・ 1、 1、〜 、、−J 、 −・ 2 −7
)ゝゝゝ +)ど〆″′。 “ ′ −一部 ・ ・: ・1 −− ”−“ ・ −士へ一!A:ユ7 ” ・: 区
−一 1.− = − 第 3 図 (A) 1 (13)
Fig. 1 is a sectional view of a conventional structure, Fig. 2 is a plan layout of an embodiment of the present invention, Fig. 3 (Bl is an enlarged sectional view of edges AA and BB in Fig. 2, respectively), Fig. 4 A ~") is a partial process cross section M of the manufacturing method. 10... MOSFET, 11... Capacitor, 12
... Semiconductor substrate, 13... Groove, 14... Insulating film,
15... First conductive film, 16... Insulating film, 17...
Second conductive film, 19... Gate oxide film, 20... Word line (gate electrode), 22... Contact, 24...
- Data line, 25... Contact, 26... Silicon oxide film, 27... Silicon nitride film, 29... Mask, M-CEL... Memory cell. Figure 1 Figure 2 Zθ 2σ / Reno (, ], -5, l, ++ /n) L, 1
35, 81, 77 777ノ)
+, -滉-'' 111S 1-1-1-IB death If l + 11 (11, ゛(,-+-゛・,S',-, Pa, ゛, ゛1 recitation~1--
LL -II -i "J-" 1, L, -Li 11 Dust C: + I22 '"1] 1 1 L'47 (II + 7.1, 1,, ... , -・2-7
)ゝゝゝ +)Do〆″′. A: Yu7” ・: Ward-1 1.- = − Figure 3 (A) 1 (13)

Claims (1)

【特許請求の範囲】 1、半導体基板上に溝型のキャパシタを形成してなる半
導体装置において、前記キャパシタはその内面に絶縁膜
を形成した溝内に前記半導体基板とは絶縁状態を保って
形成し、かつこの溝全体を素子間分離用の溝型アイソレ
ーションとして構成したことを特徴とする半導体装置。 2、キャパシタは溝内面の絶縁膜上に形成した第1導電
膜と、その上に形成した絶縁膜と、その上に形成した第
2導電膜とで構成してなる特許請求の範囲第1項記載の
半導体装置。 3、キャパシタに隣設した半導体基板上にMOSFET
を形成し、このMOSFETとキャパシタとで1素子型
のメモリセルを構成してなる特許請求の範囲第1項又は
第2項記載の半導体装置。 4、MO8FET相互間に溝型キャパシタをアイソレー
ションとして配設してなる特許請求の範囲第3項記載の
半導体装置。
[Claims] 1. In a semiconductor device in which a groove-type capacitor is formed on a semiconductor substrate, the capacitor is formed in a groove having an insulating film formed on the inner surface thereof while maintaining an insulated state from the semiconductor substrate. A semiconductor device characterized in that the entire groove is configured as a groove-type isolation for separating elements. 2. Claim 1, wherein the capacitor is constituted by a first conductive film formed on an insulating film on the inner surface of the groove, an insulating film formed thereon, and a second conductive film formed thereon. The semiconductor device described. 3. MOSFET on the semiconductor substrate next to the capacitor
3. The semiconductor device according to claim 1, wherein the MOSFET and the capacitor constitute a one-element type memory cell. 4. The semiconductor device according to claim 3, wherein a trench capacitor is provided between the MO8FETs for isolation.
JP59056021A 1984-03-26 1984-03-26 Method for manufacturing semiconductor device Expired - Lifetime JPH07123158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59056021A JPH07123158B2 (en) 1984-03-26 1984-03-26 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59056021A JPH07123158B2 (en) 1984-03-26 1984-03-26 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60200565A true JPS60200565A (en) 1985-10-11
JPH07123158B2 JPH07123158B2 (en) 1995-12-25

Family

ID=13015405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59056021A Expired - Lifetime JPH07123158B2 (en) 1984-03-26 1984-03-26 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH07123158B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167954A (en) * 1984-09-11 1986-04-08 Fujitsu Ltd Semiconductor memory device and manufacture thereof
WO2020025995A1 (en) * 2018-08-01 2020-02-06 日産自動車株式会社 Semiconductor device, power module, and manufacturing method for semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583260A (en) * 1981-06-29 1983-01-10 Fujitsu Ltd Vertical type buried capacitor
JPS60113460A (en) * 1983-11-25 1985-06-19 Oki Electric Ind Co Ltd Dynamic memory element
JPS60113461A (en) * 1983-11-25 1985-06-19 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583260A (en) * 1981-06-29 1983-01-10 Fujitsu Ltd Vertical type buried capacitor
JPS60113460A (en) * 1983-11-25 1985-06-19 Oki Electric Ind Co Ltd Dynamic memory element
JPS60113461A (en) * 1983-11-25 1985-06-19 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167954A (en) * 1984-09-11 1986-04-08 Fujitsu Ltd Semiconductor memory device and manufacture thereof
WO2020025995A1 (en) * 2018-08-01 2020-02-06 日産自動車株式会社 Semiconductor device, power module, and manufacturing method for semiconductor device
US11664466B2 (en) 2018-08-01 2023-05-30 Nissan Motor Co., Ltd. Semiconductor device, power module and method for manufacturing the semiconductor device

Also Published As

Publication number Publication date
JPH07123158B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
KR100225545B1 (en) Semiconductor memory device and fabricating method thereof
JPH04283963A (en) Dynamic ram and manufacture thereof
JP3270250B2 (en) Semiconductor memory device and method of manufacturing the same
JP2001185704A (en) Dram cell array and method of manufacturing it
JPH1187532A (en) Dram cell device and manufacture thereof
JPS63281457A (en) Semiconductor memory
US5096847A (en) Method making an ultra high density dram cell with stacked capacitor
JPS6384149A (en) Manufacture of semiconductor memory
JPS60200565A (en) Semiconductor device
JP3075919B2 (en) Semiconductor memory device and method of manufacturing the same
JP2739965B2 (en) Semiconductor memory device and method of manufacturing the same
US11930631B2 (en) Semiconductor memory device and method of fabricating the same
KR20090111050A (en) Semiconductor device and method of manufacturing the same
JPH04307968A (en) Semiconductor memory cell and method for manufacture therefor
JP3252272B2 (en) Electronic device or device or random access memory and method of manufacturing the same.
JPH03257859A (en) Semiconductor device and manufacture thereof
JPS61234067A (en) High density dram cell
JP2890716B2 (en) Semiconductor device manufacturing method
JP2002009183A (en) Semiconductor storage device and its manufacturing method
JP3120633B2 (en) Semiconductor memory device and manufacturing method thereof
JPS62145864A (en) Memory cell structure for dynamic semiconductor memory and manufacture thereof
JP2913750B2 (en) Semiconductor memory integrated circuit device and method of manufacturing the same
JP3374837B2 (en) Manufacturing method of stacked capacitor type DRAM
JPH04267558A (en) Semiconductor device
KR100233560B1 (en) Dram device and its fabricating method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term