JPS61237823A - Intake equipment for multi-cylinder engine - Google Patents

Intake equipment for multi-cylinder engine

Info

Publication number
JPS61237823A
JPS61237823A JP60078691A JP7869185A JPS61237823A JP S61237823 A JPS61237823 A JP S61237823A JP 60078691 A JP60078691 A JP 60078691A JP 7869185 A JP7869185 A JP 7869185A JP S61237823 A JPS61237823 A JP S61237823A
Authority
JP
Japan
Prior art keywords
intake
control valve
engine
engine speed
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60078691A
Other languages
Japanese (ja)
Inventor
Katsuhiko Sakamoto
勝彦 坂本
Taisuke Okazaki
岡崎 泰輔
Tetsuo Hiraoka
哲男 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60078691A priority Critical patent/JPS61237823A/en
Publication of JPS61237823A publication Critical patent/JPS61237823A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/021Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0242Fluid communication passages between intake ducts, runners or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To obtain flat output torque characteristic by gathering two cylinder groups at respective intake air collecting portions through independent intake air passages, communicating both the collecting portions through a communicating passage having a control valve and controlling the control valve in accordance with an engine r.p.m. CONSTITUTION:Two cylinder groups 31, 32, having discontinuous air intake order in a six-cylinder engine have respective cylinders 21-26 including intake ports 51-56 each connected to first and second surge tanks 71, 72 through independent intake passages 61-66. The surge tanks 71, 72 join a a joint passage 9 through first and second resonance passages 81, 82. The respective resonance passages 81, 82 are provided with throttle valves 101, 102. Both the surge tanks 71, 72 communicate each other through a communicating passage 11. A control valve 12 provided with the communicating passage 11 is controlled to close at a low rotation region and open at a high rotation region. In addition, the control valve 12 is controlled to increase its opening stepwise or continuously at a region between the low rotation and high rotation regions in accordance with the increase in an engine r.p.m.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多気筒エンジンの吸気装置、特に吸気系の共
鳴効果を利用して吸気充填迅を増大させるようにしたエ
ンジンの吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for a multi-cylinder engine, and particularly to an intake system for an engine that utilizes the resonance effect of the intake system to increase intake air filling speed.

(従  来  技  術) 近年、自動車用等のエンジンにおいては、吸気の慣性効
果や共鳴効果等の動的効果を利用して吸気充填効率ない
し出力の向上を図ることが試みられているが、これらの
動的効果のうち、共鳴効果を多気筒エンジンにJ5いて
利用する場合は、各気筒が吸気順序が隣り合わないもの
同志に2つの気筒群に分けられると共に、両気筒群の気
筒に夫々独立吸気通路を介して接続される2つの吸気集
合部が設けられる。これらの吸気集合部は、特定振動数
の吸気撮動に対して共鳴する共鳴箱もしくは共鳴管とし
て作用し、その共鳴作用によって生じる大ぎな正圧波に
より対応する気筒への吸気の押し込み作用が得られる。
(Prior art) In recent years, in automobile engines, attempts have been made to improve the intake air filling efficiency or output by utilizing dynamic effects such as the inertia effect and resonance effect of the intake air. Among the dynamic effects of the J5, when using the resonance effect in a multi-cylinder engine, each cylinder is divided into two cylinder groups with non-adjacent intake orders, and the cylinders in both cylinder groups are each independently controlled. Two intake air collection sections are provided that are connected via an intake passage. These intake collecting parts act as a resonant box or resonant tube that resonates with the intake image of a specific frequency, and the large positive pressure wave generated by the resonance effect pushes the intake air into the corresponding cylinder. .

然して、上記のような構成によれば、吸気撮動の振動数
が容積や管長等によって定まる吸気集合部の固有振動数
に一致する特定のエンジン回転域においてしか共鳴効果
が得られないことになる。
However, according to the above configuration, a resonance effect can only be obtained in a specific engine rotation range where the frequency of intake air imaging matches the natural frequency of the intake collecting section determined by the volume, pipe length, etc. .

そこで、例えば実開昭59−148425号公報に示さ
れているように、2つの吸気集合部を上流側で合流させ
る一方、両吸気集合部の中間部に画集合部を連通させる
連通部を設け、且つ該連通部を開閉する制御弁を備えて
、該弁の開閉により両吸気集合部の固有振動数が高低2
段階に切換えられるようにすることが行われる。つまり
、両吸気集合部が上流端でのみ合流する場合は管長が長
くなって固有撮動数が低くなるので、第3図に出力トル
ク曲線aで示すように、エンジン回転数が比較的低い回
転数01の近傍で共鳴効果が得られて出力トルクが増大
し、また上記制御弁を開いて両吸気集合部を中間部で連
通させると、管長が短くなって固有撮動数が高くなるの
で、同図に出力トルク曲線すで示すように、エンジン回
転数が比較的高い回転数02の近傍で共鳴効果が得られ
ることにより出力トルクが増大するのである。従つC1
上記両出力トルク曲線a、bが交わるエンジン回転数0
3で上記制御弁を閉弁状態から開弁状態に切換えれば、
回転数01の近傍と回転数02の近傍との2つの回転域
で共鳴効果が得られ、吸気充填効率ないし出力トルクが
向上される領域が拡大されることになる。
Therefore, as shown in Japanese Utility Model Application Publication No. 59-148425, for example, two intake air collection parts are merged on the upstream side, while a communication part is provided in the middle of both intake air collection parts to communicate the image collection part. , and includes a control valve that opens and closes the communication portion, and the natural frequencies of both intake air gathering portions are adjusted to two levels by opening and closing the valve.
Enabling switching to a stage is performed. In other words, if both intake collecting parts meet only at the upstream end, the pipe length becomes long and the specific number of motions becomes low, so as shown by the output torque curve a in Figure 3, the engine speed is A resonance effect is obtained in the vicinity of number 01, increasing the output torque, and when the control valve is opened to connect both intake collecting parts at the middle part, the pipe length is shortened and the specific imaging number becomes high. As already shown in the output torque curve in the figure, the resonance effect is obtained near the relatively high engine rotation speed 02, so that the output torque increases. Follow C1
Engine speed 0 where the above output torque curves a and b intersect
If the above control valve is switched from the closed state to the open state in step 3,
A resonance effect is obtained in two rotational ranges near the rotational speed 01 and near the rotational speed 02, and the range in which intake air filling efficiency or output torque is improved is expanded.

しかし、このような方法による場合、同図からも明らか
なように上記制御弁を閉弁状態から開弁状態に切換える
エンジン回転数03の近傍で矢印で示すように出力トル
クが局部的に低下することになり、そのため特に低エン
ジン回転域でフラットな出力特性を確保できず、走行性
が悪化するといった不具合を沼くことになる。
However, when using such a method, as is clear from the figure, the output torque locally decreases as shown by the arrow near the engine speed 03 at which the control valve is switched from the closed state to the open state. As a result, flat output characteristics cannot be ensured, especially in the low engine speed range, leading to problems such as poor driving performance.

(発  明  の  目  的) 本発明は、吸気系に吸気順序が隣り合わない2つの気筒
群に対応させて2つの吸気集合部が設けられ、且つ両吸
気集合部を連通ずる連通部に設けられた制御弁をエンジ
ン回転域に応じて開閉することにより複数のエンジン回
転域で共鳴効果が得られるように構成された多気筒エン
ジンにおいて、特に低エンジン回転域で1qられる共鳴
効果に起因する局部的な出力トルクの低下を防止して、
できるだけフラン]〜な出力トルク特性を確保し、これ
により、走行性の改善を図ることを目的とする。
(Object of the Invention) The present invention provides an air intake system in which two intake collecting parts are provided corresponding to two cylinder groups whose intake order is not adjacent to each other, and a communication part is provided which communicates both the intake collecting parts. In a multi-cylinder engine that is configured to produce a resonance effect in multiple engine speed ranges by opening and closing a control valve depending on the engine speed range, localized resonance effects caused by the resonance effect of 1q in the low engine speed range are particularly important. Preventing a decrease in output torque,
The purpose is to ensure output torque characteristics as low as possible, thereby improving running performance.

(発  明  の  構  成) 本発明に係る多気筒エンジンの吸気装置は、上記目的達
成のため次のように構成したことを特徴とする。
(Structure of the Invention) In order to achieve the above object, the intake system for a multi-cylinder engine according to the present invention is characterized in that it is structured as follows.

即ち、吸気順序が連続しない2つの気筒群に独立の吸気
通路を介して接続された2つの吸気集合部と、両吸気集
合部を連通させる連通路と、該連通路をエンジン回転域
に応じて開閉する制御弁とが設けられた多気筒エンジン
の吸気装置において、上記制御弁に所定の動作を行わせ
る制御弁開閉制御装置を設ける。この制御弁開閉制御装
置は、上記制御弁を、低エンジン回転域における第1設
定エンジン回転数までは閉弁させ、且つ該第1設定エン
ジン回転数よりも高回転側の第2設定エンジン回転数以
上の高回転域では開弁させると共に第1、第2設定エン
ジン回転数の間では該回転数の上昇に従って段階的もし
くは無段階的に開度を増大させるように制御を行うもの
である。尚、上記第1.第2設定エンジン回転数は、上
記制御弁を完全に閉弁した状態に保持した場合に共鳴効
果によって出力トルクがピークとなるエンジン回転数の
低回転側と高回転側に設定されるものであるが、上記両
エンジン回転数における夫々の出力i−ルクが略等しく
なるようにこれらの回転数を設定するのが望ましい。
That is, two intake collecting parts are connected to two cylinder groups whose intake orders are not consecutive through independent intake passages, a communicating passage connects both intake collecting parts, and the communicating passage is connected according to the engine rotation range. In an intake system for a multi-cylinder engine that is provided with a control valve that opens and closes, a control valve opening/closing control device that causes the control valve to perform a predetermined operation is provided. This control valve opening/closing control device closes the control valve up to a first set engine speed in a low engine speed range, and closes the control valve until a second set engine speed is higher than the first set engine speed. In the above-mentioned high rotation range, the valve is opened, and between the first and second set engine rotation speeds, control is performed so that the degree of opening is increased stepwise or steplessly as the rotation speed increases. In addition, the above 1. The second set engine speed is set at a low speed side and a high speed side of the engine speed where the output torque reaches a peak due to a resonance effect when the control valve is held in a completely closed state. However, it is desirable to set these engine speeds so that the respective output i-luxes at the two engine speeds are approximately equal.

(発  明  の  効  果) 以上のように本発明によれば、吸気順序が隣り合わない
2つの気筒群に対応さけて吸気系に2つの吸気集合部が
設けられ、両吸気集合部間を制御弁によって遮断或いは
連通さゼることにより、複数のエンジン回転域で共鳴効
果が得られるように構成された多気筒エンジンの吸気装
置において、低エンジン回転域で得られる共鳴効果によ
って出力トルクがピークとなるエンジン回転数の低回転
側と高回転側における両エンジン回転数間で上記制御弁
を徐々にもしくは段階的に開弁させる制御弁開閉制御装
置を設けたので、上記両エンジン回転数の間の回転域に
おいて共鳴効果による出力トルクの極度な増大が抑制さ
れることになる。そのため、低エンジン回転域と高エン
ジン回転域との間で生じる局部的な出力トルクの低下が
防止されてフラットな出力トルク特性が得られ、これに
より快適な走行性を確保することが可能となる。
(Effects of the Invention) As described above, according to the present invention, two intake collecting parts are provided in the intake system to avoid dealing with two cylinder groups whose intake orders are not adjacent to each other, and the air flow between the two intake collecting parts is controlled. In a multi-cylinder engine intake system that is configured to produce a resonance effect in multiple engine speed ranges by shutting off or communicating with a valve, the output torque peaks due to the resonance effect obtained in the low engine speed range. Since a control valve opening/closing control device is provided that opens the control valve gradually or in stages between the low and high engine speeds, the control valve is opened gradually or in stages. In the rotation range, an extreme increase in output torque due to the resonance effect is suppressed. Therefore, localized decreases in output torque that occur between low and high engine speed ranges are prevented, and a flat output torque characteristic is obtained, thereby ensuring comfortable driving performance. .

(実  施  例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

第1図に示すように、エンジン1は6つの気筒21〜2
6を有し、これらの気筒21〜26が吸気順序の隣り合
わないもの同志を同じグループとして2つの気筒群31
.32にグループ分けされている。即ち、吸気順序が例
えば第1気筒21→第4気筒24→第2気筒22→第5
気筒25→第3気筒23→第6気筒26の順であって、
換言すれば2つの気筒群31.32の気筒がオーバーラ
ツプすることなく交互に吸気行程を行うようになってい
る。
As shown in FIG. 1, the engine 1 has six cylinders 21 to 2.
6, and these cylinders 21 to 26 are divided into two cylinder groups 31 with non-adjacent cylinders in the intake order as the same group.
.. It is divided into 32 groups. That is, the intake order is, for example, first cylinder 21 → fourth cylinder 24 → second cylinder 22 → fifth cylinder.
The order is cylinder 25 → third cylinder 23 → sixth cylinder 26,
In other words, the cylinders of the two cylinder groups 31 and 32 perform the intake stroke alternately without overlapping.

一方、上記各気筒21〜26に吸気を供給する吸気装置
4は、各気筒21〜26の吸気ボート51〜56に下流
端を夫々接続された独立の吸気通路61〜66と、これ
らの独立吸気通路のうちの第1気筒群31に対応する吸
気通路61〜63の上流端が接続された第1サージタン
ク71及び第2気筒群32に対応する吸気通路64〜6
6の上流端が接続された第2サージタンク72と、両サ
ージタンク71.72の上流側に設けられ且つ上流端が
合流された第1.第2共鳴通路81.82と、エアクリ
−太(図示せず)から導かれて第1゜第2共鳴通路8+
 、82の合流部(分岐部)に接続された合流通路つと
で構成され、上記第1.第2共鳴通路81.82に連動
して#il (Ml動作する第1、第2スロットルバル
ブ10+、102が備えられている。ここで、第1サー
ジタンク71ど第1共鳴通路81、及び第2サージタン
ク72と第2共鳴通路82とにより、互いに独立した第
1゜第2共鳴空間が構成されており、これらの共鳴空間
がザージタンクの容積と共鳴通路の長さL等によって定
まる一定の固有振動数[を有している。
On the other hand, the intake device 4 that supplies intake air to each of the cylinders 21 to 26 has independent intake passages 61 to 66 whose downstream ends are connected to the intake boats 51 to 56 of each of the cylinders 21 to 26, respectively, and these independent intake passages. A first surge tank 71 to which the upstream ends of intake passages 61 to 63 corresponding to the first cylinder group 31 of the passages are connected, and intake passages 64 to 6 corresponding to the second cylinder group 32
The second surge tank 72 is connected to the upstream ends of both surge tanks 71 and 72, and the first surge tank 72 is connected to the first surge tank 72, which is provided upstream of both surge tanks 71 and 72, and whose upstream ends are joined together. A second resonance passage 81, 82 and a first second resonance passage 8+ guided from an air cleaner (not shown).
, 82, and a merging passage connected to the merging portion (branching portion) of the first. First and second throttle valves 10+ and 102 are provided which operate #il (Ml) in conjunction with the second resonance passages 81 and 82. The second surge tank 72 and the second resonance passage 82 constitute mutually independent first and second resonance spaces, and these resonance spaces have a certain unique characteristic determined by the volume of the surge tank and the length L of the resonance passage It has a frequency of vibration.

また、上記第1.第2サージタンク71.72の間には
両サージタンク71.72を連通させる連通路11が設
けられていると共に、該連通路11には該通路を開閉す
る制御弁12が備えられている。更に、この吸気装置4
には、上記制御弁12を開閉駆動するステッピングモー
タ13と、エンジン回転センサ14からのエンジン回転
信号Xを受けて上記ステッピングモータ13に制御信号
yを出力するコントロールユニット15とが備えられて
いる。そして、該制御弁12を開いて連通路11を開通
させれば、該連通路11の左右の半部111.112が
上記第1.第2共鳴通路81゜82に代って、第1.第
2サージタンク71,72と共に第1.第2共鳴空間を
形成するようになっている。この場合に、共鳴管として
作用する連通路11の各半部111.112の長さL′
は上記第1.第2共鳴通路8+ 、82の長さより短い
ので、この場合における共鳴空間の固有振動数f′は上
記の場合より高くなる。
Also, the above 1. A communication passage 11 is provided between the second surge tanks 71 and 72 to communicate the two surge tanks 71 and 72, and the communication passage 11 is provided with a control valve 12 that opens and closes the passage. Furthermore, this intake device 4
is equipped with a stepping motor 13 that drives the control valve 12 to open and close, and a control unit 15 that receives an engine rotation signal X from an engine rotation sensor 14 and outputs a control signal y to the stepping motor 13. Then, when the control valve 12 is opened to open the communication passage 11, the left and right halves 111 and 112 of the communication passage 11 are connected to the first half. In place of the second resonant passages 81 and 82, the first. The first surge tank along with the second surge tanks 71 and 72. A second resonance space is formed. In this case, the length L' of each half 111, 112 of the communication channel 11 acting as a resonance tube
1 above. Since it is shorter than the length of the second resonance passages 8+ and 82, the natural frequency f' of the resonance space in this case is higher than in the above case.

次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

エンジン1の運転時には、図示しないエアクリーナから
吸入された吸気が吸気装置4の上゛流側の合流通路9か
ら第1.第2共鳴通路81.82に分配導入されると共
に、夫々第1.第2スロットルバルブ101.102を
経て第1.第2サージタンク71.72に流入する。そ
して、この吸気は、第1サージタンク71から独立吸気
通路61〜63を通って第1気筒群31を構成する第1
〜第3気筒21〜23に、また第2サージタンク72か
ら独立吸気通路64〜66を通って第2気筒群32を構
成する第4〜第6気筒24〜26に分配供給される。そ
の場合に、第1気筒群31を構成する3つの気筒21〜
23は吸気順序が隣り合わず、また第2気筒群32をt
M成する3つの気筒24〜26も吸気順序が隣り合わな
いから、両気筒群31.32の夫々にJ3いては、当該
吸気ボー1−51〜53又は54〜55の開閉に伴って
生じる圧力波が独立吸気通路61〜63又は64〜66
を通って当該サージタンク71又は72に伝播された時
にFいに打ち消し合うことがなく、これにより第1.第
2サージタンク71.72内にエンジン回転数に応じた
振動数の吸気撮動が発生す ゛る。そしで、両サージタ
ンク71.72間の連通路11が制御弁12によって遮
断されていて、両サージタンク71.72と第1.第2
共鳴通路81.82とによって互いに独立した低固有振
動数fの2つの共鳴空間が形成されている時は、エンジ
ン1の低回転域で該共鳴空間と上記吸気振動とが共鳴し
、この共鳴によって生じる大きな正圧波により吸気充填
効率が高められる。また、上記制御弁12が開いていて
、第1.第2サージタンク71.72と連通路11の左
右の半部11t、112とにより2つの高固有振動数r
′の共鳴空間が形成されている時は、エンジン1の高回
転域で該共鳴空間と吸気振動とが共鳴し、吸気充填効率
が高められることになる。つまり、上記開閉弁12を閉
じれば、第2図に示すように低回転域でビークCを有す
る出力トルク特性Aが得られ、該制御弁12を開けば高
回転域でビークdを有する出力トルク特性Bが得られる
。ここで、これらの特性A、Bにおいては、上記ビーク
c 、 d CDa回転側に独立吸気通路61〜66内
での吸気慣性効果による出力トルクのビークc’、d’
 が発生する。
When the engine 1 is in operation, intake air taken in from an air cleaner (not shown) flows from the upstream confluence passage 9 of the intake device 4 to the first. are distributed into the second resonance passages 81 and 82, and are respectively introduced into the first resonance passages 81 and 82. The first throttle valve passes through the second throttle valve 101 and 102. It flows into the second surge tank 71,72. Then, this intake air passes through the independent intake passages 61 to 63 from the first surge tank 71 to the first cylinder group constituting the first cylinder group 31.
It is distributed and supplied to the third cylinders 21 to 23 and from the second surge tank 72 to the fourth to sixth cylinders 24 to 26 forming the second cylinder group 32 through independent intake passages 64 to 66. In that case, the three cylinders 21 to 21 constituting the first cylinder group 31
23, the intake order is not adjacent to each other, and the second cylinder group 32 is
Since the three cylinders 24 to 26 that form M are not adjacent in the intake order, in J3 of both cylinder groups 31 and 32, the pressure generated as the intake bows 1-51 to 53 or 54 to 55 open and close. Waves are independent intake passages 61-63 or 64-66
When propagated to the corresponding surge tank 71 or 72 through the surge tank 71 or 72, they do not cancel each other out. Intake vibration occurs in the second surge tank 71, 72 at a frequency corresponding to the engine speed. Then, the communication path 11 between the two surge tanks 71, 72 is blocked by the control valve 12, and the communication path 11 between the two surge tanks 71, 72 and the first. Second
When two mutually independent resonance spaces with a low natural frequency f are formed by the resonance passages 81 and 82, the resonance spaces and the intake vibration resonate in the low rotation range of the engine 1, and this resonance causes The resulting large positive pressure wave increases the intake air filling efficiency. Also, the control valve 12 is open and the first. The second surge tank 71, 72 and the left and right halves 11t and 112 of the communication path 11 generate two high natural frequencies r.
When the resonant space ' is formed, the resonant space resonates with the intake air vibration in the high speed range of the engine 1, and the intake air filling efficiency is increased. That is, if the on-off valve 12 is closed, an output torque characteristic A having a peak C in the low rotation range is obtained as shown in FIG. 2, and if the control valve 12 is opened, an output torque having a peak d in the high rotation range is obtained. Characteristic B is obtained. Here, in these characteristics A and B, the output torque peaks c' and d' due to the intake inertia effect within the independent intake passages 61 to 66 are generated on the rotation side of the above-mentioned peaks c and d CDa.
occurs.

従って、エンジン回転センサ14からの信号Xに基づい
てコントロールユニット15からステッピングモータ1
3に制御信号yを出力し、この信号yによって該モータ
13を回転駆動することにより、上記制御弁12を、上
記両特性曲線A、Bが交わるエンジン回転数N1よりも
低回転側においては全開にし、且つ該エンジン回転数N
1よりも高回転側においては全開にすれば、特性曲線Δ
におけるビークCの近傍と、特性曲線8におけるビーク
dの近傍との2箇所において共鳴効果による出力トルク
の増大が得られることになる。
Therefore, based on the signal X from the engine rotation sensor 14, the control unit 15 controls the stepping motor 1.
By outputting a control signal y to the motor 13 and rotating the motor 13 by this signal y, the control valve 12 is fully opened at a rotation speed lower than the engine rotation speed N1 where the characteristic curves A and B intersect. and the engine speed N
If it is fully opened on the higher rotation side than 1, the characteristic curve Δ
An increase in the output torque due to the resonance effect is obtained at two locations: near the beak C in the characteristic curve 8 and near the beak d in the characteristic curve 8.

しかし、上記制御弁12の全開状態から全開状態への切
換動作をエンジン回転数N1で瞬時に行うようにすると
、同図に示すように出力トルクが該回転数N1で極度に
低下するといった不具合を招くことになる。そこで、こ
の吸気装置4においては上記コントロールユニット15
により以下に示すような制御が行われる。
However, if the switching operation of the control valve 12 from the fully open state to the fully open state is instantaneously performed at the engine speed N1, as shown in the figure, a problem occurs in which the output torque is extremely reduced at the engine speed N1. I will invite you. Therefore, in this intake device 4, the control unit 15
The following control is performed.

即ち、上記制御弁12が全開にされた状態でエンジン回
転数が上昇して、所定のエンジン回転数N3となったこ
とを示す信号Xがエンジン回転センサ14からコントロ
ールユニット15に入力されると、該ユニット15はス
テッピングモータ13をエンジン回転数の上昇に応じて
回転させるための制御信号yを出力し、これに伴って制
御弁12は徐々に開弁する。そして、エンジン回転数が
N1に達した時点で該制御弁12は全開状態とされる。
That is, when a signal X indicating that the engine rotation speed has increased to a predetermined engine rotation speed N3 with the control valve 12 fully open is inputted from the engine rotation sensor 14 to the control unit 15, The unit 15 outputs a control signal y for rotating the stepping motor 13 as the engine speed increases, and the control valve 12 gradually opens accordingly. Then, when the engine speed reaches N1, the control valve 12 is fully opened.

その場合に、上記制御弁12が開弁され始めるエンジン
回転数N3は、該制御弁12を完全に閉じた場合に共鳴
効果により出力トルクがビークCとなるエンジン回転数
N2よりも低回転側に設定され、且つ該エンジン回転数
N3における出力トルクと制御弁12が全開状態になる
エンジン回転数N1における出力トルクとが略同じ大き
さになるように該回転数N3が設定されている。従って
、エンジン回転数N3.N1間においては出力トルク特
性は、上記制御弁12が徐々に開弁されることにより共
鳴効果が抑制されて同図に太線Xで示すようにフラット
な曲線となる。これにより、上記制御弁12の全開状態
から全開状態への切換えを瞬時に行った場合における出
力トルクのビークCの発生が防止されて、特に低エンジ
ン回転域における出力トルク特性がフラットになり、そ
の結果、快適な走行性が得られることになる。
In this case, the engine speed N3 at which the control valve 12 starts to open is lower than the engine speed N2 at which the output torque reaches peak C due to the resonance effect when the control valve 12 is completely closed. The engine speed N3 is set so that the output torque at the engine speed N3 and the output torque at the engine speed N1 at which the control valve 12 is fully open are approximately the same magnitude. Therefore, the engine speed N3. Between N1, the resonance effect is suppressed by gradually opening the control valve 12, and the output torque characteristic becomes a flat curve as shown by the thick line X in the figure. This prevents the output torque peak C from occurring when the control valve 12 is instantaneously switched from the fully open state to the fully open state, and flattens the output torque characteristic particularly in the low engine speed range. As a result, comfortable driving performance is achieved.

尚、この実施例ではエンジン回転数がN3とN1との間
において制御弁を徐々に開弁させて行くようにしたが、
該制御弁の開度を段階的に切換えるようにしてもよい。
In this embodiment, the control valve is gradually opened when the engine speed is between N3 and N1.
The opening degree of the control valve may be changed in stages.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は本発明の実施例を示すもので、第1図は吸
気装置の概略構成図、第2図は該吸気装置の制御特性を
示す図である。また、第3図は従来の問題点を示す出力
l・ルク特性線図である。 1・・・エンジン、31.32・・・気筒群、4・・・
吸気装置、61〜66・・・独立吸気通路、71゜72
・・・吸気集合部(す°−ジタンク)、11・・・連通
路、12・・・制御弁、13,14.15・・・制御弁
開閉制細裂に(ステッピングモータ、エンジン回転セン
サ、コントロールユニット)、N3・・・第1設定エン
ジン回転数、N1・・・第2設定エンジン回転数。
1 and 2 show embodiments of the present invention, with FIG. 1 being a schematic configuration diagram of an intake device, and FIG. 2 being a diagram showing control characteristics of the intake device. Further, FIG. 3 is an output l/lux characteristic diagram showing the conventional problems. 1...Engine, 31.32...Cylinder group, 4...
Intake device, 61-66...Independent intake passage, 71°72
...Intake gathering part (suji tank), 11...Communication path, 12...Control valve, 13, 14.15...Control valve opening/closing control (stepping motor, engine rotation sensor, control unit), N3...first set engine speed, N1...second set engine speed.

Claims (1)

【特許請求の範囲】[Claims] (1)吸気順序が連続しない2つの気筒群が独立の吸気
通路によって各々の吸気集合部に集合されていると共に
、両吸気集合部を連通させる連通路と、該連通路を開閉
する制御弁とが設けられた多気筒エンジンの吸気装置で
あって、上記制御弁を、第1設定エンジン回転数より低
回転域においては閉弁させると共に、上記第1設定回転
数よりも高回転側の第2設定エンジン回転数より高回転
域においては開弁させ、且つ上記第1、第2設定エンジ
ン回転数の間では該回転数の上昇に従って段階的もしく
は無段階的に開度を増大させる制御弁開閉制御装置が備
えられていることを特徴とする多気筒エンジンの吸気装
置。
(1) Two groups of cylinders whose intake order is not consecutive are collected in each intake collecting part by independent intake passages, and there is also a communicating passage that communicates both the intake collecting parts, and a control valve that opens and closes the communicating passage. An intake system for a multi-cylinder engine, wherein the control valve is closed in a rotation range lower than a first set engine speed, and a second control valve is closed at a rotation speed higher than the first set engine speed. Control valve opening/closing control that opens the valve in a rotation range higher than a set engine speed, and increases the opening stepwise or steplessly as the engine speed increases between the first and second set engine speeds. An intake system for a multi-cylinder engine, characterized in that it is equipped with a device.
JP60078691A 1985-04-12 1985-04-12 Intake equipment for multi-cylinder engine Pending JPS61237823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60078691A JPS61237823A (en) 1985-04-12 1985-04-12 Intake equipment for multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60078691A JPS61237823A (en) 1985-04-12 1985-04-12 Intake equipment for multi-cylinder engine

Publications (1)

Publication Number Publication Date
JPS61237823A true JPS61237823A (en) 1986-10-23

Family

ID=13668888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60078691A Pending JPS61237823A (en) 1985-04-12 1985-04-12 Intake equipment for multi-cylinder engine

Country Status (1)

Country Link
JP (1) JPS61237823A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134814A (en) * 1986-11-27 1988-06-07 Mitsubishi Motors Corp Intake control device of multiple-cylinder engine
FR2618489A1 (en) * 1987-07-21 1989-01-27 Peugeot Intake device with a duplex carburettor for an internal combustion engine
DE4110597A1 (en) * 1990-03-30 1991-10-02 Mazda Motor INLET SYSTEM FOR A MULTI-CYLINDER INTERNAL COMBUSTION ENGINE
EP0402091B1 (en) * 1989-06-06 1994-09-21 Mazda Motor Corporation A four-cycle twelve cylinder engine
WO1998032958A1 (en) * 1997-01-24 1998-07-30 Filterwerk Mann+Hummel Gmbh Process for regulating air consumption in the intake tract of an internal combustion engine and intake pipe for carrying out the process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026120A (en) * 1983-07-21 1985-02-09 Toyota Motor Corp Suction system for engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026120A (en) * 1983-07-21 1985-02-09 Toyota Motor Corp Suction system for engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134814A (en) * 1986-11-27 1988-06-07 Mitsubishi Motors Corp Intake control device of multiple-cylinder engine
FR2618489A1 (en) * 1987-07-21 1989-01-27 Peugeot Intake device with a duplex carburettor for an internal combustion engine
EP0402091B1 (en) * 1989-06-06 1994-09-21 Mazda Motor Corporation A four-cycle twelve cylinder engine
DE4110597A1 (en) * 1990-03-30 1991-10-02 Mazda Motor INLET SYSTEM FOR A MULTI-CYLINDER INTERNAL COMBUSTION ENGINE
DE4110597C2 (en) * 1990-03-30 2003-12-04 Mazda Motor Intake air intake system for a multi-cylinder internal combustion engine
WO1998032958A1 (en) * 1997-01-24 1998-07-30 Filterwerk Mann+Hummel Gmbh Process for regulating air consumption in the intake tract of an internal combustion engine and intake pipe for carrying out the process

Similar Documents

Publication Publication Date Title
JPS6014169B2 (en) Intake system for multi-cylinder engines
JPH0230919A (en) Air intake device for engine
JPH0192518A (en) Engine intake-air device
JPS61237823A (en) Intake equipment for multi-cylinder engine
JPH01106922A (en) Intake apparatus of v-shaped engine
JP2903726B2 (en) Variable intake device for internal combustion engine
JPS60169627A (en) Suction device of engine
JP3248429B2 (en) Intake control device for internal combustion engine
JPH0320496Y2 (en)
JPS61229925A (en) Intake device for multi-cylinder engine
JP2721983B2 (en) V-type engine intake system
JPH02115521A (en) Air intake device of multiple cylinder internal combustion engine
JPH0565693B2 (en)
JPH06330756A (en) Intake system of multicylinder internal combustion engine
JPS61226514A (en) Intake device of multicylinder engine
JPS6237940Y2 (en)
JPH03172533A (en) Intake system of engine
JPH05187235A (en) Air intake device for engine
JPH03286133A (en) Air intake device for multiple cylinder engine
JPH01237318A (en) Air intake device for engine with supercharger
JPH0422712A (en) Suction device of engine
JPH02108816A (en) Air intake device for v type engine
JPH01277623A (en) Intake device of engine
JPH03286131A (en) Air intake passage structure for multiple cylinder engine
JPH0436022A (en) Intake system of engine