JPS60198324A - Intake device for engine - Google Patents

Intake device for engine

Info

Publication number
JPS60198324A
JPS60198324A JP59040681A JP4068184A JPS60198324A JP S60198324 A JPS60198324 A JP S60198324A JP 59040681 A JP59040681 A JP 59040681A JP 4068184 A JP4068184 A JP 4068184A JP S60198324 A JPS60198324 A JP S60198324A
Authority
JP
Japan
Prior art keywords
engine
resonance
intake air
under
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59040681A
Other languages
Japanese (ja)
Other versions
JPH0362887B2 (en
Inventor
Taisuke Okazaki
岡崎 泰輔
Yutaka Oizumi
豊 大泉
Masashi Kozuki
上月 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59040681A priority Critical patent/JPS60198324A/en
Publication of JPS60198324A publication Critical patent/JPS60198324A/en
Publication of JPH0362887B2 publication Critical patent/JPH0362887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/021Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To perform resonance supercharge under wide rotary range of engine by setting such that one of two paths communicating between surge tanks will achieve gas resonance under low and high rotary regions while the other will achieve under intermediate rotary region. CONSTITUTION:Under operation of engine, the outputs from a rotation sensor 14 and a negative pressure sensor 15 are provided to a control circuit 16 which will provide a signal to an actuator 13 thus to open/close a changeover valve 12. Here, said valve 12 is closed under heavy load low rotation region to produce the primary resonance of intake air in a surge tank 1 with primary inherent frequency to be determined by the shape of first communication path 9 thus to perform resonance supercharge to each cylinder with high efficiency. Under heavy load intermediate rotary region, said valve 12 is opened to produce primary resonance of the intake air with primary inherent frequency to be determined by the shape of second communication path 10. While under low load region, said valve 12 is closed continuously to feed the intake air between both chambers 3, 4 of surge tank 1 thus to feed approximately same amount of intake air to each cylinder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エンジンの吸気装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an intake system for an engine.

〔従来技術〕[Prior art]

一般にエンジンの吸気装置は、エンジンに吸気を効率よ
く供給しようとするものである。ところでエンジンに対
する吸気の供給方式としては、従来より種々の方式があ
るが、その1例として、吸気通路の形状等によって決ま
る固有振動数でもって吸気が共振して吸気の圧力変動が
生じることから、この現象を利用して吸気をその動的効
果によって効率よく気筒内に押し込み、充填効率を向上
させるようにしたものである。
Generally, an engine intake device is designed to efficiently supply intake air to the engine. By the way, there have been various methods for supplying intake air to the engine. One example is that the intake air resonates at a natural frequency determined by the shape of the intake passage, causing pressure fluctuations in the intake air. This phenomenon is utilized to efficiently push intake air into the cylinder due to its dynamic effect, thereby improving charging efficiency.

そして上述の動的効果のなかの共鳴効果によって過給す
る共鳴過給方式を採用したエンジンの吸気装置として、
従来、特開昭56−115818号公報に示されるよう
に、点火順序の連続しない気筒群毎にサージタンクを設
けるとともに、該サージタンク間を各々連通する第1.
第2連通路を設け、該第1.第2連通路の通路長さ及び
断面積をそれぞれ設定回転以下、設定回転以上の領域で
吸気の共振が得られるように設定し、第2連通路内に設
けられた切換弁をエンジン回転数が設定値以下か以上か
に応じて開閉して、エンジンの広い回転域士共鳴過給を
行なうようにしたものがあった。
As an intake system for an engine that employs the resonance supercharging method, which uses the resonance effect among the above-mentioned dynamic effects,
Conventionally, as shown in Japanese Unexamined Patent Publication No. 56-115818, a surge tank is provided for each cylinder group in which the ignition order is not consecutive, and a first tank is provided for communicating between the surge tanks.
A second communication path is provided, and the first communication path is provided. The passage length and cross-sectional area of the second communication passage are set so that resonance of the intake air is obtained in the ranges below the set rotation speed and above the set rotation speed, respectively, and the switching valve provided in the second communication passage is set so that the engine speed increases. There was one that opened and closed depending on whether the engine was below or above a set value to perform resonance supercharging over a wide engine speed range.

しかしながら上記従来公報記載の装置では、エンジン回
転数の高い運転域においては、十分な共鳴過給が行なわ
れず、エンジン出力が十分に向上しないという問題があ
った。
However, the device described in the above-mentioned conventional publication has a problem in that sufficient resonant supercharging is not performed in an operating range where the engine speed is high, and the engine output is not sufficiently improved.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる問題点に鑑み、より広い回転域にお
いて共鳴過給を行なうことのできるエンジンの吸気装置
を提供せんとするものである。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide an intake system for an engine that can perform resonance supercharging over a wider rotation range.

〔発明の構成〕[Structure of the invention]

そして本件発明者は、より広い回転域において共鳴過給
を実現せんとして鋭意研究した結果、次のようなことを
見い出した。即ち、第1図は、サージタンク間を連通ず
る連通路の通路長さ及び断面積をエンジンの低回転域で
吸気の共振が得られるように設定し、通常のエンジンの
使用回転数範囲内においてエンジン回転数を変化させて
いって、そのときの吸気の圧力変動の振幅変化を測定し
た結果を示す。第1図によれば、エンジン回転数の増大
に伴って圧力変動の振幅は増大し、該振幅は設定回転数
rで最大となり、さらに回転数が増大すれば圧力変動の
振幅は徐々に小さくなる。従来装置では、この現象を利
用して共鳴過給を行なっていた訳である。
The inventor of the present invention has made the following findings as a result of intensive research aimed at realizing resonant supercharging in a wider rotation range. In other words, in Figure 1, the passage length and cross-sectional area of the communication passage between the surge tanks are set so that intake resonance can be obtained in the low engine speed range, and within the normal engine speed range. The graph shows the results of measuring changes in the amplitude of intake pressure fluctuations while changing the engine speed. According to Fig. 1, the amplitude of the pressure fluctuation increases as the engine speed increases, and the amplitude reaches a maximum at the set speed r, and as the speed increases further, the amplitude of the pressure fluctuation gradually decreases. . Conventional devices utilize this phenomenon to perform resonance supercharging.

そしてさらに回転数が増大すると、圧力変動の振幅値は
単に低下するのではなく、設定回転数の2倍の回転数2
rのところで極大となっている。
Then, as the rotation speed increases further, the amplitude value of pressure fluctuation does not simply decrease, but at a rotation speed of 2 times the set rotation speed.
It reaches its maximum at r.

これは吸気の2次共振によって発生する現象であり、こ
の現象をうまく利用すれば、構造を何ら複雑にすること
なく、エンジン回転数の高い領域で共鳴過給を実現する
ことが可能であると考えられる。
This is a phenomenon that occurs due to the secondary resonance of the intake air, and if this phenomenon is effectively utilized, it is possible to achieve resonant supercharging at high engine speeds without complicating the structure. Conceivable.

そこでこの発明は、エンジンの低回転域で吸気の1次共
振が得られるように連通路の形状等を設定すれば、エン
ジンの通常の使用回転域内において吸気の2次共振によ
って圧力変動の振幅が極大となる回転数が存在すること
に着目し、サージタンクを連通ずる第1.第2の連通路
と切換弁とを備え、共鳴過給を行なうようにした上記エ
ンジンの吸気装置において、第1連通路を低、高回転域
で気体の共振が得られるように設定するとともに、第2
連通路を中回転域で気体の共振が得られるように設定し
、上記切換弁を低回転域及び高回転域で閉じ、中回転域
で開くようにしたもので、これによりエンジンの低、中
回転域ばかりでなく、高回転域においても共鳴過給を行
なえるようにしたものである。
Therefore, the present invention proposes that if the shape of the communication passage is set so that the primary resonance of the intake air can be obtained in the low rotational speed range of the engine, the amplitude of the pressure fluctuation can be reduced due to the secondary resonance of the intake air within the engine's normal operating rotational range. Focusing on the fact that there is a maximum rotational speed, we developed the first system that connects the surge tank. In the above-mentioned engine intake system that includes a second communication passage and a switching valve and performs resonance supercharging, the first communication passage is set so as to obtain gas resonance in a low and high rotation range, Second
The communication passage is set to obtain gas resonance in the medium speed range, and the switching valve is closed in the low and high speed range and opened in the medium speed range. This allows resonance supercharging to be performed not only in the rotation range but also in the high rotation range.

〔実施例〕〔Example〕

以下、本発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2図ないし第5図は本発明の一実施例によるエンジン
の吸気装置を示す。図において、1はサージタンクで、
該サージタンク1は隔壁2によって第1室3と第2室4
とに画成されている。上記第1室3の底面には点火順序
の連続しない第1゜第3.第5の各気筒に延びる吸気マ
ニホールド5a、5b、5cの上流端が接続され、上記
第2室4の底面にはこれも点火順序の連続しない第2゜
第4.第6の各気筒に延びる吸気マニホールド5d、5
e、5fの上流端が接続されている。ここでエンジンは
第1.第2.第3.第4.第5.第6気筒の点火順序で
クランク角度120°毎に点火されるものとする。
2 to 5 show an engine intake system according to an embodiment of the present invention. In the figure, 1 is a surge tank,
The surge tank 1 is divided into a first chamber 3 and a second chamber 4 by a partition wall 2.
It is defined as. On the bottom of the first chamber 3, there are 1st, 3rd, and 3rd cylinders with discontinuous ignition order. The upstream ends of intake manifolds 5a, 5b, and 5c extending to each of the fifth cylinders are connected to the bottom of the second chamber 4, and the second, fourth, and fourth cylinders, which also have non-consecutive ignition orders, are connected to the upstream ends of intake manifolds 5a, 5b, and 5c extending to each of the fifth cylinders. Intake manifolds 5d, 5 extending to each sixth cylinder
The upstream ends of e and 5f are connected. Here, the engine is the first. Second. Third. 4th. Fifth. It is assumed that the 6th cylinder is ignited at every 120° crank angle in the ignition order.

また上記サージタンク1の側面には吸気管6の下流端が
接続されている。この吸気管6の下流端部は2つの吸気
通路7,8に形成され、該両吸気通路7.8は各々サー
ジタンク1の第1室3及び第2室4に接続されており、
該両吸気通路7,8はサージタンク1の第1室3と第2
室4とを連通ずる第1連通路9となっている。この第1
連通路9の通路長さLl及び通路断面積S1はエンジン
回転数2700rpm以下の低回転域、及び5200r
pm以上の高回転域にて気体の共振が得られるような長
さ及び断面積に設定されている。また上記両吸気通路7
,8にはそれぞれスロットル弁11a、11bが配設さ
れている。
Further, a downstream end of an intake pipe 6 is connected to a side surface of the surge tank 1. The downstream end of the intake pipe 6 is formed with two intake passages 7, 8, which are connected to the first chamber 3 and the second chamber 4 of the surge tank 1, respectively.
Both intake passages 7 and 8 are connected to the first chamber 3 and the second chamber of the surge tank 1.
A first communication path 9 communicates with the chamber 4. This first
The passage length Ll and passage cross-sectional area S1 of the communication passage 9 are set in a low engine rotation range of 2700 rpm or less, and 5200 rpm.
The length and cross-sectional area are set such that gas resonance can be obtained in a high rotation range of pm or higher. In addition, both the intake passages 7
, 8 are respectively provided with throttle valves 11a and 11b.

また上記隔壁2には開口lOが開設され、該開口10は
上記第1連通路9と並列にサージタンクlの第1室3と
第2室4とを連通ずる第2連通路となっており、該第2
連通路の通路長さく隔壁2の厚さ)L2及び通路断面積
(開口10の面積)S2はエンジン回転数が270Or
pm以上でかつ5200rpm以下の中回転域にて気体
の共振が得られる長さ及び断面積に設定されている。ま
たこの開口10にはこれを開閉する切換弁12が設けら
れ、該切換弁12はアクチュエータ13によって開閉作
動されるようになっている。
Further, an opening 10 is formed in the partition wall 2, and the opening 10 serves as a second communication passage that communicates the first chamber 3 and the second chamber 4 of the surge tank 1 in parallel with the first communication passage 9. , the second
The passage length of the communication passage (the thickness of the partition wall 2) L2 and the passage cross-sectional area (the area of the opening 10) S2 are determined when the engine rotation speed is 270 Or
The length and cross-sectional area are set so that gas resonance can be obtained in a medium rotation range of pm or more and 5200 rpm or less. Further, this opening 10 is provided with a switching valve 12 for opening and closing it, and the switching valve 12 is opened and closed by an actuator 13.

また図中、14はエンジン回転数を検出する回転数セン
サ、15はスロットル下流の吸−気負圧を検出する負圧
センサ、16はエンジン回転数と吸気負圧とをパラメー
タとする切換弁制御マツプを有し、上記両セン号14.
15の出力を受けて開信号又は閉信号を読み出し、それ
をアクチュエータ13に加える制御回路である。ここで
上記切換弁制御マ、ツブには、第5図に示すように、吸
気負圧が設定値−100mm1g以下の低負荷時にはエ
ンジン回転数に関係なく全て開信号が格納され、又吸気
負圧が設定値−100mmHg以上の高負荷時にはエン
ジン回転数が270Orpm以下の低回転域、及び52
00rpm以上の高回転域において閉信号、エンジン回
転数が2700rpm以上で520Orpm以下の中回
転域において開信号が格納されている。
In the figure, 14 is a rotational speed sensor that detects the engine rotational speed, 15 is a negative pressure sensor that detects the intake negative pressure downstream of the throttle, and 16 is a switching valve control using the engine rotational speed and intake negative pressure as parameters. 14.
This is a control circuit that receives the output of the actuator 15, reads an open signal or a close signal, and applies it to the actuator 13. Here, as shown in Fig. 5, the switching valve control knob stores an open signal regardless of the engine speed at low load when the intake negative pressure is less than the set value -100 mm 1 g, and the intake negative pressure When the load is higher than the set value -100mmHg, the engine speed is in the low rotation range of 270Orpm or less, and 52
A close signal is stored in a high rotation range of 00 rpm or more, and an open signal is stored in a medium rotation range of engine rotation speed of 2700 rpm or more and 520 rpm or less.

次に動作について説明する。Next, the operation will be explained.

エンジンが作動すると、回転数センサ14及び負圧セン
サ15の再出力は制御回路16に加えられ、該回路16
ではエンジンの負荷状態と回転状態とに応じて切換制御
マツプ(第5図参照)から開信号又は閉信号が読み出さ
れ、それがアクチュエータ13に加えられて切換弁12
が開閉される。
When the engine starts operating, the re-outputs of the rotation speed sensor 14 and the negative pressure sensor 15 are applied to the control circuit 16.
Then, an open signal or a close signal is read out from the switching control map (see Fig. 5) depending on the load state and rotational state of the engine, and this signal is applied to the actuator 13 to control the switching valve 12.
is opened and closed.

するとエンジンの高負荷低回転域においては、切換弁1
2は閉じて、サージタンク1内の吸気は第1連通路9の
形状等によって決まる1次固有振動数で1次共振し、各
気筒には効率よく共鳴過給が行なわれる。またエンジン
の高負荷中回転域においては、切換弁12は開き、サー
ジタンク1内の吸気は今度は第2連通路10の形状等に
よって決まる1次固有振動数で1次共振し、この場合も
各気筒には効率よく共鳴過給が行なわれることとなる。
Then, in the high load and low speed range of the engine, the switching valve 1
2 is closed, and the intake air in the surge tank 1 resonates first at a first natural frequency determined by the shape of the first communicating passage 9, etc., and each cylinder is efficiently resonantly supercharged. In addition, in the high-load and medium-speed range of the engine, the switching valve 12 opens, and the intake air in the surge tank 1 resonates first at the first natural frequency determined by the shape of the second communication passage 10. Resonant supercharging will be performed efficiently in each cylinder.

そしてエンジンの高負荷高回転域においては、低回転域
の場合と同様に、切換弁12は閉じるが、この場合の吸
気は上記第1連通路9の形状等によって決まる2次固有
振動数で2次共振するため、この場合も各気筒には効率
よく共鳴過給が行なわれることとなる。
In the high-load, high-speed range of the engine, the switching valve 12 closes as in the case of the low-speed range, but in this case, the intake air has a secondary natural frequency determined by the shape of the first communication passage 9, etc. Since the next resonance occurs, resonance supercharging is efficiently performed in each cylinder in this case as well.

一方、エンジンの低負荷域においては、切換弁12は常
時開状態に保持されるため、サージタンク1の第1室3
と第2室4との間で第2連通路10を介して吸気の供給
が行なわれ、第1室3の圧力と第2室4の圧力とがほぼ
等しくなるため、各気筒にはほぼ等しい量の吸気が供給
されることとケる・ 以上のような本実施例の装置では、吸気の2次共振を利
用してエンジン高回転域における共鳴過給を行なうよう
にしたので、従来装置に比して何ら構造を複雑にするこ
となくより広い回転域で共鳴過給を実現でき、その結果
第6図の実線aで示すようにエンジン出力、特に高回転
域におけるエンジン出力を向上できる。なお第6図にお
いて、1点鎖線C及び破線すは各々第1.第2連通路9
゜10によって決まる吸気の共振を利用した場合におい
て得られるエンジン出力の変化を示す。
On the other hand, in the low engine load range, the switching valve 12 is always kept open, so the first chamber 3 of the surge tank 1
Intake air is supplied between the and second chamber 4 through the second communication passage 10, and the pressure in the first chamber 3 and the pressure in the second chamber 4 are approximately equal, so each cylinder has approximately the same pressure. The device of this embodiment as described above utilizes the secondary resonance of the intake air to perform resonant supercharging in the engine high speed range, so it is different from the conventional device. In comparison, resonance supercharging can be realized in a wider rotation range without complicating the structure in any way, and as a result, the engine output, particularly in the high rotation range, can be improved as shown by the solid line a in FIG. In FIG. 6, the dashed dotted line C and the dashed line indicate the 1st line, respectively. Second communication path 9
This figure shows the change in engine output obtained when using the resonance of the intake air determined by 10 degrees.

またエンジンの低回転域および高回転域の低負荷時にお
いて高負荷時と同様に共鳴過給を行なうようにした場合
、該低負荷時にはエンジン出力がそれほど大きくないこ
とから、吸気の共振を得るために生ずるエンジンのポン
ピングロスがエンジン出力に比して大きく、エンジンの
出力低下が顕著になる。又エンジンの低負荷域では吸入
空気量が少ないことから、吸気管6の形状等に起因して
サージタンクlの第1室3及び第2室4への吸気の分配
にばらつきがあると、第1室3に連通ずる気筒群と第2
室4に連通ずる気筒群との間の出力差に起因してエンジ
ンのトルク変動が顕著となり、不快なエンジン振動が増
大するおそれがある。これに対し本装置では、エンジン
の低回転域および高回転域の低負荷時には切換弁12を
開いてほとんど共鳴過給を行なわないようにしたので、
ボンピングロスによってエンジン出力が大幅に低下する
ことはなく、又第2連通路を介して第1室3と第2室4
との間で吸気量の補正を行なうようにしたので、たとえ
吸気通路で吸気分配のばらつきが生じても不快なエンジ
ン振動が増大することはない。またエンジンの中回転域
の低負荷時には、共鳴効果によって生じるポンピングロ
スの低減のため切換弁12を閉状態にした方が好ましい
が、吸入空気量の少ない低負荷時には上記吸気配分のば
らつきの方を対策した方がエンジンの安定性の面から好
ましく、本装置では切換弁I2を開状態としている。
In addition, if resonance supercharging is performed at low loads in the low and high engine speed ranges in the same way as at high loads, since the engine output is not so large at low loads, it is necessary to obtain intake resonance. The engine pumping loss that occurs during this period is large compared to the engine output, resulting in a noticeable drop in engine output. In addition, since the amount of intake air is small in the low load range of the engine, if there is variation in the distribution of intake air to the first chamber 3 and second chamber 4 of the surge tank l due to the shape of the intake pipe 6, etc. Cylinder group communicating with chamber 1 and 2nd chamber
Due to the difference in output between the cylinders communicating with the chamber 4, engine torque fluctuations become noticeable, and unpleasant engine vibrations may increase. In contrast, in this device, the switching valve 12 is opened during low load in the low engine speed range and high engine speed range, so that resonance supercharging is hardly performed.
The engine output does not decrease significantly due to the pumping loss, and the first chamber 3 and the second chamber 4 are connected to each other through the second communication passage.
Since the intake air amount is corrected between the two, even if variations in intake air distribution occur in the intake passage, unpleasant engine vibrations will not increase. Furthermore, when the engine is under low load in the mid-speed range of the engine, it is preferable to close the switching valve 12 to reduce pumping loss caused by the resonance effect, but at low load when the amount of intake air is small, the above-mentioned variation in intake air distribution is more important. It is preferable to take countermeasures from the viewpoint of engine stability, and in this device, the switching valve I2 is kept open.

なお上記実施例ではサージタンク内を隔壁によって第1
室と第2室とに画成したが、本発明は勿論サージタンク
を別々に形成してもよい。またサージタンクの数は2個
以外の複数個であってもよい。さらにスロットル弁は第
1連通路内に2つ設けるのではなく、第1連通路上流の
吸気通路内に1つ設けるようにしてもよい。
Note that in the above embodiment, the inside of the surge tank is separated from the first
Although the surge tank is divided into a chamber and a second chamber, the surge tank may of course be formed separately in the present invention. Further, the number of surge tanks may be more than two. Furthermore, instead of providing two throttle valves in the first communication passage, one throttle valve may be provided in the intake passage upstream of the first communication passage.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、サージタンクを連通ずる
第1.第2の連通路と切換弁とを備え、共鳴過給を行な
うようにしたエンジンの吸気装置において、第1連通路
を低、高回転域で気体の共振が得られるように設定する
とともに、第2連通路を中回転域で気体の共振が得られ
るように設定し、上記切換弁を低回転域及び高回転域で
閉じ、中回転域で開くようにしたので、エンジンの低。
As described above, according to the present invention, the first casing that communicates with the surge tank. In an engine intake system that includes a second communication passage and a switching valve and performs resonance supercharging, the first communication passage is set to obtain gas resonance in the low and high rotation ranges, and the first communication passage is The two-way passage is set so that gas resonance can be obtained in the medium speed range, and the switching valve is closed in the low and high speed ranges and opened in the medium speed range, so that low engine speeds can be achieved.

中回転域ばかりでなく、高回転域においても効率よく共
鳴過給を行なうことができる効果がある。
This has the effect of efficiently performing resonance supercharging not only in the medium rotation range but also in the high rotation range.

【図面の簡単な説明】 第1図は本発明を説明するための図、第2図及び第3図
はそれぞれ本発明の一実施例によるエンジンの吸気装置
の断面平面図及び断面側面図、第4図は上記装置の回路
構成図、第5図は上記装置における制御回路16の開閉
信号を示す図、第6図は上記実施例の効果を説明するた
めの図である。 3.4・・・第1室、第2室(サージタンク)、9・・
・第1連通路、10・・・開口(第2連通路)、I2・
・・切換弁、16・・・制御回路。 特許出願人 東洋工業株式会社 代理人 弁理士 早 瀬 憲 − 第1図 エンしシロ中i!1(rpm) −一一一第2図 第4図 第5図 丁シしシ回@数(rpm)→ 第6図 、1Ty1.;’)回車Mケ□
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a diagram for explaining the present invention, and FIGS. 2 and 3 are a cross-sectional plan view and a cross-sectional side view of an engine intake system according to an embodiment of the present invention, respectively. FIG. 4 is a circuit configuration diagram of the above device, FIG. 5 is a diagram showing open/close signals of the control circuit 16 in the above device, and FIG. 6 is a diagram for explaining the effects of the above embodiment. 3.4...1st chamber, 2nd chamber (surge tank), 9...
・First communication path, 10... opening (second communication path), I2・
...Switching valve, 16...control circuit. Patent Applicant: Toyo Kogyo Co., Ltd. Agent, Patent Attorney Ken Hayase - Figure 1 Enshi Shiro Chui! 1 (rpm) -111 Figure 2 Figure 4 Figure 5 Number of times (rpm) → Figure 6, 1Ty1. ;') Rotating wheel Mke□

Claims (1)

【特許請求の範囲】[Claims] (1)各々が点火順序の連続しない各気筒に連通ずる複
数のサージタンクと、所定の低回転域及び、高回転域に
て気体の共振が得られるようにその通路長さ及び通路断
面積が設定され上記サージタンク間を連通ずる第1連通
路と、所定の中回転域にて気体の共振が得られるように
その通路長さ及び通路断面積が設定され上記第1連通路
と並列に上記サージタンク間を連通ずる第2連通路と、
該第2連通路を開閉する切換弁と、該切換弁を所定の低
回転域及び高回転域で閉じ所定の中回転域で開く制御回
路とを設けたことを特徴とするエンジンの吸気装置。
(1) A plurality of surge tanks, each of which communicates with each cylinder in which the firing order is not consecutive, and whose passage length and passage cross-sectional area are designed so that gas resonance can be obtained in a predetermined low rotation range and high rotation range. A first communicating passage is set and communicates between the surge tanks, and the passage length and cross-sectional area are set so as to obtain gas resonance in a predetermined medium rotation range, and the first communicating passage is parallel to the first communicating passage. a second communication path that communicates between the surge tanks;
An intake system for an engine, comprising: a switching valve that opens and closes the second communication passage; and a control circuit that closes the switching valve in a predetermined low rotation range and high rotation range and opens the switching valve in a predetermined middle rotation range.
JP59040681A 1984-03-02 1984-03-02 Intake device for engine Granted JPS60198324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59040681A JPS60198324A (en) 1984-03-02 1984-03-02 Intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59040681A JPS60198324A (en) 1984-03-02 1984-03-02 Intake device for engine

Publications (2)

Publication Number Publication Date
JPS60198324A true JPS60198324A (en) 1985-10-07
JPH0362887B2 JPH0362887B2 (en) 1991-09-27

Family

ID=12587276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59040681A Granted JPS60198324A (en) 1984-03-02 1984-03-02 Intake device for engine

Country Status (1)

Country Link
JP (1) JPS60198324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033268A (en) * 1988-03-15 1991-07-23 Mazda Motor Corporation Intake system for turbocharged engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150229U (en) * 1981-03-16 1982-09-21
JPS58178421U (en) * 1982-05-26 1983-11-29 日産ディーゼル工業株式会社 Intake system for multi-cylinder internal combustion engine
JPS5921029U (en) * 1982-07-30 1984-02-08 日産ディーゼル工業株式会社 Intake system for multi-cylinder internal combustion engine
JPS6013920A (en) * 1983-07-02 1985-01-24 Toyota Motor Corp Intake apparatus for multi-cylinder engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921029B2 (en) * 1981-06-08 1984-05-17 キヤノン株式会社 double-sided copying device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150229U (en) * 1981-03-16 1982-09-21
JPS58178421U (en) * 1982-05-26 1983-11-29 日産ディーゼル工業株式会社 Intake system for multi-cylinder internal combustion engine
JPS5921029U (en) * 1982-07-30 1984-02-08 日産ディーゼル工業株式会社 Intake system for multi-cylinder internal combustion engine
JPS6013920A (en) * 1983-07-02 1985-01-24 Toyota Motor Corp Intake apparatus for multi-cylinder engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033268A (en) * 1988-03-15 1991-07-23 Mazda Motor Corporation Intake system for turbocharged engine

Also Published As

Publication number Publication date
JPH0362887B2 (en) 1991-09-27

Similar Documents

Publication Publication Date Title
US4630575A (en) Intake system for multicylinder engine
JPS61116021A (en) Engine intake-air device
US5161492A (en) Intake system for multi-cylinder engine
JPS60198324A (en) Intake device for engine
JPS60198325A (en) Intake device for engine
JPS60169627A (en) Suction device of engine
JP2537076B2 (en) Internal combustion engine intake system
JPS61237823A (en) Intake equipment for multi-cylinder engine
US5542386A (en) Intake system for multiple cylinder combustion engines
JPH06330756A (en) Intake system of multicylinder internal combustion engine
JP3518044B2 (en) Engine intake system
JP2507971Y2 (en) Engine intake system
JPS60240822A (en) Suction system for engine
JPH0361008B2 (en)
JPH0392534A (en) Intake device for multi-cylinder engine
JPS61201819A (en) Air intake device for engine
JPH0436022A (en) Intake system of engine
JPS61218720A (en) Intake device of engine with supercharger
JPH0192520A (en) Engine intake-air device
JPS61192809A (en) Suction apparatus for multicylinder internal-combustion engine
JPH0578653B2 (en)
JPH01237318A (en) Air intake device for engine with supercharger
JPS61200328A (en) Suction device for internal-combustion engine
JPH03286133A (en) Air intake device for multiple cylinder engine
JPH05195793A (en) Resonant supercharge type intake device of internal-combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees