JPS60169627A - Suction device of engine - Google Patents

Suction device of engine

Info

Publication number
JPS60169627A
JPS60169627A JP59026783A JP2678384A JPS60169627A JP S60169627 A JPS60169627 A JP S60169627A JP 59026783 A JP59026783 A JP 59026783A JP 2678384 A JP2678384 A JP 2678384A JP S60169627 A JPS60169627 A JP S60169627A
Authority
JP
Japan
Prior art keywords
intake
passage
engine
valve
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59026783A
Other languages
Japanese (ja)
Inventor
Taisuke Okazaki
岡崎 泰輔
Yutaka Oizumi
豊 大泉
Shuji Terao
寺尾 秀志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59026783A priority Critical patent/JPS60169627A/en
Publication of JPS60169627A publication Critical patent/JPS60169627A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/021Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0231Movable ducts, walls or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve charging efficiency with the aid of resonance effect produced within a total operation range, by a method wherein a suction pipe is divided into 2 parts at its middle part, an enlarged chamber is disposed to the downstream of each of the branched pipes, a short-circuiting valve is located to each of a partition and a communicating part between the two enlarged chambers, and operation of the valves are controlled. CONSTITUTION:A suction pipe 5, located to the downstream of an air cleaner 2, is divided into 2 parts at its middle part by means of a partition 8, enlarged chambers 101 and 102 are respectively located to the downstream of the branched suction pipes, and branch pipes 71-76, extending to each cylinder, are branched from the enlarged chambers. A short-circuit valve 122 is located to the partition 8, a short-circuit valve 121 is attached to a partition part through the medium of which the two enlarged chambers 101 and 102 positioned adjacent to each other, and operation, responding to an operation state, of each of the valves is controlled by a controller 13. This enables the length of a resonnance passage to be switched in a 3-stage, and produces a resonnance effect about within a whole operation range, resulting in the possibility to improve charging efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの吸気装置、特に共鳴効果を利用して
吸気充填効率を向上させるようにした吸気装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an engine, and particularly to an intake system that utilizes resonance effects to improve intake air filling efficiency.

(従 来 技 術) エンジンの出ツノを増大させるためには吸気の充填効率
を向上させることが有効であるが、近年、この充填効率
の向上のため吸気の動的効果を利用することが試みられ
ている。この吸気の動的効果としては、吸気通路内にお
1ノる吸気の脈動を利用する脈動効果、吸気の運動エネ
ルギを利用Jる慣性効果、更には吸気系内にお()る吸
気の振動の共鳴を利用づる共鳴効果等があるが、多気筒
エンジンにおいて共鳴効果を利用づ−る場合は、吸気装
置は次のように構成されるのが通例である。
(Prior art) Improving the filling efficiency of intake air is effective in increasing engine output, but in recent years, attempts have been made to utilize the dynamic effect of intake air to improve this filling efficiency. It is being The dynamic effects of this intake include a pulsation effect that utilizes the pulsation of the intake air within the intake passage, an inertial effect that utilizes the kinetic energy of the intake air, and vibrations of the intake air within the intake system. There is a resonance effect that utilizes the resonance of the engine, but when the resonance effect is utilized in a multi-cylinder engine, the intake system is usually configured as follows.

即ち、各気筒間での吸気の振動の干渉を避りるために各
気筒を吸気順序が連続しないもの毎にグループカミノリ
”ると共に、吸気通路を各気筒グループに対応させて!
数の分岐通路に分岐し、且つ各分岐通路の下流側に共鳴
室どして作用でる吸気拡大室を夫々備える。そして、こ
の吸気拡大室と対応づる気筒グループの複数の気筒とを
夫々独立吸気通路を介して接続りるJ:うに構成する。
That is, in order to avoid interference of intake air vibration between cylinders, the cylinders are grouped into groups whose intake order is not consecutive, and the intake passages are made to correspond to each cylinder group!
It branches into several branch passages, and each of the branch passages has an intake expansion chamber acting as a resonance chamber on the downstream side thereof. This intake expansion chamber is connected to a plurality of cylinders of a corresponding cylinder group through independent intake passages.

このような構成においては、上記各分岐通路の分岐部か
ら吸気拡大室及び独立吸気通路を経て複数の気筒に至る
独立した吸気系が各気筒グループ毎に形成され、各吸気
系が一1記分岐通路の長さ及び径と、吸気拡大室の容積
と、独立吸気通路の長さ及び径とによって定まる一定の
固有振動数を右することになる。そして、この吸気系に
対して該系内を通過づる吸気の振動が共鳴した11.1
に大きな正圧波が生じ、この正圧波によりシリンダ内へ
の吸気の押し込み作用が生じる。
In such a configuration, an independent intake system is formed for each cylinder group from the branch part of each branch passage to the plurality of cylinders via the intake expansion chamber and the independent intake passage, and each intake system is connected to the eleventh branch. A certain natural frequency is determined by the length and diameter of the passage, the volume of the intake expansion chamber, and the length and diameter of the independent intake passage. 11.1 The vibration of the intake air passing through the system resonated with this intake system.
A large positive pressure wave is generated, and this positive pressure wave causes the action of pushing intake air into the cylinder.

然るに、吸気系内を通過づる吸気の振動は各気筒の吸気
作用に基づいて誘起されるから、その振動数は」−ンジ
ンの回転数によって変化する。そのため、吸気系に対り
る吸気振動の」も鳴は、エンジン回転数が成る一定の回
転数ないし該回転数を中心とJる限られた範囲において
のみ得られることになり、例えば自動車用エンジンのよ
うに低速から高速までの広い領域で運転されるエンジン
の場合に、その運転領域の全域にわたって共鳴効果を得
ることはできない。
However, since the vibration of the intake air passing through the intake system is induced based on the intake action of each cylinder, its frequency changes depending on the engine rotational speed. Therefore, the noise caused by intake vibration in the intake system can only be obtained at a certain engine speed or within a limited range around this engine speed. For example, in an automobile engine. In the case of an engine that is operated in a wide range from low speed to high speed, it is not possible to obtain a resonance effect over the entire operating range.

共鳴効果にl!lづる上記のような問題に対[7−Cは
、例えば実開昭58−178421号公報に開示された
吸気装置がある。これは、第1図に示すJ:うに、複数
の気筒を吸入行程が重なり合わない気筒毎にグループ分
【プし、各気筒グループ毎に吸気通路を分岐した共鳴通
路△、Bを設けると共に、両共鳴通路A、BJ:り下流
の吸気マニホルド部(吸気拡大室)C,Dを所要長さの
補助共鳴通路Eを介して相互に連通し、且つ該補助共鳴
通路[に運転状態に応じて該通路を開閉する通路開閉弁
Fを介装したものである。この吸気装置によれば、各気
筒グループ毎に独立した2つの吸気系が形成されると共
に、両吸気系に対づる吸気振動の共鳴点が上記開閉弁[
の開閉によって変化することになる。従って、共鳴点が
一点の場合より広範囲のエンジン回転数に対して共鳴効
果が得られることになる。
L for resonance effect! To solve the above-mentioned problems [7-C], for example, there is an air intake device disclosed in Japanese Utility Model Application Laid-open No. 58-178421. This is done by dividing a plurality of cylinders into groups for each cylinder whose intake strokes do not overlap, as shown in FIG. Both resonance passages A and BJ: communicate the downstream intake manifold parts (intake expansion chambers) C and D with each other via an auxiliary resonance passage E of a required length, and A passage opening/closing valve F is installed to open and close the passage. According to this intake system, two independent intake systems are formed for each cylinder group, and the resonance point of intake vibration for both intake systems is located at the on-off valve [
It will change depending on whether it is opened or closed. Therefore, the resonance effect can be obtained over a wider range of engine speeds than when there is only one resonance point.

しかし、この吸気装置においては、−[記補助共鳴通路
Eが吸気通路を構成する共鳴通路A、B及び吸気マニホ
ルド部C21)とは別に外部に突出した状態で゛形成さ
れているため吸気装置ないしエンジン全体が嵩高くなり
、特に自動車用エンジンの場合に、限られたスペースの
1−ンジンルームへの収納が困難になる。また、共鳴点
が開閉弁Fの冊N1によって2段階に切換えられるだけ
であるから、共鳴効果が得られる運転領域が十分に拡大
されることにはならない。
However, in this intake system, since the auxiliary resonance passage E is formed in a state that projects outside separately from the resonance passages A and B that constitute the intake passage and the intake manifold portion C21), The entire engine becomes bulky, making it difficult to store it in a single engine room with limited space, especially in the case of an automobile engine. Furthermore, since the resonance point is simply switched to two stages by the switch N1 of the on-off valve F, the operating range in which the resonance effect can be obtained is not sufficiently expanded.

史に、上記のような構成ににると、気筒グループ毎に吸
気マニホルド部C,Dが分割されでいるため吸気の各気
筒への分配性が悪くなり、また両吸気マニホルド部C,
D内の圧力が不均一となって所謂ボンピングロスが増大
し、ぞのICめ吸気充填量が少ない低負荷時に、共鳴効
果による出力アップよりボンピング【〕スの増大による
出力ダウンが−V回ることになる。
Historically, with the above configuration, the intake manifold sections C and D are divided for each cylinder group, resulting in poor distribution of intake air to each cylinder.
The pressure inside D becomes uneven and the so-called pumping loss increases, and at low loads when the intake air filling amount for each IC is small, the output decrease due to the increase in pumping is more than -V due to the increase in output due to the resonance effect. become.

(発 明 の 目 的) 本発明は、共鳴効果を利用し−C吸気充填量を増大さU
るようにした1ンジンの吸気装置にお【ノる]−記の如
き問題点を解消づるもので、吸気H1rをコンパクトに
構成すると共に、一層広範囲のエンジン運転領域で共鳴
効果を利用できるJ、うにJる。
(Object of the Invention) The present invention utilizes the resonance effect to increase the -C intake air filling amount.
[NO] - This is a one-engine intake system designed to solve the following problems, and the intake H1r can be configured compactly, and the resonance effect can be utilized in a wider range of engine operating ranges. Sea urchin Juru.

また、低負荷時にお(」る吸気分配性の悪化或いはボン
ピングロスの増大にJこる出力の低下を防I]−シ、も
つ−(特に自動車用エンジンに適した吸気装置を実現す
ることを目的とする。
It also prevents a decrease in output due to deterioration of intake air distribution or increase in pumping loss that occurs at low loads. shall be.

(発 明 の 構 成) 1記目的達成の1=め、本発明に係るエンジンの吸気装
置は次のように構成される。
(Structure of the Invention) To achieve the first objective, an engine intake system according to the present invention is structured as follows.

即゛ち、吸気通路を所定の分岐部で分岐した2つの分岐
通路と、両分岐通路の下流側に夫々備えlこ所要の容積
を有づる吸気拡大室と、該吸気拡大室と吸気順序が連続
しない複数の気筒とを夫々接続づ−る独立吸気通路とに
より2つの独イlした吸気系を構成すると共に、上記両
吸気拡大室を短絡づる第1通路と、上記分岐部と吸気拡
大室との間において両分岐通路を短絡する第2通路とを
設け、[1つこの第1.第2通路を夫々開通、閉鎖する
第1゜第2バルブを備える。そして、この第1.第2バ
ルブをエンジン回転数に応じて「■閉制御1?lること
により、上記両分岐通路の共鳴通路どして作用する部分
の長さを3段階に切換えると共に、低負荷時には第1バ
ルブを聞いて上記両吸気拡大室を互いに連通さ1!るよ
うに構成する。
That is, there are two branch passages in which the intake passage is branched at a predetermined branch part, intake expansion chambers each provided downstream of both branch passages and each having a required volume, and the intake expansion chambers and the intake order. Two independent intake systems are constituted by independent intake passages that connect a plurality of discontinuous cylinders, a first passage that short-circuits both the intake expansion chambers, and the branch section and the intake expansion chamber. and a second passage that short-circuits both branch passages between the first and second passages. A first valve and a second valve are provided to open and close the second passage, respectively. And this first one. By controlling the second valve to close according to the engine speed, the length of the portion of the above-mentioned two branch passages that acts as a resonant passage can be switched to three stages, and when the load is low, the first valve The two intake expansion chambers are constructed so as to communicate with each other.

このような構成によれば、吸気通路を構成する分岐通路
が共鳴通路として作用するから、吸気通路の外部に」−
記従来例のような補助共鳴通路を段りる必要がなくなり
、従って吸気装置ないしTンジン全体がコンパクトに構
成されることになる。
According to such a configuration, the branch passage that constitutes the intake passage acts as a resonant passage, so that there is no air outside the intake passage.
There is no need to step up the auxiliary resonance passages as in the conventional example, and therefore the intake system or the entire engine can be constructed compactly.

また、上記のように共鳴点が3段階に切換えられること
により一層広範囲の”Lンジン運転領域で共鳴効果が利
用されるようになると共に、低負荷時には2つの吸気拡
大室が連通されて各気筒への吸気の分配性が良くなり、
また両室内の圧力が均一化されることによりボンピング
ロスににる出力低下が防止され、低負荷時の出力性能も
向上することになる。
In addition, by switching the resonance point into three stages as described above, the resonance effect can be utilized in a wider range of L engine operating ranges, and at low loads, the two intake expansion chambers are communicated with each cylinder. Improved distribution of air intake to
Furthermore, by equalizing the pressure in both chambers, a decrease in output due to pumping loss is prevented, and output performance at low loads is also improved.

(実 施 例) 以下、本発明の実施例を図面に基づいて説明覆る。 。(Example) Hereinafter, embodiments of the present invention will be explained based on the drawings. .

第2図に示すように、この実施例は直列6気筒Iンジン
に適用されたもので、該1ンジン1にはエアクリーナ2
から6つの気筒31〜36に至る吸気装置4が設けられ
ている。この1段気!’X flff 4は、上記エア
クリーナ2を上流端とする主吸気通路5と、該主吸気通
路5の下流側に備えられたサージタンク6と、該()−
−ジタンク6と上記各気筒31〜36とを接続覆る気筒
数と同数の独i7吸気通路71〜76とで構成されてい
ると其に、■第1吸気通路5の中間部からサージタンク
6の内部にがけて隔壁8が設りられ、該隔壁8によって
主吸気通路5の下流部が第1.第2分岐通路91.92
に分岐され、またサージタンク6内が両分岐通路91.
92の下流端に夫々連続り−る第1.第2吸気拡大室1
0+、102に什切られている。ここで、第1吸気拡大
室101は第1・〜第3独1’/吸気通路71〜73を
介して第1〜第3気筒31〜33に接続され、また第2
吸気拡大室102は第4〜第6独立吸気通路74〜76
合介し゛(第4〜第6気筒34〜36に接続されること
になるが、第1〜第3気筒31〜33と第4〜第6気筒
34〜36の2つの気筒グループ内においては、各気筒
の吸気順序が連続しないにうになっている。
As shown in FIG. 2, this embodiment is applied to an in-line six-cylinder I engine, and the engine 1 has an air cleaner 2.
An intake device 4 extending from six cylinders 31 to 36 is provided. This first step! '
- The surge tank 6 is connected to each of the above-mentioned cylinders 31 to 36, and is composed of the same number of i7 intake passages 71 to 76 as the number of cylinders covered. A partition wall 8 is provided inside, and the partition wall 8 separates the downstream portion of the main intake passage 5 from the first. 2nd branch passage 91.92
The inside of the surge tank 6 is divided into both branch passages 91.
92, the first. Second intake expansion chamber 1
0+, 102. Here, the first intake expansion chamber 101 is connected to the first to third cylinders 31 to 33 via the first to third cylinders 1'/intake passages 71 to 73, and
The intake expansion chamber 102 includes fourth to sixth independent intake passages 74 to 76.
(It will be connected to the 4th to 6th cylinders 34 to 36, but within the two cylinder groups of the 1st to 3rd cylinders 31 to 33 and the 4th to 6th cylinders 34 to 36, The intake order of each cylinder is not consecutive.

然して、上記隔壁8におG)る第1.第2吸気拡大室1
01,102を仕切る部分には両案101゜102を直
接連通させる第1通路111と、該通路111を開通、
閉鎖づるり11バルブ121とが設けられ、また該隔壁
8にお(Jる第1.第2分岐通路9+、92を仕切る部
分には両分岐通路91゜92を中間部においで連通させ
る第2通路112と、該通路112を開通、開鎖!Jる
第2バルブ122とが設けられている。
However, the first. Second intake expansion chamber 1
01 and 102, there is a first passage 111 that directly communicates the two parts 101 and 102, and the passage 111 is opened.
A closing valve 11 and a valve 121 are provided in the partition wall 8 (J), and a second branch passage 91 and a second branch passage 92 are connected to each other at an intermediate portion in a portion that partitions the first and second branch passages 9+ and 92. A passage 112 and a second valve 122 for opening and closing the passage 112 are provided.

そして1.1ニ記第1.第2バルゾ12+、122は、
制御装置13から出力される信号a 、 bによって第
1.第2Pクヂコュータ14+、142を介しく開閉制
御されるようになっていると共に、この制御装置13に
はエンジン1の回転数を検出づる回転数センサ15から
の信号Cど、負荷を検出りる負荀センリー16からの信
号dとが入力され、これらの信号C9(1が示すエンジ
ン1の運転状態に応じて上記第1.第2バル−グ121
,122を開閉制御りるようになっている1、ここで、
−1ンジン1の運転状態に応じた第1.第2バルゾ゛1
21゜122の開閉制御は第3図に示1、うにFiわれ
る。
And 1.1 D, 1st. The second balzo 12+, 122 is
The first . Opening/closing control is performed via the second P output regulators 14+ and 142, and this control device 13 receives signals such as a signal C from a rotational speed sensor 15 that detects the rotational speed of the engine 1, and negative signals that detect the load. The signal d from the Xun sensor 16 is input, and the first and second valves 121 are
, 122 is designed to open and close 1, where,
-1 The first engine according to the operating condition of engine 1. 2nd barzo 1
The opening/closing control of 21° 122 is performed as shown in FIG.

即ら、運転領域を高負荷域と低負荷域とに1ヌ分すると
共に、高負荷域においては更に回転数に応じて低速域T
、中低速域■、中IT!l速域■及び^遠域IVの4つ
の領域に区分し、低速域l(・は第1.第2バルブ12
1.122の両者を閉じ、中低速域■では第1バルブ1
21を閉じ11″つ第2バルグ122を間ぎ、中高速域
■ぐは第1バルブ121を聞き(第2バルブ122は閉
じても問い(もJ、い)、更に高速域IVにおいては再
び第1.第2バルブ121.122の両者を閉じる。、
;1、た、イ1(負傭域Vにおいては第1バルブ121
を聞く(第2バルブ122は閉じてム#目)でもよい)
ように制御づる。
That is, the operating range is divided into a high load range and a low load range, and in the high load range, the low speed range T is further divided according to the rotation speed.
, Medium-low speed range ■, Medium IT! It is divided into four regions: l speed range ■ and ^ far range IV, and low speed range l (・ indicates the 1st and 2nd valves 12
1. Close both valves 122 and close the first valve 1 in the medium and low speed range ■.
21, close the second valve 122 by 11'', and listen to the first valve 121 in the medium and high speed range (even if the second valve 122 is closed, it will not work), and then again in the high speed range IV. Close both the first and second valves 121 and 122.
;1, ta, i1 (in the negative range V, the first valve 121
(The second valve 122 may be closed)
Control it like this.

尚、第2図に示すように、この実施例(゛は主吸気通路
5にエアフローメータ17が設置されていると共に、第
1.第2分岐通路91.92にお1プる第1.第2吸気
拡大室10+、102への接続部の直上流位置には第1
.第2スロツ1〜ルバルブ18+、182が夫々備えら
れ1いる。また、図示しないが、各独立吸気通路7t”
−7eには夫々燃料噴射弁が設置される。
Note that, as shown in FIG. 2. Directly upstream of the connection to the intake expansion chambers 10+ and 102, there is a first
.. A second slot 1 to a valve 18+, 182 are provided, respectively. Although not shown, each independent intake passage 7t"
-7e are each equipped with a fuel injection valve.

上記の構成によれば、エンジン1の運転時にエアクリー
ナ2から主吸気通路5内に吸入されIC吸気は、該主吸
気通路5内にお(Jる隔壁8の上流端が位置りる分岐部
Xにa5いて第1.第2分岐通路91.92に分岐流入
すると共に、第1分岐通路91に流入した吸気は、該通
路91、第1吸気拡大室101及び第1〜第3独立吸気
通路71〜73とでなる第1吸気系Y1を通って第1〜
第3気筒31〜33に流入し、また12分岐通路92に
流入した吸気は、該通路92、第2吸気拡大室102及
び第4−・第6独ひ通路74〜76とでなる第2吸気系
Y2を通って第4へ・第6気筒34〜36に流入する。
According to the above configuration, when the engine 1 is operating, the IC intake air drawn into the main intake passage 5 from the air cleaner 2 is transferred to the branch part At a5, the intake air branches into the first and second branch passages 91 and 92, and the intake air that flows into the first branch passage 91 flows through the passage 91, the first intake expansion chamber 101, and the first to third independent intake passages 71. ~ 73 through the first intake system Y1 consisting of the first ~
The intake air that has flowed into the third cylinders 31 to 33 and the 12-branch passage 92 is transferred to the second intake air, which is formed by the passage 92, the second intake expansion chamber 102, and the fourth and sixth independent passages 74 to 76. It flows into the fourth and sixth cylinders 34 to 36 through the system Y2.

然して、両吸気系Y1.Y2にお1′Jる吸気拡大室1
01,102を直接連通させる第1通路111が第1バ
ルブ121により、また第1.第2分岐通路91.92
を連通さける第2通路112が第2パルプ122にJ:
っていずれら閉鎖されている状態においては、両吸気系
Y1.Y2は上記分岐部Xから第1〜第3気筒31〜3
3及び第4へ・第6気筒34〜36に至る全範囲ですい
に独立した状態にあって、第1.第2分岐通路91.9
2はその全長が吸気振動が共鳴覆るバ鳴管としく作用づ
ることになる。しかし、上記第2バルゾ122が聞くと
、両吸気系Y1.Y’2は第2通路112より下流側の
みで独立し1.:状態となっ(、第1゜第2分岐通路9
1.92の共鳴管として(!1川づる部分が短くなり、
まIζ第1バルブ121が開くと、両吸気系Y1.Y2
は吸気拡大室101,102より下流側のみが独立した
状態となって、第1゜第2分岐通路91.92が共鳴室
として作用しなくなる。そのため、第1.第2バルブ1
21,122の開jHj状態番J応じて吸気が共鳴する
114の振動数、換言づれば吸気の共鳴にJζっC充填
効率ないしエンジン1の出力トルクが増大する時の1ン
ジン回転数が変化4ることになる。つまり、第4図に示
すように、第1.第2バルブ121,122を共に閉じ
た場合は、曲線(1)で示りJ:うに低速域lにおいて
出力1−ルクのビーク1〕1が生じ(この時、高速域I
Vにおいて2次のビークP4が生じる)、第1バルブ1
21を閉じ且つ第2パルプ122を問いた場合には曲線
(2)で示Jように中低速域■において出力トルクのビ
ークP 2が生じ、また第1バルブ121をff1Jい
た場合には中高速域■で出力トルクのビークP3が生じ
るのひある。
However, both intake systems Y1. Intake expansion chamber 1 located in Y2
A first passage 111 that directly communicates between the first valve 121 and the first passage 111 that directly communicates the first valve 121 and the first passage 111 that connects the first passage 102 and 2nd branch passage 91.92
The second passage 112 that communicates with the second pulp 122 J:
In the closed state, both intake systems Y1. Y2 is the first to third cylinders 31 to 3 from the branching part X.
The entire range from the 3rd and 4th cylinders to the 6th cylinders 34 to 36 is already in an independent state, and the 1st... 2nd branch passage 91.9
2, its entire length acts as a bellows tube in which the intake vibration resonates. However, when the second balzo 122 listens, both intake systems Y1. Y'2 is independent only on the downstream side of the second passage 112; : state (, 1st ° 2nd branch passage 9
As a 1.92 resonance tube (! 1 The river part is shortened,
When the Iζ first valve 121 opens, both intake systems Y1. Y2
Only the downstream side of the intake expansion chambers 101 and 102 becomes independent, and the first and second branch passages 91 and 92 no longer function as resonance chambers. Therefore, 1. 2nd valve 1
21, 122 open jHj According to the state number J, the frequency of 114 at which the intake air resonates, in other words, the resonance of the intake air, the JζC filling efficiency, or the 1 engine rotational speed when the output torque of the engine 1 increases changes 4. It turns out. That is, as shown in FIG. When both the second valves 121 and 122 are closed, as shown by curve (1), a peak of output 1 - l q occurs in the low speed range l (at this time, in the high speed range I
(secondary peak P4 occurs at V), first valve 1
21 and the second pulp 122 is closed, a peak P2 of output torque occurs in the medium and low speed range ■ as shown by curve (2), and when the first valve 121 is ff1J, a peak P2 of output torque occurs in the medium and low speed range ■. A peak P3 of output torque is likely to occur in region (■).

ところC1上記第1.第2バルグ12+、122は制御
装置13からの出力信号a 、 bにより、エンジン1
の運転領域に応じて第3図に示1ように開閉制御される
。即ら高負荷域において回転数が低速域■にある時は第
1.第2バルブ121゜122どし閉じられ、中低速域
■にある時は第1バルブ121が閑じ目つ第2パルプ1
22が間かれ、中高速17AUlにある時は第1バルブ
121が開かれ、また高速域Ivにある時は両バルブ1
21゜122とも再び閉じられる。(の結果、高負荷域
におけるエンジン1の出力1〜ルクは、]−ンジン回転
数の変化に対しく第4図に入線で承り名曲線(1)〜(
3)の4つのビークP1〜1〕4を結ぶ曲線(4)に従
って変化り−ることになり、これによりl−ンジン1の
略全回転領域においで出力が増大することになる。
However, C1 above 1. The second valves 12+ and 122 control the engine 1 by output signals a and b from the control device 13.
The opening/closing is controlled as shown in FIG. 3 according to the operating range. In other words, when the rotational speed is in the low speed range ■ in the high load range, the first. When the second valves 121 and 122 are closed and the speed is in the medium and low speed range ■, the first valve 121 is idle and the second pulp 1
22 is open and the first valve 121 is opened when the medium speed is 17AUl, and when the high speed is Iv, both valves 1 are opened.
21° and 122 are closed again. (As a result, the output of the engine 1 in the high load range is 1 to 100 mph.) - The input curve (1) to (1) in Fig. 4 for changes in engine speed is
3) will change according to the curve (4) connecting the four beaks P1 to P1]4, and as a result, the output will increase in substantially the entire rotation range of the engine 1.

一方、低負向域Vにおいては、回転数に拘らず第1バル
ブ121が間かれて、第1.WI2吸気拡大室10 +
 、’ 102が常に連通されIC状態にある。
On the other hand, in the low negative range V, the first valve 121 is closed regardless of the rotation speed, and the first valve 121 is closed regardless of the rotation speed. WI2 intake expansion chamber 10 +
, ' 102 are always in communication and in the IC state.

そのため、両室10t、102から各気筒31〜3Gに
吸気が自由に流入し″′C該吸気の分配4Qが良くなる
と共に、画i10’t、102内のII力が均一化され
ることになる。これにより、各気筒31〜36における
ボンピングL」スが減少され、低負荷時に該ボンピング
ロスにJ、る出力ダウンが共鳴効果による出力アップを
上回るため[・−タルとしてエンジン1の出りが低下す
るという弊害が防止される。
Therefore, intake air freely flows into each cylinder 31 to 3G from both chambers 10t, 102, and the distribution 4Q of the intake air is improved, and the II force in the cylinders 10't, 102 is made uniform. As a result, the pumping loss in each cylinder 31 to 36 is reduced, and the output reduction due to the pumping loss at low load exceeds the output increase due to the resonance effect. This prevents the negative effect of a decrease in

尚、第5図は本発明をV型6気筒エンジンに適用した場
合の実施例を示jもので、この実膿例においてはエンジ
ン1′におりる第1〜第3気筒31′〜33′を右づる
第1バンク11′と第4〜第6気筒34′〜36′を有
づる第2バンク12′の間に°サージタンク6′が配置
され、主吸気通路5′が該り一−ジタンク6′の一端に
接続されていると共に、該サージタンク6′の両側部に
両バンク11’、12’ におりる気筒31′〜33′
及び34′−36′に夫々に通じる独立分岐通路71′
〜73′及び74’−76’が夫々設置′jられている
。イして、この実施例においても、■第1吸気通路5′
の中間部からサージタンク6′内をクランク軸り向にイ
ー1切る隔壁8′が設りられ、上記主吸気通路5′の中
間部C゛分岐れた第1゜第2分岐通路9+’ 、92’
 と、両分岐通路91’、92’ の下流側に続く第1
.第2吸気拡大室101’、102’ どが形成されて
いる。また、隔壁8′におGフるサージタンク6′の中
央部には両吸気拡大室101’、1(’)2’ を直接
連通させる第1通路111′と該通路111′を開通、
閉鎖する第1バルブ121′とが設けられ、また隔壁8
′にお(プる第1.第2分岐通路9+’ 、92′を仕
切る部分には両通路9+’、92’ を直接連通させる
第2通路112′と該通路112′を開通、閉鎖づる第
2バルブ122′ とが設置′jられ、該第1.第2バ
ルブ12+’ 、122’ が1−記実施例と同様にエ
ンジン1′の運転状態に応じて開閉制御されるようにな
っlいる。
FIG. 5 shows an embodiment in which the present invention is applied to a V-type six-cylinder engine, and in this actual example, the first to third cylinders 31' to 33' in the engine 1' A surge tank 6' is arranged between the first bank 11' which has the right side and the second bank 12' which has the fourth to sixth cylinders 34' to 36'. Cylinders 31' to 33' are connected to one end of the surge tank 6' and extend into both banks 11' and 12' on both sides of the surge tank 6'.
and independent branch passages 71' leading to 34' and 36', respectively.
~73' and 74'-76' are installed, respectively. Also in this embodiment, ■first intake passage 5'
A partition wall 8' is provided which cuts the inside of the surge tank 6' in the direction of the crankshaft from the middle part of the main intake passage 5'. 92'
and the first branching passage downstream of both branch passages 91' and 92'.
.. Second intake expansion chambers 101' and 102' are formed. In addition, a first passage 111' that directly communicates both the intake expansion chambers 101', 1(')2' and the passage 111' is opened in the center of the surge tank 6' that connects to the partition wall 8'.
A first valve 121' for closing is provided, and a partition wall 8
The part that partitions the second branch passages 9+' and 92' includes a second passage 112' that directly communicates the two passages 9+' and 92', and a second passage 112' that opens and closes the passage 112'. Two valves 122' are installed, and the opening and closing of the first and second valves 12+' and 122' are controlled according to the operating state of the engine 1', as in the embodiment 1-. .

従って、この実施例にd5い一層も、高負荷域においで
エンジン回転数の略全域にわlこって共鳴効果が得られ
、充填効率ないし出力が増大されることになる。そして
、特にこの実施例においCは、第1、第2吸気拡大室1
0+’ 、102’を連通させる第1通路111′がサ
ージタンク6′の中央部に設Uられているから、低p荷
域においC第1パルプ121′を問いた■、テに、各気
筒31′・−36′への吸気の分配性が一層向上される
ことになる。
Therefore, in this embodiment, even more so than d5, a resonance effect is obtained over substantially the entire range of engine speed in a high load range, and the charging efficiency or output is increased. In particular, in this embodiment, C represents the first and second intake expansion chambers 1.
Since the first passage 111' that communicates the C 1st pulp 121' in the low p loading area is installed in the center of the surge tank 6', the first passage 111' that communicates the C 1st pulp 121' with The distribution of intake air to 31' and -36' is further improved.

(発 明 の 効 果) 以上のように本発明によれば、吸気系の共鳴効果を利用
して吸気充填効率を自重さUるJ、うにしたエンジンに
おいて、吸気通路を構成り−る分岐通路を共鳴点が変化
する共鳴管として作用させるようにしたから、吸気通路
とは別に共鳴通路を設ける場合に比較して吸気装置がコ
ンパクトに構成されることになる。また、上記共鳴点が
3段階に変化することにより一層広範囲のエンジン運転
領域においで共鳴効果が利用され、出力がエンジンの略
全運転領域で向上されることになる。更に、共鳴効果利
用のため複数の独立した吸気系を設置jることによる吸
気分配性の悪化やボンピングロスの増大、これに伴う低
負荷時における出力の低下が防止され、低負荷時におい
ても良好な出力特性が19られることになる。このよう
にして、特に自動車用エンジンに適した吸気装置が実現
される。
(Effects of the Invention) As described above, according to the present invention, in an engine in which the intake air filling efficiency is reduced by utilizing the resonance effect of the intake system, the branch passage constituting the intake passage. Since the resonator is made to act as a resonance pipe whose resonance point changes, the intake device can be constructed more compactly than when a resonance passage is provided separately from the intake passage. Further, by changing the resonance point in three stages, the resonance effect is utilized in a wider range of engine operating ranges, and the output is improved in substantially all engine operating ranges. Furthermore, by installing multiple independent intake systems to take advantage of the resonance effect, deterioration of intake air distribution, increase in pumping loss, and associated decrease in output at low loads are prevented, and the system is good even at low loads. This results in 19 output characteristics. In this way, an intake system is realized which is particularly suitable for motor vehicle engines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示すエンジンの概略平面図、第2図は
本発明の実施例を示1概略平面図、第3図は該実施例に
おける制御領域を示すグラフ、第4図は該実施例の作用
を示づ出力特性図、第5図は本発明の他の実施例を示す
概略平面図である。 1.1′・・・エンジン、31〜36.31’〜36′
・・・気筒、5.5′・・・吸気通路(主吸気通路)、
71〜7e、71’〜76′・・・独立吸気通路、9+
、92.97’ 、92’・・・分岐通路、101,1
02,101’ 、102’・・・吸気拡大室、11+
、11+’・・・第1通路、112.112’・・・第
2通路、1:ll’+、121′・・・第1パルプ、1
22.122’ ・・・第2バルブ。 出願人 東洋工業株式会社 第3図 第4図
FIG. 1 is a schematic plan view of an engine showing a conventional example, FIG. 2 is a schematic plan view showing an embodiment of the present invention, FIG. 3 is a graph showing a control area in this embodiment, and FIG. 4 is a graph showing the embodiment of the present invention. FIG. 5 is a schematic plan view showing another embodiment of the present invention. 1.1'...Engine, 31-36.31'-36'
...Cylinder, 5.5'...Intake passage (main intake passage),
71~7e, 71'~76'...Independent intake passage, 9+
, 92.97', 92'...branch passage, 101,1
02,101', 102'...Intake expansion chamber, 11+
, 11+'...first passage, 112.112'...second passage, 1:ll'+, 121'...first pulp, 1
22.122'...Second valve. Applicant: Toyo Kogyo Co., Ltd. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)吸気通路が所定の分岐部において2つの分岐通路
に分岐されていると共に、両分岐通路の下流側に夫々吸
気拡大室が設【ノられ、且つ該吸気拡大室から吸気順序
が連続しない複数の気筒に夫々独立吸気通路が設(プら
れている」ニンジンの吸気装置であって、上記両吸気拡
大室を短絡する!11通路と、」ニ配分岐部と吸気拡大
室との間において両分岐通路を短絡する第2通路とが設
(〕られているど共に、この第1.第2通路を夫々開通
、閉鎖覆る第1.第2バルブが備えられ、且つ該第1.
第2バルブがエンジンの運転状態に応じて開閉制御され
るように構成されている1ンジンの吸気装置。
(1) The intake passage is branched into two branch passages at a predetermined branching part, and an intake expansion chamber is provided on the downstream side of both branch passages, and the intake order is not continuous from the intake expansion chamber. This is a carrot intake system in which a plurality of cylinders are each provided with independent intake passages, and the two intake expansion chambers are short-circuited. A second passage short-circuiting both branch passages is provided, and first and second valves are provided to open and close the first and second passages, respectively.
A one-engine intake system in which a second valve is controlled to open and close depending on the operating state of the engine.
JP59026783A 1984-02-14 1984-02-14 Suction device of engine Pending JPS60169627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59026783A JPS60169627A (en) 1984-02-14 1984-02-14 Suction device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59026783A JPS60169627A (en) 1984-02-14 1984-02-14 Suction device of engine

Publications (1)

Publication Number Publication Date
JPS60169627A true JPS60169627A (en) 1985-09-03

Family

ID=12202908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59026783A Pending JPS60169627A (en) 1984-02-14 1984-02-14 Suction device of engine

Country Status (1)

Country Link
JP (1) JPS60169627A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3628230A1 (en) * 1985-08-20 1987-03-05 Mazda Motor INTAKE SYSTEM FOR COMBUSTION ENGINES
JPS62195629U (en) * 1986-06-02 1987-12-12
US5056473A (en) * 1989-05-29 1991-10-15 Honda Giken Kogyo Kabushiki Kaisha Intake device for multi-cylinder internal combustion engine
DE4032380A1 (en) * 1990-10-12 1992-04-16 Daimler Benz Ag IC engine intake system - has second valve in smaller resonance pipe shut at medium and high speed
US6418900B2 (en) 2000-03-31 2002-07-16 Aisin Seiki Kabushiki Kaisha Air induction system for engine
EP1870577A1 (en) * 2006-06-22 2007-12-26 Ford Global Technologies, LLC Intake system
CN102588165A (en) * 2012-03-30 2012-07-18 重庆长安汽车股份有限公司 Intake manifold for supercharged engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3628230A1 (en) * 1985-08-20 1987-03-05 Mazda Motor INTAKE SYSTEM FOR COMBUSTION ENGINES
US4736714A (en) * 1985-08-20 1988-04-12 Mazda Motor Corporation Engine intake system
JPS62195629U (en) * 1986-06-02 1987-12-12
US5056473A (en) * 1989-05-29 1991-10-15 Honda Giken Kogyo Kabushiki Kaisha Intake device for multi-cylinder internal combustion engine
DE4032380A1 (en) * 1990-10-12 1992-04-16 Daimler Benz Ag IC engine intake system - has second valve in smaller resonance pipe shut at medium and high speed
US6418900B2 (en) 2000-03-31 2002-07-16 Aisin Seiki Kabushiki Kaisha Air induction system for engine
EP1870577A1 (en) * 2006-06-22 2007-12-26 Ford Global Technologies, LLC Intake system
CN102588165A (en) * 2012-03-30 2012-07-18 重庆长安汽车股份有限公司 Intake manifold for supercharged engine

Similar Documents

Publication Publication Date Title
JP2863927B2 (en) Engine intake system
JPS61116021A (en) Engine intake-air device
JPS60169627A (en) Suction device of engine
US5080051A (en) Intake system for engine
JP2007205198A (en) Intake device for internal combustion engine
JPH03286129A (en) Air intake device for multiple cylinder engine
KR100250050B1 (en) Variable intake system for v-typed engines
JP2541964B2 (en) V-type engine intake device
JPS61237823A (en) Intake equipment for multi-cylinder engine
JP2649372B2 (en) Intake device for supercharged engine
JP2721983B2 (en) V-type engine intake system
JPS61229925A (en) Intake device for multi-cylinder engine
JPH0392534A (en) Intake device for multi-cylinder engine
JPS61247822A (en) Intake apparatus of engine
JP2688947B2 (en) Intake device for multi-cylinder engine with supercharger
JPH0436022A (en) Intake system of engine
JP2507971Y2 (en) Engine intake system
JP2002256873A (en) Changeable intake system of internal combustion engine
JPH0738661Y2 (en) Engine intake system
JPH0814050A (en) Intake device for three-cylinder internal combustion engine
JPS60198325A (en) Intake device for engine
JPS61157716A (en) Air intake device of multicylinder engine
JPS60198324A (en) Intake device for engine
JPS61218720A (en) Intake device of engine with supercharger
JPH01190917A (en) Intake device for engine