JPS60198325A - Intake device for engine - Google Patents

Intake device for engine

Info

Publication number
JPS60198325A
JPS60198325A JP59040682A JP4068284A JPS60198325A JP S60198325 A JPS60198325 A JP S60198325A JP 59040682 A JP59040682 A JP 59040682A JP 4068284 A JP4068284 A JP 4068284A JP S60198325 A JPS60198325 A JP S60198325A
Authority
JP
Japan
Prior art keywords
engine
intake air
surge tank
load
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59040682A
Other languages
Japanese (ja)
Other versions
JPH0440534B2 (en
Inventor
Taisuke Okazaki
岡崎 泰輔
Yutaka Oizumi
豊 大泉
Masashi Kozuki
上月 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59040682A priority Critical patent/JPS60198325A/en
Publication of JPS60198325A publication Critical patent/JPS60198325A/en
Publication of JPH0440534B2 publication Critical patent/JPH0440534B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/021Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To reduce the deterioration of engine output and the vibration by communicating a surge tank through two communication paths and opening a changeover valve provided in one communication path continuously under such operating region where the engine load is lower than setting level. CONSTITUTION:Under operation of engine, the outputs from a rotation sensor 14 and a negative pressure 15 are fed to a control circuit 16. The control circuit 16 will read out an open or close signal from a changeover control map thus to open/close the changeover valve 12 through an actuator 13. Here, said valve 12 is closed under heavy load low rotation region of engine, for example, to produce the primary resonance of the intake air in a surge tank 1 with inherent primary frequency to be determined by the shape of first communication path 9 thus to perform highly efficient resonance supercharge to each cylinder through each suction manifold 5a-5f. Said valve 12 is opened continuously under low load region to feed the intake air between each chamber 3, 4 of surge tank 1 through second communication path 10 thus to feed same volume of intake air to each cylinder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エンジンの吸気装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an intake system for an engine.

〔従来技術〕[Prior art]

−aにエンジンの吸気装置は、エンジンに吸気を効率よ
く供給しようとするものである。ところでエンジンに対
する吸気の供給方式としては、従来より種々の方式があ
るが、その1例として、吸気通路の形状等によって決ま
る固有振動数でもって吸気が共振して吸気の圧力変動が
生じることから、この現象を利用して吸気をその動的効
果によって効率よく気筒内に押し込み、充虜効率を向上
させるようにしたものである。
-a The engine intake system is intended to efficiently supply intake air to the engine. By the way, there have been various methods for supplying intake air to the engine. One example is that the intake air resonates at a natural frequency determined by the shape of the intake passage, causing pressure fluctuations in the intake air. This phenomenon is utilized to efficiently push intake air into the cylinder due to its dynamic effect, thereby improving the filling efficiency.

そして上述の動的効果のなかの共鳴効果によって過給す
る共鳴過給方式を採用したエンジンの吸気装置として、
従来、特開昭56−115818号公報に示されるよう
に、点火順序の連続しない気筒群毎にサージタンクを設
けるとともに、該サージタンク間を各々連通する第1.
第2連通路を設け、該第1.第2連通路の通路長さ及び
断面積をそれぞれ設定回転以下、設定回転以上の領域で
吸気の共振が得られるように設定し、第2連通路内に設
けられた切換弁をエンジン回転数が設定値以下か以上か
に応じて開閉して、エンジンの広い回転域で共鳴過給を
行なうようにしたものがあった。
As an intake system for an engine that employs the resonance supercharging method, which uses the resonance effect among the above-mentioned dynamic effects,
Conventionally, as shown in Japanese Unexamined Patent Publication No. 56-115818, a surge tank is provided for each cylinder group in which the ignition order is not consecutive, and a first tank is provided for communicating between the surge tanks.
A second communication path is provided, and the first communication path is provided. The passage length and cross-sectional area of the second communication passage are set so that resonance of the intake air is obtained in the ranges below the set rotation speed and above the set rotation speed, respectively, and the switching valve provided in the second communication passage is set so that the engine speed increases. There was one that opened and closed depending on whether the value was below or above a set value, and resonant supercharging was performed over a wide range of engine speeds.

しかしながら従来の吸気装置では、単にエンジンの全運
転域において共鳴過給を行なうようにしており、エンジ
ンの低負荷時にはエンジン出力がそれほど大き(なく、
吸気の共振を得るために生ずるポンピングロスがエンジ
ン出力に比して大きいことから、エンジンの出力低下が
顕著になるという問題があった。また吸気通路の形状等
に起因して各気筒群への吸気分配にばらつきがあると、
気筒群間の出力差に起因するエンジンのトルク変動が顕
著となり、不快なエンジン振動が増大するおそれがあり
、これは特に吸入空気量の少ないエンジンの低負荷時に
おいて顕著であった。
However, conventional intake systems simply perform resonance supercharging over the entire operating range of the engine, and when the engine is under low load, the engine output is not as high (and
There has been a problem in that the pumping loss that occurs to obtain resonance of the intake air is large compared to the engine output, resulting in a noticeable drop in the engine output. Also, if there are variations in intake air distribution to each cylinder group due to the shape of the intake passage, etc.
Engine torque fluctuations due to differences in output between cylinder groups become noticeable, potentially increasing unpleasant engine vibrations, and this is particularly noticeable when the engine is under low load with a small amount of intake air.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる問題点に鑑み、エンジンの出力低下
を軽減でき、しかも吸気分配のばらつきに起因するエン
ジン振動の発生を低減したエンジンの吸気装置を提供せ
んとするものである。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide an engine intake system that can reduce the reduction in engine output and also reduce the occurrence of engine vibrations caused by variations in intake air distribution.

〔発明の構成〕 そこでこの発明は、エンジンの吸気装置において、サー
ジタンクを第1.第2の連通路によって連通ずるととも
に、第2の連通路に切換弁を設け、第1連通路の形状等
を所定の回転域で吸気の共振が得られるようにする一方
、第2連通路はサージタンク間を連通ずるものとし、エ
ンジンの負荷状態を検出し、負荷が設定値以下のときは
上記切換弁を富時開くようにしたもので、これにより低
負荷時における吸気の共鳴過給を停止するとともに、サ
ージタンク間で第2連通路を介して吸気の供給を行なっ
て、各サージタンク内の吸気量を均一にするようにした
ものである。
[Structure of the Invention] Therefore, the present invention provides an engine intake system in which a surge tank is connected to the first surge tank. A switching valve is provided in the second communication passage, and the shape of the first communication passage is designed so that resonance of intake air can be obtained in a predetermined rotation range, while the second communication passage is The system communicates between the surge tanks and detects the load condition of the engine, and when the load is below a set value, the switching valve is opened when the load is lower than the set value. At the same time, the intake air is supplied between the surge tanks through the second communication passage, thereby making the amount of intake air in each surge tank uniform.

〔実施例〕〔Example〕

以下、本発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図ないし第4図は本発明の一実施例によるエンジン
の吸気装置を示す。図において、1はサージタンクで、
該サージタンク1は隔壁2によって第1室3と第2室4
とに画成されている。上記第1室3の底面には点火順序
の連続しない第1゜第3.第5の各気筒に延びる吸気マ
ニホールド5a、5b、5cの上流端が接続され、上記
第2室4の底面にはこれも点火順序の連続しない第2゜
第4.第6の各気筒に延びる吸気マニホールド5d、5
e、5fの上流端が接続されている。ここでエンジンは
第1.第2.第3.第4.第5.第6気筒の点火順序で
クランク角度120°毎に点火されるものとする。
1 to 4 show an engine intake system according to an embodiment of the present invention. In the figure, 1 is a surge tank,
The surge tank 1 is divided into a first chamber 3 and a second chamber 4 by a partition wall 2.
It is defined as On the bottom of the first chamber 3, there are 1st, 3rd, and 3rd cylinders with discontinuous ignition order. The upstream ends of intake manifolds 5a, 5b, and 5c extending to each of the fifth cylinders are connected to the bottom of the second chamber 4, and the second, fourth, and fourth cylinders, which also have non-consecutive ignition orders, are connected to the upstream ends of intake manifolds 5a, 5b, and 5c extending to each of the fifth cylinders. Intake manifolds 5d, 5 extending to each sixth cylinder
The upstream ends of e and 5f are connected. Here, the engine is the first. Second. Third. 4th. Fifth. It is assumed that the 6th cylinder is ignited at every 120° crank angle in the ignition order.

また上記サージタンク1の側面には吸気管6の下流端が
接続されている。この吸気管6の下流端部は2つの吸気
通路7.8に形成され、該両吸気通路7.8は各々サー
ジタンク1の第1室3及び第2室4に接続されており、
該両吸気通路7.8はサージタンク1の第1室3と第2
室4とを連通ずる第1連通路9となっている。この第1
連通路9の通路長さLl及び通路断面積S1はエンジン
回転数2700rpm以下の低回転域、及び5200r
pm以上の高回転域にて気体の共振が得られるような長
さ及び断面積に設定されている。また上記両吸気通路7
,8にはそれぞれスロットル弁11a、1ibが配設さ
れている。
Further, a downstream end of an intake pipe 6 is connected to a side surface of the surge tank 1. The downstream end of this intake pipe 6 is formed into two intake passages 7.8, which are connected to the first chamber 3 and the second chamber 4 of the surge tank 1, respectively.
Both intake passages 7.8 are connected to the first chamber 3 and the second chamber of the surge tank 1.
A first communication path 9 communicates with the chamber 4. This first
The passage length Ll and passage cross-sectional area S1 of the communication passage 9 are set in a low engine rotation range of 2700 rpm or less, and 5200 rpm.
The length and cross-sectional area are set such that gas resonance can be obtained in a high rotation range of pm or higher. In addition, both the intake passages 7
, 8 are respectively provided with throttle valves 11a and 1ib.

また上記隔壁2には開口10が開設され、該開口IOは
上記第1連通路9と並列にサージタンク■の第1室3と
第2室4とを連通ずる第2連通路となっており、該第2
連通路の通路長さく隔壁2の厚さ)L2及び通路断面積
(開口10の面積)S2はエンジン回転数が270or
pm以上テカツ5200rpm以下の中回転域にて気体
の共振が得られる長さ及び断面積に設定されている。ま
たこの開口10にはこれを開閉する切換弁12が設けら
れ、該切換弁12はアクチュエータ13によって開閉作
動されるようになっている。
Further, an opening 10 is formed in the partition wall 2, and the opening IO serves as a second communication passage that connects the first chamber 3 and the second chamber 4 of the surge tank (2) in parallel with the first communication passage 9. , the second
The passage length of the communication passage (the thickness of the partition wall 2) L2 and the passage cross-sectional area (area of the opening 10) S2 are determined when the engine rotation speed is 270 or
The length and cross-sectional area are set so that gas resonance can be obtained in a medium rotation range of 5200 rpm or more. Further, this opening 10 is provided with a switching valve 12 for opening and closing it, and the switching valve 12 is opened and closed by an actuator 13.

また図中、14はエンジン回転数を検出する回転数セン
サ、15はスロットル下流の吸気負圧を検出する負圧セ
ンサ(負荷セン号)、16はエンジン回転数と吸気負圧
とをパラメータとする切換弁制御マツプを有し、上記両
センサ14,15の出力を受けて開信号又は閉信号を読
み出し、それをアクチュエータ13に加える制御回路で
ある。
In the figure, 14 is a rotation speed sensor that detects the engine rotation speed, 15 is a negative pressure sensor (load sensor number) that detects the intake negative pressure downstream of the throttle, and 16 is the engine rotation speed and intake negative pressure as parameters. This is a control circuit that has a switching valve control map, receives the outputs of both the sensors 14 and 15, reads an open signal or a close signal, and applies it to the actuator 13.

ここで上記切換弁制御マツプには、第4図に示すように
、吸気負圧が設定値−100mmHg以下の低負荷時に
はエンジン回転数に関係なく全て開信号が格納され、又
吸気負圧が設定値−100mm1g以上の高負荷時には
エンジン回転数が270Orpm以下の低回転域、及び
5200rpm以上の高回転域において閉信号、エンジ
ン回転数が270Orpm以上で520Orpm以下の
中回転域において開信号が格納されている。
Here, as shown in Fig. 4, the switching valve control map stores all open signals regardless of the engine speed at low loads when the intake negative pressure is less than the set value -100 mmHg, and the intake negative pressure is set to When the load is high (value - 100mm 1g or more), a close signal is stored in the low rotation range where the engine rotation speed is 270 Orpm or less and a high rotation area of 5200 rpm or more, and an open signal is stored in the medium rotation range where the engine rotation speed is 270 Orpm or more and 520 Orpm or less. There is.

次に動作について説明する。Next, the operation will be explained.

エンジンが作動すると、回転数センサ14及び負圧セン
サ15の両出力は制御回路16に加えられ、該回路16
ではエンジンの負荷状態と回転状′態とに応じて切換制
御マツプ(第4図参照)から開信号又は閉信号が読み出
され、それがアクチュエータ13に加えられて切換弁1
2が開閉される。
When the engine is running, the outputs of both the rotational speed sensor 14 and the negative pressure sensor 15 are applied to the control circuit 16;
Then, an open signal or a close signal is read out from the switching control map (see Fig. 4) depending on the load state and rotational state of the engine, and this signal is applied to the actuator 13 to control the switching valve 1.
2 is opened and closed.

するとエンジンの高負荷低回転域においては、切換弁1
2は閉じて、サージタンク1内の吸気は第1連通路9の
形状等によって決まる1次固有振動数で1次共振し、各
気筒には効率よく共鳴過給が行なわれる。またエンジン
の高負荷中回転域においては、切換弁12は開き、サー
ジタンク1内の吸気は今度は第2連通路10の形状等に
よって決まる1次固有振動数で1次共振し、この場合も
各気筒には効率よく共鳴過給が行なわれることとなる。
Then, in the high load and low speed range of the engine, the switching valve 1
2 is closed, and the intake air in the surge tank 1 resonates first at a first natural frequency determined by the shape of the first communicating passage 9, etc., and each cylinder is efficiently resonantly supercharged. In addition, in the high-load and medium-speed range of the engine, the switching valve 12 opens, and the intake air in the surge tank 1 resonates first at the first natural frequency determined by the shape of the second communication passage 10. Resonant supercharging will be performed efficiently in each cylinder.

さらにエンジンの高負荷高回転域においては、低回転域
の場合と同様に、切換弁12は閉じるが、この場合の吸
気は上記第1連通路9の形状等によって決まる2次固有
振動数で2次共振するため、この場合も各気筒には効率
よ(共鳴過給が行なわれることとなる。
Furthermore, in the high-load, high-speed range of the engine, the switching valve 12 closes as in the low-speed range, but in this case, the intake air is 2 at the secondary natural frequency determined by the shape of the first communication passage 9, etc. Since next resonance occurs, in this case as well, efficient (resonant supercharging) is performed in each cylinder.

一方、エンジンの低負荷域においては、切換弁12は常
時開状態に保持されるため、サージタンク1の第1室3
と第2室4との間で第2連通路10を介して吸気の供給
が行なわれ、第1室3の圧力と第2室4の圧力とがほぼ
等しくなるため、各気筒にはほぼ等しい量の吸気が供給
されることとなる。
On the other hand, in the low engine load range, the switching valve 12 is always kept open, so the first chamber 3 of the surge tank 1
Intake air is supplied between the and second chamber 4 through the second communication passage 10, and the pressure in the first chamber 3 and the pressure in the second chamber 4 are approximately equal, so each cylinder has approximately the same pressure. This results in a large amount of intake air being supplied.

以上のような本実施例の装置では、吸気の2次共振を利
用してエンジン高回転域における共鳴過給を行なうよう
にしたので、従来装置に比して何ら構造を複雑にするこ
となくより広い回転域で共鳴過給を実現でき、その結果
第5図の実線aで示すようにエンジン出力、特に高回転
域におけるエンジン出力を向上できる。なお第5図にお
いて、1点鎖線C及び破線すは各々第1.第2連通路9
゜10によって決まる吸気の共振を利用した場合しとお
いて得られるエンジン出力の変化を示す。
In the device of this embodiment as described above, the secondary resonance of the intake air is used to perform resonant supercharging in the engine high speed range, so it is more efficient than the conventional device without complicating the structure. Resonant supercharging can be achieved in a wide rotation range, and as a result, the engine output, particularly in the high rotation range, can be improved as shown by the solid line a in FIG. In FIG. 5, the dashed dotted line C and the dashed line indicate the 1st line, respectively. Second communication path 9
This figure shows the change in engine output obtained by using the resonance of the intake air determined by 10°.

また本装置では、エンジンの低回転域および高回転域の
低負荷時には切換弁12を開いて共鳴過給を゛はとんど
行なわない・ようにしたので、従来装置のようにポンピ
ングロスによってエンジン出力が大幅に低下するという
ことはな(、又第2連通路を介して第1室3と第2室4
との間で吸気量の補正を行なうようにしたので、たとえ
吸気通路で吸気分配のばらつきが生じても不快なエンジ
ン振動が増大することはない。また、エンジン中回転域
の低負荷時には、共鳴効果によって生じるボンピングロ
スの低減のため切換弁12を閉状態にした方が好ましい
が、吸入空気量の少ない低負荷時には上記吸気配分のば
らつきの方を対策した方がエンジンの安定性の面から好
ましく、本装置では切換骨12が開状態としている。
In addition, in this device, when the engine is under low load in the low speed range and high speed range, the switching valve 12 is opened so that resonant supercharging is hardly performed. This does not mean that the output will decrease significantly (also, the first chamber 3 and the second chamber 4
Since the intake air amount is corrected between the two, even if variations in intake air distribution occur in the intake passage, unpleasant engine vibrations will not increase. Furthermore, at low loads in the mid engine speed range, it is preferable to close the switching valve 12 in order to reduce the pumping loss caused by the resonance effect, but at low loads with a small amount of intake air, the above-mentioned variation in intake air distribution is more important. It is preferable to take countermeasures from the viewpoint of engine stability, and in this device, the switching bone 12 is in an open state.

なお上記実施例ではサージタンク内を隔壁によって第1
室と第2室とに画成したが、本発明は勿論サージタンク
を別々に形成してもよい。またサージタンクの数は2個
以外の複数個であってもよい。さらにスロットル弁は第
1連通路内に2つ設けるのではなく、第1連通路上流の
吸気通路内に1つ設けるようにしてもよい。またさらに
エンジンの高負荷時における切換弁の開閉制御は上記実
施例と異なる方法で行なってもよい。
Note that in the above embodiment, the inside of the surge tank is separated from the first
Although the surge tank is divided into a chamber and a second chamber, the surge tank may of course be formed separately in the present invention. Further, the number of surge tanks may be more than two. Furthermore, instead of providing two throttle valves in the first communication passage, one throttle valve may be provided in the intake passage upstream of the first communication passage. Furthermore, the opening/closing control of the switching valve when the engine is under high load may be performed using a method different from that of the above embodiment.

また上記実施例では第1.第2連通路の形状等を低、高
回転域及び中回転域で吸気の共振が得られるように設定
したが、本発明は第1連通路の形状等については所定の
回転域で吸気の共振が得られるように設定し、第2連通
路については単にサージタンク間を連通ずるものであっ
てもよい。
Further, in the above embodiment, the first. The shape etc. of the second communication passage are set so as to obtain resonance of the intake air in the low, high and medium rotation ranges, but the present invention is designed such that the shape etc. of the first communication passage causes the resonance of the intake air in the predetermined rotation range. The second communication path may be configured to simply communicate between the surge tanks.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係るエンジンの吸気装置によれば
、サージタンクを第1.第2連通路によって連通ずると
ともに、第2の連通路に切換弁を設け、第1連通路の形
状等を所定の回転域で吸気の共振が得られるようにする
一方、第2連通路はサージタンク間を連通ずるものとし
、エンジンの設定負荷以下の運転領域では上記切換弁を
常時開くようにしたので、エンジンの出力低下を防止で
き、又吸気分配のばらつきに起因するエンジン振動の発
生を低減できる効果がある。
As described above, according to the engine intake system according to the present invention, the surge tank is connected to the first. A switching valve is provided in the second communication passage, and the shape of the first communication passage is designed to obtain intake resonance in a predetermined rotation range, while the second communication passage The tanks are communicated with each other, and the switching valve is always open in the operating range below the engine's set load, which prevents a drop in engine output and reduces the occurrence of engine vibration caused by variations in intake air distribution. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第り図及び第2図はそれぞれ本発明の一実施例によるエ
ンジンの吸気装置の断面平面図及び断面′側面図、第3
図は上記装置の回路構成図、第4図は上記装置における
制御回路16の開閉信号を示す図、第5図は上記実施例
の効果を説明するための図である。 3.4・・・第1室、第2室(サージタンク)、9・・
・第1連通路、10・・・開口(第2連通路)、12・
・・切換弁、15・・・負圧センサ(負荷センサ)、1
6・・・制御回路。 特許出願人 東洋工業株式会社 代理人 弁理士 早 瀬 憲 − 第1図 第3図 第4図 エン元〔B申ムI笑(rpm)−一唯一第5図 エンジン回転券災−
1 and 2 are a cross-sectional plan view and a cross-sectional side view of an engine intake system according to an embodiment of the present invention, respectively.
4 is a diagram showing the circuit configuration of the above device, FIG. 4 is a diagram showing the opening/closing signals of the control circuit 16 in the above device, and FIG. 5 is a diagram for explaining the effects of the above embodiment. 3.4...1st chamber, 2nd chamber (surge tank), 9...
・First communicating path, 10...Opening (second communicating path), 12・
...Switching valve, 15...Negative pressure sensor (load sensor), 1
6...Control circuit. Patent Applicant: Toyo Kogyo Co., Ltd. Agent, Patent Attorney Ken Hayase - Figure 1 Figure 3 Figure 4 Engine (rpm) - Only Figure 5 Engine RPM -

Claims (1)

【特許請求の範囲】[Claims] (11各々が点火順序の連続しない各気筒に連通ずる複
数のサージタンクと、所定の回転域にて気体の共振が得
られるようにその通路長さ及び通路断面積が設定され上
記サージタンク間を連通ずる第1連通路と、該第1連通
路と並列に上記サージタンク間を連通ずる第2連通路と
、該第2連通路を開閉する切換弁と、エンジンの負荷状
態を検出する負荷センサと、該センサの出力を受け負荷
が設定値以下の時上記切換弁を常時開く制御回路とを設
けたことを特徴とするエンジンの吸気装置。
(11) A plurality of surge tanks, each of which communicates with each cylinder whose firing order is not consecutive, and whose passage length and passage cross-sectional area are set so as to obtain gas resonance in a predetermined rotation range. A first communicating path, a second communicating path that communicates between the surge tanks in parallel with the first communicating path, a switching valve that opens and closes the second communicating path, and a load sensor that detects the load state of the engine. and a control circuit that receives the output of the sensor and always opens the switching valve when the load is below a set value.
JP59040682A 1984-03-02 1984-03-02 Intake device for engine Granted JPS60198325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59040682A JPS60198325A (en) 1984-03-02 1984-03-02 Intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59040682A JPS60198325A (en) 1984-03-02 1984-03-02 Intake device for engine

Publications (2)

Publication Number Publication Date
JPS60198325A true JPS60198325A (en) 1985-10-07
JPH0440534B2 JPH0440534B2 (en) 1992-07-03

Family

ID=12587303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59040682A Granted JPS60198325A (en) 1984-03-02 1984-03-02 Intake device for engine

Country Status (1)

Country Link
JP (1) JPS60198325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362628B1 (en) * 2001-03-22 2002-11-29 기아자동차주식회사 Intake manifold of a V-type engine for a motor vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792021U (en) * 1980-11-28 1982-06-07
JPS57150228U (en) * 1981-03-16 1982-09-21
JPS5893929A (en) * 1981-11-30 1983-06-03 Hino Motors Ltd Suction device for diesel engine
JPS59148425U (en) * 1983-03-24 1984-10-04 トヨタ自動車株式会社 Intake system for multi-cylinder internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792021U (en) * 1980-11-28 1982-06-07
JPS57150228U (en) * 1981-03-16 1982-09-21
JPS5893929A (en) * 1981-11-30 1983-06-03 Hino Motors Ltd Suction device for diesel engine
JPS59148425U (en) * 1983-03-24 1984-10-04 トヨタ自動車株式会社 Intake system for multi-cylinder internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362628B1 (en) * 2001-03-22 2002-11-29 기아자동차주식회사 Intake manifold of a V-type engine for a motor vehicle

Also Published As

Publication number Publication date
JPH0440534B2 (en) 1992-07-03

Similar Documents

Publication Publication Date Title
US4630575A (en) Intake system for multicylinder engine
JPS6119927A (en) Suction apparatus of multi-cylinder internal combustion engine
JPH0353452B2 (en)
US4510896A (en) Multi-cylinder combustion engine intake manifold
US5161492A (en) Intake system for multi-cylinder engine
JPS60198325A (en) Intake device for engine
JPS60198324A (en) Intake device for engine
JPS60169627A (en) Suction device of engine
US4938177A (en) Intake system of multicylinder internal combustion engine
JPH051547A (en) Variable intake system of internal combustion engine
JPH03168325A (en) Suction device of multiple cylinder engine
JPH1030446A (en) Supercharger for engine
US5542386A (en) Intake system for multiple cylinder combustion engines
JPS61116022A (en) Engine intake-air device
JPH01318756A (en) Intake device for internal combustion engine
JPH0392534A (en) Intake device for multi-cylinder engine
JPH0341648B2 (en)
JPS61201819A (en) Air intake device for engine
JPH0354318A (en) Intake device of multiple cylinder engine
JPH0436022A (en) Intake system of engine
JPS61218720A (en) Intake device of engine with supercharger
JPH0361008B2 (en)
JPH01237318A (en) Air intake device for engine with supercharger
JPH0578653B2 (en)
JPH0140207B2 (en)